
On Representing Join Points in the UML
Dominik Stein, Stefan Hanenberg, and Rainer Unland

Institute for Computer Science

University of Essen, Germany

{dstein | shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT
Join points represent the key concept in Aspect-Orientation.
Join points define the places where two concerns crosscut one
another. It is a major task for aspect-oriented designers to
specify a set of join points at which two concern models are
(inter)connected to each other. Hence, it is a primary task for
an aspect-oriented modeling language to provide suitable
representations for join points. In our Aspect-Oriented Design
Model we have identified join point representations in the
UML that serve the needs of aspect-oriented designers of
aspect-oriented programs written in AspectJ. In this paper we
evaluate if and to what extent these representations are apt to
serve as hooks for crosscutting specified with Composition
Filters, in Adaptive Programming, and in Hyper/J, as well .
Based on the outcome of that investigation we present a
graphical notation for the designation of join points and for
their visualization in regular user models.

1. INTRODUCTION
Join points represent the key concept in aspect-orientation:
Join points describe the "hooks" where crosscutting
enhancements may be added to a given decomposition (cf.
[7]). Join points identify the points of correspondence in
independently modularized concerns. Join points define the
places where two concerns crosscut one another. The nature of
a join point importantly influences the way in which
crosscutting at that point can be accomplished. For example,
the different join point models used by the prevalent aspect-
oriented programming techniques like AspectJ [3],
Composition Filters [1], Adaptive Programming [12], and
Hyper/J [9] open up different possibiliti es to implement
crosscutting entities. Furthermore, the different characteristics
(i.e., the different temper) of join points specified in their join
point models require different means of join point designation.
Hence, the actual disposition of join points lies at the heart of
an aspect-oriented environment.

Due to the significance of join points in an aspect-oriented
environment it is a major task for aspect-oriented designers to
specify (sets of) join points at which two concern models are
(inter)connected to each other. Correspondingly, it is a
primary task for an aspect-oriented modeling language to
provide suitable representations for join points – both on
meta(model)-level and on (user)model-level. On model level,
the need for appropriate representations is most obvious since
it is the principal purpose of a modeling language to provide
designers with graphical means to visualize software systems.
Yet, to allow integrity and consistency checking on the design
of those software systems, representations on the meta-level
are needed as well .

With the Aspect-Oriented Design Model (AODM) [15] [16]
we present such a modeling language that provides join point

representations both on meta-level and on model-level. The
AODM is based on the UML [13] and uses its standard
extension mechanisms to allow the design of structural and
behavioral crosscutting. On the meta-level, the AODM
identifies UML classifiers to represent join points for
structural crosscutting and UML links to represent join points
for behavioral crosscutting. UML classifiers constitute
supertypes of entities like classes, interfaces, nodes, or
components. UML links are runtime instances of UML
associations and represent communication channels that are
used to pass control via message sending from one object to
another. On the model-level, the AODM renders (sets of) join
points using textual expressions that evaluate to (sets of)
references to classifiers and links, respectively. The references
are visualized in user models by means of special «crosscut»
relationships, which are newly introduced by the AODM.

The AODM has been developed as a modeling language for
the design of aspect-oriented programs realized with AspectJ.
As a result, the AODM primarily focuses on the appropriate
representation of AspectJ's language constructs. And the
representation of join points in the AODM primarily reflects
on AspectJ's join point model. Therefore, investigations are
due to find out how the AODM can be extended to provide for
other aspect-oriented programming techniques.

In this paper we present our preliminary results on the
extension of the AODM to other aspect-oriented programming
techniques with respect to the representation of join points.
We investigate if and to what extent UML classifiers and
UML links may serve as (meta-level) join points for aspect-
oriented crosscutting defined with Composition Filters,
Adaptive Programming, and Hyper/J (section 2). Besides that
we explore how join points can be graphically rendered on
model-level (section 3). At last we summarize the outcomes of
this work and give a short outlook on the remaining
adaptations to the AODM that need to be accomplished
(section 4).

