
Concerning AOP and Inheritance

Stefan Hanenberg, Rainer Unland
Dept. of Mathematics and Computer Science

University of Essen, D - 45117 Essen
{shanenbe, unlandR}@cs.uni-essen.de

Abstract
Aspect-Oriented Programming (AOP) has recently been
proposed as a new paradigm for software development.
It supplies mechanisms and constructs for expressing
concerns separated from each other. There are already
general-purpose aspect languages which offer these
mechanisms on implementation level.
Aspect-oriented mechanisms can be used for changing
the behavior of objects. The same results can be
achieved using inheritance, well known in the object-
oriented world.
This paper compares those techniques and introduces,
how inheritance can be applied to AOP.

1. Introduction

Aspect-Oriented Programming (AOP) has recently
been proposed as a new paradigm for software
development. It supplies mechanisms and constructs for
expressing concerns separated from each other.

The core elements of object-oriented approaches are
objects, classes and inheritance (cf. [9]). Classes are
templates from which objects can be created and define
an interface for them. Inheritance (cf. [8]) is a
mechanism for deriving new class definitions from
existing ones.

A class inheriting from another might add additional
members, or redefine members of the upper class. By
redefining methods it is possible to change the behavior
of derived objects. Inheritance is based on the structural
descriptions of objects consisting of classes, attributes
and methods. It is not possible to reuse method
definitions on a finer granularity, e.g. for redefining
certain statements, because the implementation of a
method is hidden to the developer.

This mechanism for changing behavior is very rigid,
because it is only possible to override the whole method
and not parts of it.

While object-oriented programming languages use
structural elements like classes, attributes and methods
as extension points, general-purpose aspect languages
(GPAL) like AspectJ (cf. [1], [4]) or Sally [7] introduce
a new extension point: interaction.

This paper discusses how this new extension point
can be used for changing behavior of objects, which was
achieved using inheritance in the object-oriented world.

 The remainder of this paper is structured as follows.
Section 2 introduces interaction as new extension point,
section 3 introduces our general-purpose aspect
language Sally. Section 4 discusses the relationship
between inheritance and the aspect-oriented extension
point. Section 5 discusses the inheritance relationship
between aspects, and section 5, finally, summarizes and
concludes this paper.

2. Aspect-Oriented Extension Points

Aspect-Oriented Programming permits to treat
different aspects or concerns separately. Adding a
certain new aspect to existing code means to add cross-
cutting code. In order to overcome the rigid and
inflexible approach of object-oriented technology
towards the change of behavior general-purpose aspect
languages like AspectJ (cf. [1], [4]) or Sally [7]
introduced an additional extension point: interaction.

b
B

methodB()
methodA()

a
A

Aspect-Oriented
Extension

...

...
...

Figure 1: Extending interactions using AOP

Figure 1 shows how an instance of A in methodA
interacts with other objects. The object-oriented
approach would just permit to reuse the method-
implementation "as is". With the aspect-oriented
approach the interaction between A and B can be
exploited by adding some code to this specific
interaction. Whenever the specified interaction happens
this additional code is executed. For this purpose the
participants of the interaction and the code which is
supposed to be executed need to be specified. In this
context we use the term aspectual extension, because
the origin code is extended with the aid of aspect-
orientation. Whenever the code is executed, we use the
term aspectual invocation, because the code is
executed although it is not directly embedded in A.

In the next section we introduce the metamodel our
GPAL Sally is based on and compare it shortly with
AspectJ from the Xerox Palo Alto Research Center,

which is the most popular and well-established aspect
language.

3. Metamodel of Sally

We will introduce the metamodel for our GPAL
Sally "bottom-up" what means, that we show how
interaction can be specified before we explain what
aspects consist of.

3.1. Join Points

Sally defines join points as participants of an
interaction and is in that way contrary to the definition
from AspectJ, which introduces join points as
"principled points in the execution of the program" [4].

A participant of an interaction is always a method,
which is defined in Sally via a 4-tupel consisting of the
class identifier, the return type identifier, the method
name and the parameter type identifiers.

So, a valid join point in Sally is: joinpoint j1
{"B", "void", "methodB", ""}.

3.2. Pointcuts

Pointcuts specify interactions which can be used as
extension points. Thereto pointcuts are combinations of
join points. AspectJ defines these combinations as
boolean expressions of join points. However, in Sally a
pointcut is a combination of exactly 2 join points: one
for the caller and one for the receiver.

