
Multi-Design Application Frameworks
Stefan Hanenberg

Department of Mathematics & Computer Science
University of Essen

Schützenbahn 70, 45117 Essen, Germany
Email shanenbe@cs.uni-essen.de

URL: http://www.cs.uni-essen.de/dawis/shanenbe/

Keywords: Application Frameworks, Aspect-Orientation, Design Patterns
Classification: 1 year´s work

1 Introduction
Application frameworks allow to reuse design and implementation of software. Although they
are meanwhile an essential basis for the rapid implementation of large software systems, the
reuse of design is quite restrictive. Multi-design application frameworks are combinations of
object-oriented and aspect-oriented frameworks, which allow a more flexible reuse by separating
design as a concern.

2 Application Frameworks
Application frameworks are meanwhile an essential basis for the rapid implementation of large
information systems. They contain domain knowledge that has to be adopted by the application
developer. By using a framework developers reuse its design and implementation.
The flexible artifacts within a framework that can or even must be adapted by developers are
called hot spots [Pre95], those that can’t or shouldn’t be changed are frozen spots. Usually the
hot spots are abstract classes or interfaces which must be extended or implemented by the
application developer. The main essence of frameworks is, that hot spots are invoked from
within the framework itself (cf. [JoF88]) using certain design patterns like strategy, template
method etc. (cf. [Gam+95]).
In fact application frameworks not only contain an abstract design and implementation of a
domain, they also contain numerous concerns [Dij76] which influenced the framework's design
and its functionality. For example a framework based on Enterprise JavaBeans contains
numerous aspects [Blv98] and therefore can not be used for client-sided applications, even
though it may depict the needed domain.

3 Aspect-Orientation
Aspect-oriented programming (AOP) [Kic+97] extends the object-oriented paradigm by
introducing aspects as a new model element. Aspects are elements to express concerns, which
are able to crosscut the structure of another model [CzE00]. Software systems can be developed
using object-oriented programming languages and extended by binding aspects to them. Within
the aspect-oriented terminology the oo-programs are called primary structure, the process of
binding aspects is called weaving. The points at which an aspect crosscuts another model
element are called join points, the references to join points are called pointcuts.

4 Aspect Frameworks
Aspect frameworks are collections of abstract and concrete aspects. Like object-oriented
frameworks they also contain hooks and templates, but in addition to methods, abstract pointcuts
may be overwritten. That means although certain aspects are already implemented, it is not fixed
which elements of a primary structure they crosscut. So abstract aspects allow to reuse the
concern they depict for numerous primary structures.

5 Separating Design Patterns as Concern
Design patterns become lost on implementation level within object-oriented applications and
frameworks [Sou95]. If programming languages supply implementations of some patterns (e.g.
class Observable and interface Observer in Java) then these patterns become part of the
inheritance structure of some classes and there is no way to extend them without the included
patterns. It developers decide to implement patterns on their own, it is hardly possible to identify
these patterns in the model of an application. If would be more desirable to identify patterns on
model level and reuse the patterns’ implementations. This can be done using aspect-oriented
techniques.

In [HFU00] we showed, how certain design patterns can be encapsulated using aspects and
introduced our aspect framework sideFrame [Side00] based on the aspect language aspectJ (cf.
[LoK98]). This white box aspect framework contains pre-build design patterns which can be
weaved to an existing primary structure by overriding abstract methods and pointcuts. The main
benefit is, that by weaving design-aspects the implementations of patterns can be reused and on
model level these patterns can be identified. Additional, these patterns can be weaved whenever
needed without staining the inheritance structure of the participating classes.

By encapsulating design patterns into aspects there is no need any longer to keep certain design
patterns within an object-oriented framework when not strictly prescribed by the domain. Instead
object-oriented frameworks should additionally be supplied with an aspect framework which
allows developers to add specific patterns. The main consequence of this approach is, that object-
oriented frameworks become more flexible, because application developer decide which patterns
to use in what situations. Another effect of separating design patterns as concerns is, that
documenting frameworks becomes more easier of the fact, that interfaces within the framework
become more understandable.

6 Example
We assume a quite simple financial framework in Java, which supplies two (concrete) classes
Account and Booking. Account has two attributes owner and id for the owner’s name and the
account number. A booking just consists of an amount, which is in this simple example of type
float (figure 1a).

There may be two different kinds of customers for this framework:

1. developers writing client-applications for managing accounts on a single machine
2. developers writing internet applications for managing account via internet

The first type of customer writes a GUIs which needs to observe Account- and Booking-
instances, the other does not. For the framework provider it means either to supply the
observable-functionality within the framework and to satisfy the first type’s needs (figure 1b), or
to neglect it and to offer simple interfaces appropriate for the second type of customer. If the

observer-property is neglected, the first customer has to adopt it (figure 1c) by implementing the
observer-pattern on his own.

a)

b) c)
Figure 1: a) simple framework, b) including oberserver / observable, c) adopted simple

framework
When separating design concerns within an aspect framework and supplying it in addition, the
framework can satisfy both customers' needs. Adding observable- and observer-properties to
Booking and Account means in sideframe to extend the generic aspects of the participants within
the observer pattern (GenericSubject and GenericObserver) and set Account and Booking as
join points (figure 2). The generic aspects contain the needed behavior and interaction of the
pattern like attaching the observer to the subject and informing the observer whenever the
subject's state changes. So the framework's design can be adopted to the developers' needs.

Figure 2: Adopting simple Multi-Design Framework

7 Future Works
In the future we plan to analyze how the structure of aspect-oriented frameworks can be
described with well known techniques like metapatterns. In addition we plan to extend sideframe
with architectural patterns.

References
[Blv98] Gregory Blank, Gene Vayngrib, Aspects of Enterprise Java Beans, Aspect-Oriented Programming (AOP)
Workshop at ECOOP’98. 1998
[CzE00] Czarnecki, Krzysztof und Ulrich W. Eisenecker: Generative Programming: Methods, Tools, and
Application, Addison-Wesley, 2000

[Dij76] Dijkstra, Edsger W.: A Discipline of Programming. Prentice-Hall. 1976
[Gam+95] Gamma, Erich, Helm, Richard, Johnson, Ralph E., Vlissides, John: Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley. 1995.
[HFU00] Hanenberg, Stefan, Franczyk, Bogdan, Unland, Rainer, Aspect Frameworks: How aspect-orientation an
smoothly support the evolution process of software, submitted
[JoF88] Johnson, Ralph E. , Foote, Brian , Designing reusable classes. Journal of Object-Oriented Programming,
1(5), 1988, pp. 22-35
[Kic+97] Kiczales, Gregor, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier und John Irwin: Aspect-Oriented Programming. In: Aksit, Mehmet (Hg.): Proceedings of ECOOP'97.
Springer-Verlag. 1997
[LoK98] Cristina Videira Lopes and Gregor Kiczales, Recent Developments in AspectJ™ , Aspect-Oriented
Programming (AOP) Workshop at ECOOP’98. 1998
[Pre95] Pree, W.; Design Patterns for Object-Oriented Software Development. Addison-Wesley, Reading, MA,
1995
[Side00] SideFrame: Simple Design Pattern Framework, Homepage, http://www.cs.uni-
essen.de/dawis/research/sideframe/
[Sou95] J. Soukup, Implementing Patterns. In: J.O. Couplin, D.C. Schmidt (eds.): Pattern Languages of Program
Design, Addison-Wesley, 1995.

shanenbe@cs.uni-essen.de

Last modified: Aug 16 18:53:03 CET 2000