2. JOIN POINTS ON META-LEVEL
In this section we explain what we understand by structural
and behavioral crosscutting and why we consider UML
classifiers and UML links to depict appropriate
representations for join points for structural and behavioral
crosscutting. We demonstrate why UML classifiers and UML
links may serve as meta-level representations for join points
for aspect-oriented crosscutting defined with AspectJ,
Composition Filters, Adaptive Programming, and Hyper/J.

2.1 Structural vs. Behavioral Crosscutting
In the following examinations we distinguish between
"structural crosscutting" and "behavioral crosscutting". We do
this in close conformity with AspectJ. That means, with

"structural crosscutting" we refer to crosscutting that affects
the type structure of a given model, e.g., the interfaces of
classifiers, or their relationships. We identify structural
crosscutting to apply to some spatial location (where?) in a
class hierarchy. Therefore, we take UML classifiers as hooks
for structural crosscutting. In contrast to this we use the term
"behavioral crosscutting" to refer to crosscutting that affects
the (existing) behavior of a classifier. Behavioral crosscutting
applies to some point in time (i.e., at runtime) (when?). We
take UML links as hooks for behavioral crosscutting because
they demarcate fixed points that are repeatedly passed during
runtime. Note that in the case of structural crosscutting the
element serving as hook for crosscutting coincides with the
element being affected by crosscutting (i.e., it is a UML
classifier). Behavioral crosscutting, in contrast to this, hooks
on to links; however, it does not affect the link. Rather, it
affects the (inter)action being performed over that link.

Hence, for example, we consider a method being added to a
classifier by a crosscutting concern to be structural
crosscutting because the addition of a method affects the
interface of the classifier rather than its (existing) behavior.
That is, the method constitutes a new service, however, it does
not crosscut an existing one.

2.2 Join Points in AspectJ
Aspect-Oriented Programming [11] with AspectJ [3] is used
to specify both structural and behavioral crosscutting.
Structural crosscutting is specified by means of
"introductions" that change "the type structure of a program,
by adding to or extending interfaces and classes with new
fields, constructors, or methods" [2]. Hence, structural
crosscutting in AspectJ applies to interfaces and classes. In the
UML meta-model, interfaces and classes are modeled as

subtypes of UML classifiers. Therefore, we think it is proper
to hook on structural crosscutting defined in AspectJ to
classifiers in UML models. And thus, we consider it eligible
to use UML classifiers to represent AspectJ' s join points for
structural crosscutting in the UML.

Behavioral crosscutting in AspectJ is specified by special
kinds of methods (i.e., pieces of "advice") that execute at
"well-defined point in the program flow" [2]. These well-
defined points "can be considered as nodes in a simple
runtime object call graph" [10]. In the UML, these nodes are
depicted as UML links in UML interaction diagrams. For
example, Figure 1 and Figure 2 demonstrate how an object
call graph (taken from the AspectJ Tutorial [8]) can be
transformed into a UML interaction diagram. In the
interaction diagram, links denote the "well-defined points" at
which behavioral crosscutting is performed. The diagram
demonstrates how behavioral crosscutting defined in AspectJ
programs hooks on to links in UML models. Therefore, we
consider it eligible to use UML links to represent AspectJ' s
join points for behavioral crosscutting in the UML.

2.3 Join Points in Composition Filters
Composition Filters [1] are used to specify behavioral
crosscutting (in the sense specified in subsection 2.1). That is
because Composition Filters "are defined as functions, which
manipulate messages received and sent by objects" [4]. In the
UML, messages are depicted in interaction diagrams. And as
mentioned before, links are used to communicate these

Point1

ALine

Point2

AFigure

execution join point

method call join point

Figure 1. Simple Runtime Object Call Graph (cf. [8])

AFigure

drawLine(P1, P2)

Point1

setPoint(P1)

ALine

Point2

setX(P1.X)

setY(P1.Y)

setPoint(P2)
setX(P2.X)

setY(P2.Y)

execution join point

method call join point

Figure 2. UML Sequence Interaction Diagram

conditions

methods

variables

internals

externals

input
filters

output
filters

interface
layer

inner
object

received messages

sent messages

Figure 3. The Composition Filters Object Model (cf. [5])

InnerObject

variables
[...]

methods
[...]