For example, specifying a pointcut for the interaction
between methodA of an instance of A and methodB
of an instance of B can be done in Sally as follows:

joinpoint c {"A","void","methodA", ""};
joinpoint r {"B", "void", "methodB", ""};
pointcut p1 {c, r};

This defines two join points c and r, and a pointcut
p1, which defines c as the caller and r as the receiver.
Although there is an additional effort to define each
named join point the advantage of this approach is that
every join point can be used in arbitrary many pointcuts
without redefining it. We speak of an activated pointcut
whenever a point in the execution of a program is
reached which matches a specified pointcut.

While join points and pointcuts are used to specify
interactions, the action taking place at this interaction
has to be specified by using pointcut methods.

3.3. Pointcut methods

Pointcut methods specify the code that is meant to be
executed whenever certain interactions happen. A
pointcut method, therefore, is the cross-cutting code
because it may be executed at numerous execution
points in the program. We use the term pointcut method

because they are invoked whenever a certain pointcut is
activated. AspectJ calls such a method an advice.

The declaration of a pointcut method must define at
what pointcuts it is meant to be executed. So, every
pointcut method refers to one or more pointcuts.
Additionally, it must specify at what point in time it is
supposed to be executed: a pointcut method may either
be executed before or after a certain interaction happens
or may even replace the invoked method.

In AspectJ pointcut methods are defined as follows:

before(): aPointcut() {
 ...do something...

}

This pointcut method is executed before the pointcut
aPointcut is activated. AspectJ does not use named
pointcut methods. We regard that as a disadvantage
because a pointcut method is a special method which is
invoked whenever a pointcut is activated. Without
regarding pointcut methods as special methods it would
not be possible to specify pointcuts that have a pointcut
method as an participants of an interaction. That is the
reason why AspectJ does not allow to declare join
points which refer to pointcut methods.

To avoid such problems pointcut methods in Sally
are named methods. Moreover, the metaclass
PointcutMethod extends the metaclass Method.
So, the Sally version of the above pointcut method
definition is:

public void beforeAPointcut(...)
 before aPointcut {

...do something...
}

The pointcut method modifier (keyword "before"
in our example) is an attribute of the relationship
between pointcut methods and pointcuts (figure 2) and
declares at what point in time in relation to the
interaction a pointcut method is invoked.

3.4. Aspects

In general-purpose aspect languages aspects are
constructs which contain those fragments of code, which
cross-cut numerous decomposition units or modules.

On the implementation level aspects are constructs
which consist (in Sally) of attributes, methods, join
points, pointcuts, and pointcut methods (figure 2). In
AspectJ join points are not part of the aspect, however,
part of the pointcut.

Based on that model it is possible to distinguish
between classes and aspects. An aspect has in addition
to attributes and methods join points, pointcuts, and
pointcut methods. So, the metaclass Aspect is
supposed to extend the metaclass Class.

aspect ExtendeAB {
 joinpoint j1 {"A", "void", "methodA", ""};
 joinpoint j2 {"B", "void", "methodB", ""};
 pointcut p1 {j1, j2};
 public void beforePM(...)
 before p1 {

...do something...
 }

}

The code example above shows a valid aspect
declaration for the example in figure 1. Before an
instance of A in method methodA() sends a message
methodB() to an instance of B the pointcut method
beforePM is invoked. This is an aspectual extension
to the interaction between A and B.

*

1
*

*

*

*

*

*

1

*

{ordered}

1

1

caller

1receiver

1

Pointcut

AspectId

Member

Attribute

ReturnTypeId

Aspect

ParameterTypeId

PointcutMethod

PointcutMethod-
Modifier

Method JoinPoint

MethodId

extends

Figure 2: GPAL Metamodel

We didn’t regard the parameters used in a pointcut
method, because it is not necessary for the further
discussion.

4. Aspectual Extension versus Inheritance

Aspectual extension is a way to change the behavior
of objects. Design patterns like template method,
strategy or decorator (cf. [2]) have the same intention
and make exhaustively use of inheritance. In that way it
is necessary to discuss, how inheritance relates to
aspectual extension.

Based on out metamodel aspects are some "special
classes" which have three additional members: join
points, pointcuts and pointcut methods. So it is also
necessary to discuss how the inheritance relationship
between aspects is influenced by those new members.
Part of this discussion is, how mechanisms like
overriding methods can be mapped to aspect-oriented
programming.