«conditions» {isQuery = true}
conditions
[...]

 Operations

 Attributes

received_
message()

sent_
message()

Internal

External

InterfaceLayer

output_filters
[...]

input_filters
[...]

 Operations
 Attributes

*

*

1

Figure 4. UML Collaboration Interaction Diagram

messages from one object to another. In general, no message
can be sent from one object to another in UML models, if
there is no link connecting these objects. So, just like
behavioral crosscutting in Aspect-Oriented Programming with
AspectJ, behavioral crosscutting defined with Composition
Filters hooks on to links in UML models. And
correspondingly, we consider UML links eligible to represent
join points for behavioral crosscutting defined by
Composition Filters.

Figure 3 and Figure 4 demonstrate how the Composition
Filters Object Model [5] can be represented by an UML
interaction diagram. Note in Figure 4 how the input and
output filter methods are hooked on to the link transmitting
the received and sent messages (respectively).

2.4 Join Points in Adaptive Programming
Adaptive Programming [12] with "adaptive methods" is used
to implement collaborative behavior between interrelated
classes without hard-coding their relationships. Adaptive
methods hook on to join points that are thought of "as nodes
or edges in some graph" [7]. The join points are succinctly
specified by means of a general traversal strategy, which can
be applied to a particular user graph such as "a dynamic call
graph (a UML interaction diagram), a class graph (a UML
class diagram), an object graph (a UML object diagram)" [7].
Each node (i.e., each join point) in such a graph is
supplemented with a so-called "visitor method". These visitor
methods represent helper methods, which collaboratively
realize the behavior specified by the adaptive method.

While we clearly recognize that the main objective of an
adaptive method in Adaptive Programming is to specify
collaborative behavior of interconnected classes, we identify
crosscutting in Adaptive Programming to be a kind of
structural crosscutting (in the sense stated in subsection 2.1).
We do this because we observe that the propagation of the
visitor methods along the traversal strategies in fact alters
interfaces of classifiers rather than (existing) behavior (or
services) of those classifiers. This means for a UML model,
visitor methods hook on to classifiers. Therefore, we consider
UML classifiers eligible to represent hooks for structural
crosscutting defined in Adaptive Programming.

For example, Figure 5 and Figure 6 demonstrate what a
possible propagation graph for a given traversal strategy
(taken from [12]) could look like in a UML model and how
the propagation of an adaptive method along this graph can be
represented.

2.5 Join Points in Hyper/J
At last we examine to what extent UML classifiers and UML
links in a UML model may serve as hooks for crosscutting
implemented with Hyper/J [9]. To do so, we regard a special
case of model composition with Hyper/J, which compares to
the model composition of other aspect-oriented programming
techniques. Afterwards, we contemplate the general case.

Generally, Hyper/J can be used to implement structural and
behavioral crosscutting just as in other aspect-oriented
programming techniques. In [14] Ossher and Tarr point out,
though, that there is "a key difference between MDSOC with
Hyper/J and AOP as described in the literature [11] and
exemplified by AspectJ [10]" in "that AspectJ supports
augmentation of a single model, whereas Hyper/J supports
integration of multiple models." Note in that regard, that we
observe Composition Filters and Adaptive Programming, as
well, to support the augmentation of a single model (likewise
to AspectJ) rather than an integration of multiple models (as
promoted by Hyper/J). To help us understand the parallels of
Hyper/J to the other aspect-oriented programming techniques,
we imitate the "augmentation" process of the latter in the
former and think of a composition of two models as an
insertion of one ("aspect") model into the other ("base") model
(i.e., we use merge integration strategies and assume that no
conflicts need to be reconciled and no elements need to be
renamed or retyped).

In Hyper/J, crosscutting hooks on join points that "include
classes, interfaces, methods, and member variables" [7]. These
join points delineate points of correspondence between two
(or more) separate models. They are related by means of
composition relationships, which specify further details on the
exact composition. We identify crosscutting in Hyper/J (with
one exception described later) to be a kind of structural
crosscutting (in the sense defined in subsection 2.1) because
we recognize that Hyper/J' s primarily concern is to integrate
type hierarchies (cf. "Hyper/J allows a developer to compose a
collection of separate models, [...] each [...] implementing a
(partial) class hierarchy"1 [14]). We observe that composition
rules connect to (spatial) locations in type hierarchies (rather
than instants in the execution of a program). That is,
composition rules render overlapping parts in type hierarchies.
Figure 7, for example, depicts two independent concern
models (taken from [14]) that are related by composition
relationships (not all are shown) that designate corresponding
elements in both models.

In our scenario described above we may abstract from
composition rules that connect member attributes or member
operations not implemented in the "aspect" model. We
observe that these composition relationships exist solely due

1 full citation: "Hyper/J allows a developer to compose a

collection of separate models, called hyperslices, each
encapsulating a concern by defining and implementing a
(partial) class hierarchy appropriate for that concern." [14]

Conglomerate

Company

Officer
Salary

Ordinary
Share

Holding

OfficerList

head

officers

salary

Conglomerate

Company

Officer
Salary

Ordinary
Share

Holding

OfficerList

head

officers

salary
*

Adaptive
Method

Figure 5. Traversal Strategy
Propagation Graph (cf. [12])

Figure 6. UML Class Diagram

to Hyper/J' s "declarative completeness" requirement [17],
which means that each type hierarchy must declare every
member attribute and every member operation that it refers to.
We recognize that none of these attributes and operations will
be injected into the "base" model during composition –
because they are already present. Only those attributes and
operations that are not attached to a composition relationship
(and thus do not represent join points) will be inserted. So, in
our scenario described above we can abstract from "method"
join points and "member variable" join points – ending up
with "class" and "interface" join points as the major hooks for
structural crosscutting in Hyper/J. As mentioned before, in the
UML meta-model, classes and interfaces represent subtypes of
UML classifiers. So, structural crosscutting on classes and
interfaces defined in Hyper/J hooks on to classifiers in UML
models. Therefore, we think UML classifiers represent
suitable join points for structural crosscutting defined in
Hyper/J.

Special regards must be given to composition rules that relate
member operations implemented in both the "aspect" and the
"base" model. Such composition rules express behavioral
crosscutting in Hyper/J (in the sense stated in subsection 2.1).
Behavioral crosscutting in Hyper/J is specified on method
level, i.e., methods are considered atomic. Therefore,
specifying behavioral crosscutting in Hyper/J principally
means specifying the order in which corresponding methods
are to be invoked. In the UML, method invocations are
represented as call messages, which are communicated over
links. So, just like behavioral crosscutting in Aspect-Oriented
Programming or with Composition Filters, behavioral
crosscutting defined in Hyper/J hooks on to links in UML
models. Therefore, we consider UML links eligible to
represent join points for behavioral crosscutting defined in
Hyper/J.

In conclusion, interpreting the composition of two models in
Hyper/J as an insertion of one ("aspect") model into the other
("base") model helped us to recognize that UML classifiers
and UML links in a UML model represent eligible hooks for
crosscutting implemented with Hyper/J. However, these hooks
do not prove to be suff icient to express all possible integration

strategies of Hyper/J in UML models. We also
need to represent method and attribute join points
for the general case where we cannot abstract
from method and attribute correspondence
relationships.

We relate the reason of the need for such
representations to the fact that in Hyper/J
developers are concerned with the composition
process of "declaratively complete" models itself,
while in other aspect-oriented programming
techniques weaving is a pre-defined process
executed on known models. Hyper/J
programmers need to declare everything to which
they refer, while programmers using other aspect-
oriented programming techniques reference
directly to the used elements. For that reason the
former need to explicitl y designate corresponding
elements, while the latter rely on the implicit
correspondence relationships implemented by
their compilers and weavers.