Aspectual extensions can be used for changing,
adding or replacing behavior. In this way aspectual
extension is quite similar to inheritance which allows to
override and overload methods. The difference between
both techniques is, that inheritance is an abstraction
principle for all of its objects. So all objects created
from a certain class behave all the same and in that way
the behavior of an object depends on its type. In
contrast to that aspectual extension based on Sally can
be adopted for interaction between objects of a certain
type. So the behavior of objects no longer depends only
on its type, but also on the type of those objects whose

messages are received. Aspectual extension doesn’t
introduce a new type for modifying behavior.

However, AspectJ does not allow to specify both
participants of an interaction and in that way, the
behavior of an object does not depend on both
participants of an interaction.

Our aspect language Sally doesn’t allow to introduce
new attributes or methods. Other GPALs like AspectJ
allow to add members using introductions (cf. [4]). In
this section we will neglect the possibility to add new
members and compare inheritance and aspectual
extension regarding the possibility to adopt behavior.

4.1. Single Inheritance

In the Sally-example below the pointcut method pcm
is executed before any arbitrary object sends the
message getX() to an instance of A. As long as no
other aspects are registered at A, all of its instances
behave as defined there.

aspect ExtendedA {
 joinpoint j1 {"*", "*", "*", "*"};
 joinpoint j2 {"A", "Integer", "getX", ""};
 pointcut p1 {j1, j2};
 public void pcm(...) before p1 {

...do something...
 }

}

Almost the same result might be achieved creating an
subclass of A and overriding method getX(). This
assumes the existence of late binding in the underlying
programming language. The following example is
written in Java and assumes A to be a valid class.

class ExtendedA extends A {
 public Integer getX(...) {

...do something...
return super.getX();

 }
}

The difference between both approaches is, that the
aspectual extension works on the same objects of type
A. It does not need an instance of ExtendedA to be
created. Using inheritance leads to change the code
responsible for creating instances of A. Creational
patterns (cf. [2]) reduce this problem. If no such design
patterns are used, the effort might be immense. So the
main distinction between aspectual invocation and
inheritance is, that the extensions can be done without
changing the code responsible for creating objects.

The example used a before pointcut method. So the
code is executed before the interaction between the
participants takes place. Another kind of pointcut
method is after, which enforces the method to be
executed after the interaction takes place. Before and
after pointcut methods can be used for adding behavior
without changing the predefined implementation.

As long as the aspectual invocation does not
influence the execution of the target method for
example by changing the actual parameters, the usage of

before and after pointcut methods can be compared to
strict inheritance (cf. [10]): the extension is behavior
compatible but enforces the execution of some
additional code.

The third kind of pointcut method is instead, which
replaces the receiver’s method implementation.
Aspectual extension based on instead pointcut methods
can be compared to overriding a method without
referring the origin implementation. It depends on the
developer if the new implementation is behavior
compatible or not. The current GPALs don’t supply any
mechanism to guarantee the compatibility of behavior.

The example we introduced had some specific
characteristics:

• the execution of the pointcut method was
independent of caller’s type

• the pointcut method was related to exactly one
pointcut

As long as the executed code is independent of the
caller inheritance can be used instead of aspectual
extension for purposes of adopting behavior. If the code
to be executed depends on the caller, inheritance alone
is not sufficient. In this case the caller has to be
identified by the receiver, so the caller has to send an
additional this-parameter with the message. The
overridden method has to decide with the aid of this
parameter how to behave.

If the pointcut method is related to exactly one
pointcut and that pointcut relates to exactly one join
point, the result achieved is similar to single inheritance.
Otherwise the pointcut method is executed at several
join points. Pointcut methods executed at more than one
pointcut can be compared to the usage of multiple
inheritance.

4.2. Multiple Inheritance

The programming language Java which is the basis
for the GPALs Sally and AspectJ doesn’t support
multiple inheritance for implementation reuse. For this
reason we will discuss the relationship between
aspectual extension and multiple inheritance on a more
abstract level.

aspect ExtendedAB {
 joinpoint j1 {"*", "*", "*", "*"};
 joinpoint j2 {"A", "Integer", "getX", ""};
 joinpoint j3 {"B", "Integer", "getX", ""};
 pointcut p1 {j1, j2};
 pointcut p2 {j1, j3};
 public Integer pcm(...) instead p1,
 instead p2 {

...do something...
 }

In the example above the pointcut method pcm is
executed whenever an instance of A or B receives a
message getX().