Clarke [6] presents a powerful approach that
focuses on the specification of such explicit correspondence
(and detailed composition) relationships on the design level.
The approach provides representational means to designate
attribute and operation join points. Our AODM, on the
contrary, realizes implicit correspondence as it is found in
AspectJ by means of parameterization (using template
parameter or operation parameters, respectively; see [15] [16]
for further details). It does not provide for the design of
relationships between corresponding attribute and operation
join points.

3. JOIN POINTS ON MODEL-LEVEL
As an important outcome of the last section we identified
UML classifiers and UML links to be appropriate meta-level
representations for join points in AspectJ, Composition
Filters, Adaptive Programming, and Hyper/J. However,
identifying join points on the meta-level is only half of the
story. Designers must also be provided with graphical means
to identify join points on model-level. These means ought to
serve the design of any aspect-oriented programming
technique. That means in particular, we need modeling
facil ities to graphically represent pointcuts in AspectJ,
messages for Composition Filters, traversal strategies in
Adaptive Programming, and composition relationships in
Hyper/J. In our AODM, we use a (specifically introduced)
«crosscut» relationship to point to the locations where a
crosscutting element of an "aspect" model crosscuts an
element of a "base" model. Figure 4 and Figure 6 give a basic
idea of how this relationship looks like.

Using a relationship to indicate the locations where an
"aspect" element crosscuts a "base" element (i.e., to express
crosscutting between an "aspect" element and a "base"
element) appears to be quite befitting at the first glance. At the
second glance, however, the approach proves to be suitable
only for the visualization of «crosscut» relationships between
a small number of "aspect" and "base" elements. As soon as
we need to display all crosscutting relationships in a design
model, the model is li kely to become cluttered and sprawling.
To overcome this tangle we suggest the use of separate
modeling means for the designation of points of crosscutting

Employee

name()
check()
print()
position()
pay()

Employee

name()
startDate()
skill s()
print()

 Operations
 Attributes

Manager
Base

SalesMgr Manager

Research
Mgr

NonManager
Base

Sales Regular

Research Staff

 Operations
 Attributes

Research

Research
Mgr

Secretary

LineSales Regular

Tracked

SalesMgr Regular
Mgr

Staff

Figure 7. Composition Relationships between Two Distinct Concern Models
(cf. [14]) represented as UML Class Diagrams

in "aspect" models on the one hand and for the indication of
those points in "base" models on the other hand. In the
following we present solutions for the separate designation
and indication of join points in user models.

3.1 Designating Join Points
For the graphical designation of join points, we propose to use
special "join point designation diagrams" that basically
represent UML collaborations. In these diagrams, join points
(i.e., classifiers in the case of structural crosscutting and links
in the case of behavioral crosscutting; cf. section 2) are
indicated as special «join point» stereotypes.

Figure 8 demonstrates, for example, how a set of join points
for behavioral crosscutting (i.e., links) is specified. The left
part of the collaboration outlines some requirements on the
structural environment of links belonging to the designated set
of join points. The right part shows two interactions that
designate the messages that must be transmitted over those
links. Each interaction designates a different (i.e., alternative)
link at which crosscutting is to take place (denoted by the
{or} relationship).

The upper interaction designates links that
connect instances of SomeAssociated-
Type to instances of CrosscutType and
that are used to transmit a call message to
invoke a CrosscutOp operation on a
CrosscutType instance to be a join point.
The CrosscutType instances and the
CrosscutOp operations are designated by
means of textual pattern expressions specified
in special base tags. The base tags are
specified in a template parameter box to avoid
distractions inside the collaboration. The lower
interaction designates links that connect
instances of SomeAssociatedType to
instances of CrosscutType and that are
used to transmit a call message to invoke the
(inherited) superOp operation on a
CrosscutType instance. The call message
needs to be transmitted in the execution
context of an op1 operation invoked on a
SomeAssociatedType instance.

In the left part, the collaboration declares
structural requirements that must be met by a
link to be appended to the set of join points.
For instance, CrosscutTypes are required
to be subtypes of SomeSuperType and to
have at least two associations to instances of
SomeAssociatedType (the disconnected
generalization relationship between
CrosscutType and SomeSuperType
indicates that the former does not necessarily
have to be a direct child of the latter). The
supertype SomeSuperType is required to
provide a superOp operation, which is
inherited to the CrosscutTypes. Instances
of SomeAssociatedType are required to
provide an op1 operation. The
CrosscutTypes themselves are demanded
to feature an attribute att1 and two

operations op2 and op3.

Join points for structural crosscutting can be specified by
collaboration diagrams, too. In that case, the collaboration
only shows structural requirements and does not contain
interaction diagrams. Join points are designated in the
structural description by marking classifiers with the «join
point» stereotype.

3.2 Indicating Crosscut Elements
After we found suitable representational means for the
designation of join points we now look for lucid means to
indicate join points in "base" models. To do so, we propose
the use of special "join point indication diagrams" that
describe a particular view (or projection) on a given user
model. The view comprises only those model elements being
affected by a particular set of join points (defined by a "join
point designation diagram").

Figure 9, for example, demonstrates what a "join point
indication diagram" for the set of join points defined by the
"join point designation diagram" depicted in Figure 8 could

SomeSuper
Type

superOp()

«call» «join point»
CrosscutOp()

Collab_DesignatingSetOfJoinPoints

CrosscutType

att1

op2()
op3()

 Operations

 Attributes

2..*

 Operations

 Attributes

SomeAssociated
Type

CrosscutType

SomeAssociated
Type

op1()
 Operations

 Attributes

«call» «join point»
superOp()

SomeAssociated
Type

CrosscutType

«call» op1()

{or}

CrosscutType {base = "SomePackage.Con*"}
CrosscutOp {base = "CrosscutType.op*(..)"}

[...]

Figure 8. Join Point Designation Diagram

SomeSuper
Type

superOp() {crosscutBy}

«call» op1()
{crosscutBy =
SomeAspect.Element}

ConcreteType
{crosscutBy = SomeAspect.Element}

att1
att2

op1() {crosscutBy = SomeAspect.Element}
op2() {crosscutBy = SomeAspect.Element}
op3()

 Operations

 Attributes

3

 Operations

 Attributes
SomeAssociated

Type
ConcreteType

SomeAssociated
Type

op1()
 Operations

 Attributes

«call» superOp()
{crosscutBy =
SomeAspect.Element}

SomeAssociated
Type

ConcreteType

«call» op1()

SomePackage
{crosscutBy = SomeAspect.Element}

SomeSub
Type

Remark: Collaboration describing invocations to operation op2 of ConcreteType not shown!

Figure 9. Join Point Indication Diagram

look like. The diagram displays all elements pertaining to the
particular set of join points together with their features and
relationships. Each "base" model element is supplemented
with a special crosscutBy tag, which is supposed to
enumerate all "aspect" elements that crosscut that "base"
element. For container "base" elements (e.g., the class
ConcreteType) the crosscutBy tag lists all "aspect"
elements that crosscut the "base" elements contained in the
container. CrosscutBy tags may be shown without the
detailed enumeration to simply mark a "base" element as
being crosscut (e.g., the operation superOp of
SomeSuperType).

Note that appropriate tool support is needed to keep "join
point indication diagrams" consistent with their corresponding
"join point designation diagrams".

4. SUMMARY AND FUTURE WORK
In this paper we have shown that UML classifiers and UML
links are appropriate to represent join points in AspectJ,
Composition Filters, Adaptive Programming, and Hyper/J on
the meta-level. We recognized that Hyper/J calls for further
means to represent the explicit correspondence relationships
between operation and attribute join points. We identified
relationships to be unsuitable to represent the (entire)
crosscutting relationships between "aspect" and "base" model
elements. We suggested separating the designation of join
points in "aspect" models from their indication in "base"
models. We have presented a special graphical notion of "join
point designation diagrams" to designate sets of join points.
We have proposed to mark model elements being affected by
a particular set of join points with help of UML tags in special
"join point indication diagrams".