This adoption of behavior can also be done creating
a new subclass of A and B and override method
getX() (figure 3).

Although using multiple inheritance seems to be
similar to aspectual extension, there are a lot of
differences. Multiple inheritance introduces a new type
ExtendedAB, which combines the interfaces of A and
B. However, aspectual extension just leads to a new
implementation of getX() without changing the
interface. Using multiple inheritance assumes the
underlying programming language to handle name
collisions (cf. [6]). Such a mechanism is not needed by
aspectual extension, because is doesn’t combine any
methods so name collisions can not happen.

B
+getX():Integer

A
+getX():Integer

ExtendedAB
+getX():Integer

Figure 3. Multiple Inheritance

The aspect-oriented examples discussed here used
concrete join points. If join points are abstract, then the
registration of aspects depends on, how they are defined
in subaspects. That means the aspect’s implementation is
done, but leaves it open to the developer what aspects
should be extended. This mechanism is similar to mixin-
based inheritance, what we will discuss in the next
section.

4.3. Mixin-based Inheritance

A mixin is an abstract subclass that may be used to
specialize the behavior of a variety of parent classes [2].
Mixin classes don’t have superclasses and are not
therefore structurally bound to any specific place in the
inheritance hierarchy [8]. Whenever a certain class
extends a mixin, it becomes part of the inheritance
structure. So the place in the inheritance hierarchy is not
fixed by the mixin itself, but by classes, which extend
them.

Like in the sections before we neglect the fact, that
mixins allow to introduce new members. Instead we
concentrate on how mixins can be used to change the
behavior of predefined classes.

Let’s assume we have 2 classes A and B, both
supplying a method getX() with return type
Integer. If the implementation of getX() has to be
replaced it might be done using single inheritance (a
new subclass of A and a new subclass of B) or multiple
inheritance (a new class inheriting from A and B).

The first approach has the disadvantage of redundant
code, the other one combines the interfaces of A and B
together in a subclass.

In this situation the usage of mixins might be more
appropriate. A new mixin class implementing getX()
has be to created and whenever a new subclass of A or B
is needed, this class extends either A or B and the mixin

class. The advantage of this approach is, that there is no
redundant new implementation of getX() and the
interface of the new type is not "wasted" with both
interfaces of A and B.

The same result can be achieved using aspectual
extension.

abstract aspect ExtendedAB {
 joinpoint j1 {"*", "*", "*", "*"};
 abstract joinpoint j2 {AspectIdentifier ai}
 {ci, "Integer", "getX", ""};
 pointcut p1 {j1, j2};
 public Integer pcm(...) instead p1 {

...do something...
 }
}

The code extract above shows how an abstract
aspect, containing an abstract join point j2, may be
used to overwrite the method getX() of some aspects.
Which aspects it extends has to be specified by the
developer by extending the aspects and defining the
receiver’s aspect name. If the developer wants to replace
getX() of every instance of A, he has to set the
abstract aspect identifier ai to A.

aspect ExtendedA extends ExtendedAB {
 joinpoint j2 {ai="A"};
}

While the previous sections discussed how aspectual
extension may be used instead of inheritance we made
here already use of the inheritance relationship between
aspects. In the next section we will discuss this
relationship in detail.

5. Inheritance between Aspects

An aspect without join points, pointcuts and pointcut
methods is equal to an object-oriented class. So an
aspect’s extension can access all resources defined in its
upper aspect.

The question is, how the inheritance-relationship
looks like in aspects having join points, pointcuts and
pointcuts methods. We will begin our discussion with an
example taken from AspectJ.

5.1. Extending Aspects in AspectJ

AspectJ allows an aspect to extend another aspect.
All members defined in an upper aspect are also part of
its extension. The following example is similar to a code
example in AspectJ.

aspect Trace {
 pointcut printouts():
 instanceof(HelloWorld) &&
 receptions(void printMessage ());
 static before(): printouts() {
 System.out.println("before");
 }
}

Whenever an instance of HelloWorld receives a
message printMessage() the corresponding before
pointcut method is executed. This aspect can be
extended by another aspect Trace2.

aspect Trace2 extends Trace {
 static before(): printouts() {
 System.out.println("another before");
 }
}

The result of that extension is, that before an instance
of HelloWorld receives a message
printMessage(), the pointcut method of Trace2
and afterwards the pointcut method of Trace1 is
executed.