Provided with (meta-level and model-level) representations
for join points that appropriately delineate the join points used
in the prevalent aspect-oriented programming languages (i.e.,
AspectJ, Composition Filters, Adaptive Programming, and
Hyper/J), we can now move on to devise suitable modeling
faciliti es for the design of crosscutting structure and
crosscutting behavior, itself. In our AODM, we use (template
and ordinary) collaborations to specify structural and
behavioral crosscutting as it is realized with AspectJ. Its
abstractions primarily suit the needs of aspect-oriented
programmers working with AspectJ. Further investigations are
required to explore if and to what extent these modeling
faciliti es can be (re)used to design aspect-oriented programs
with Composition Filters, Adaptive Programming, or Hyper/J.
The preliminary investigations presented in this paper help to
do that job. The extension to Composition Filters and
Adaptive Programming promises to bring forth quick results
since these approaches – likewise to AspectJ – are concerned
with augmentation. The extension to Hyper/J is expected to
raise more problems and therefore will be left aside for
subsequent research.

5. REFERENCES
[1] Aksit, M., Bergmans, L., Vural, S., An Object-Oriented

Language-Database Integration Model: The
Composition-Filters Approach, in: Proc. of ECOOP'9 2
(Utrecht, The Netherlands, Jun. 1992), LNCS 615, pp.
372-395

[2] AspectJ Team, The AspectJ Programming Guide,
http://aspectj.org/doc/dist/progguide/index.html, Sep.
2001

[3] AspectJ, http://www.aspectj.org

[4] Bergmans, L., Aksit, M., Composing Crosscutting
Concerns using Composition Filters, in: ACM
Communications, Vol. 44(10), Oct. 2001, pp. 51-57

[5] Bergmans, L., The Composition Filters Object Model,
Dept. of Computer Science, University of Twente, 1994

[6] Clarke, S., Composition of Object-Oriented Software
Design Models, PhD Thesis, Dublin City University,
Dublin, Ireland, Jan. 2001

[7] Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K.,
Ossher, H., Discussing Aspects of Aspect-Oriented
Programming, in: ACM Communications, Vol. 44(10),
Oct. 2001, pp. 33-38

[8] Griswold, W.G., Hilsdale, E., Hugunin, J., Ivanovic, V.,
Kersten, M., Kiczales, G., Palm, J., Tutorial: Aspect-
Oriented Programming with AspectJ, Xerox Corp., 2001

[9] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, K.,
Palm, J., Griswold, W.G., An Overview of AspectJ, in:
Proc. of ECOOP '0 1 (Budapest, Hungary, Jun. 2001),
LNCS 2072, pp. 327-252

[11] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch.,
Lopes, Ch., Loingtier, J.-M., Irwin, J., Aspect-Oriented
Programming, in: Proc. of ECOOP ' 97 (Jyväskylä,
Finland, Jun. 1997), LNCS 1241, pp. 220-242

[12] Lieberherr, K., Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns, PWS
Publishing Company, Boston, 1996

[13] Object Management Group (OMG), Unified Modeling
Language Specification, Version 1.4, Sep. 2001

[14] Ossher, H., Tarr, P., Using Multi-Dimensional
Separation of Concerns to (Re)Shape evolving Software,
in: ACM Communications, Vol. 44(10), Oct. 2001, pp.
43-50

[15] Stein, D., Hanenberg, St., Unland, R., A UML-based
Aspect-Oriented Design Notation For AspectJ, in: Proc.
of AOSD ' 02 (Enschede, The Netherlands, Apr. 2002),
ACM

[16] Stein, D., Hanenberg, St., Unland, R., Designing Aspect-
Oriented Crosscutting in UML, AOSD-UML Workshop
at AOSD' 02 (Enschede, The Netherlands, Apr. 2002)

[17] Tarr, P., Ossher, H., Hyper/J User and Installation
Manual, IBM Corp., 2000