Although this might be the expected behavior, there
is a fundamental problem: there is no chance to
redefine the behavior of the pointcut method in Trace.
In other words: a once defined static pointcut method
can never be adopted anymore.

The reason for this problem is, that AspectJ doesn’t
treat pointcut method as "usual" methods. They do not
have a name. So there is no way to decide, if the
developer wants to redefine the same pointcut method,
or would like to introduce another one. He also has no
possibility to add an aspectual extension to the pointcut
method, because therefore a method name is needed.
For this reason we recommend in our metamodel, that
pointcut method extends method. and realized it
in Sally.

If the developer overrides a pointcut method, the
overridden method will be executed instead of the
method inherited from the upper aspect. So on instance
level it is clear what method has to be invoked. In this
way it is also possible to override static pointcut
methods in Sally.

5.2. Extending Aspects in Sally

Sally allows like AspectJ to extend aspects. An
aspect extending another one shares all of its resources.
So attributes, methods, join points, pointcuts and
pointcut methods defined in an aspect are also part of its
descendent. A child of an aspect might also introduce
new members.

It is possible to define abstract aspects, which can
not be instantiated. Abstract aspects, which contain
some predefined behavior, may contain abstract join
points. So the developer extending the aspect is
responsible for defining, at what join points the
aspectual invocation happens.

Overriding pointcut methods is done in the same way
like overriding methods in Java. A pointcut method
overriding another one must have exactly the same
signature.

Overriding static pointcut methods is handled in
Sally as follows. Whenever a static pointcut method of
an ancestor is overridden, the overriding method will be
invoked instead of the overridden one. We think this

approach is more appropriate for extending aspects
including static pointcut methods like the one supported
in AspectJ.

As a result this approach leads to a kind of inversion
of control: a pointcut declaration in an upper aspect is
responsible for the invocation of a static pointcut
method of its descendant.

<<aspect>>

A

<<pointcut method>>

+getX():Integer

<<aspect>>

A2

<<pointcut method>>

+getX():Integer

<<aspect>>

A1

<<pointcut method>>

+getX():Integer

Figure 4. Overriding static pointcut methods

The example in figure 4 shows an aspect A having
two subaspects A1 and A2. The corresponding join
points and pointcuts are not considered in this example.
Whenever the static pointcut method getX() of A is
activated the corresponding pointcut methods of A1 and
A2 are invoked, but no longer the method of A itself.

6. Conclusion and further work

In this article we compared aspect-oriented extension
and object-oriented inheritance. We showed, how
aspectual extension can be used instead of inheritance
for adopting behavior.

Besides we discussed the inheritance-relationship
between aspects and especially the problem of
overriding static pointcut methods. We introduced the
approach used by Sally to handle static pointcut
methods.

In the future we will examine, how the mechanism of
method overloading can be applied to AOP.

7. References
[1] AspectJ Homepage, http://www.aspectj.org/,

2001

[2] Gilad Bracha, William Cook. Mixin-based
Inheritance. In: Norman Meyrowitz (Ed.).
OOPSLA / ECOOP’90 Conference Proceedings,
ACM SIGPLAN Notices 25, 10, pp. 303-311,
1990

[3] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995

[4] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, William G. Griswold. An
Overview of AspectJ. To appear in ECOOP 2001,
2001

[5] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Christina Lopes, Jean-
Marc Loingtier, John Irwing. Aspect-Oriented
Programming. Proceedings of ECOOP ’97, LNCS
1241, Springer-Verlag, pp. 220-242, 1997

[6] Jorgen Lindskov Knudsen. Name Collision in
Multiple Classification Hierarchies. In Gjessing,
Nygaard (Eds.). ECOOP ’98 European
Conference on Object-Oriented Programming,
LNCS 322, Springer-Verlag, pp. 93-109, 1998

[7] Sally: A General-Purpose Aspect Language,
http://www.cs.uni-essen.de/dawis/research/

aop/sally/, January 2001

[8] Antero Taivalsaari. On the Notion of Inheritance.
In: ACM Computing Surveys, Vol. 28, No. 3, pp.
439-479, 1996

[9] Peter Wegner. Dimensions of object-based
language design. In: N. Meyrowitz (Ed.),
Proceedings of OOPSLA ’87, SIGPLAN Notices
22 (12), pp. 168-182, 1987

[10] Peter Wegner . The object-oriented classification
paradigm. In: Bruce Shriver, Peter Wegner (eds.).
Research Directions in Object-Oriented
Programming. MIT Press, pp. 479-460, 1987

