
Designing Aspect-Oriented Crosscutting in UML
Dominik Stein, Stefan Hanenberg, and Rainer Unland

Institute for Computer Science

University of Essen, Germany

{dstein | shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT
The Aspect-Oriented Design Model (AODM) is a new design
model for the development of AspectJ programs with the UML. It
extends existing UML concepts using standard UML extension
mechanisms to provide aspect-oriented concepts as they are found
in AspectJ. Further, the AODM specifies how an aspect-oriented
design model may be transformed into an ordinary UML design
model. It demonstrates how this weaving mechanism may be
represented with help of existing UML concepts. The AODM
facilitates the perception of aspect-oriented crosscutting in As-
pectJ programs and carries over the advantages of aspect-
orientation to the design level. This paper explains the reasoning
behind the AODM and demonstrates how it may be used to design
aspect-oriented crosscutting in general.

1. INTRODUCTION
Aspect-oriented programming (AOP) [4] is a new software devel-
opment paradigm that aims to increase comprehensibility, adapt-
ability, and reusability by introducing a new modular unit, called
"aspect", for the specification of crosscutting concerns. AspectJ
[2] is a programming language that supports the aspect-oriented
programming paradigm by providing new language constructs to
implement crosscutting code. While with AspectJ a suitable as-
pect-oriented programming language is available, no feasible
modeling language is presently at hand that supports the design of
AspectJ programs. The Aspect-Oriented Design Model (AODM)
[7] fills this gap. The AODM is a design model that extends the
Unified Modeling Language (UML) [5] with aspect-oriented
design concepts as they are specified in AspectJ, such as join
points, pointcuts, pieces of advice, introductions, and aspects. The
approach further reproduces AspectJ's weaving mechanism in the
UML. Doing so, the AODM provides a complete set of means to
help developers design and comprehend aspect-oriented crosscut-
ting in AspectJ programs. Its application carries over the advan-
tages of aspect-orientation to the design level and facilitates ad-
aptation and reuse of existing design constructs. Its tight adher-
ence to the UML assures an immediate understanding of aspect-
oriented design models and enables rapid support by a wide vari-
ety of CASE tools. This paper explains the reasoning behind the
AODM and demonstrates how it may be used to design aspect-
oriented crosscutting in general.

The remainder of this work is structured as follows. Section 2
deals with the design of aspect-oriented crosscutting. It describes
how crosscutting entities are designed with the AODM. Further, it
explains how the entities being crosscut are designated. Section 3
presents a UML implementation of a weaving mechanism. That
mechanism specifies how an aspect-oriented design model may be
transformed into an ordinary UML design model. Section 4 gives
a final review on the benefits and the problems of the AODM.

2. ASPECT-ORIENTED DESIGN
The design of aspect-oriented crosscutting includes the specifica-
tion of crosscutting elements as well as the designation of ele-
ments being crosscut. Therefore, the AODM introduces new
model elements with crosscutting effects on either type structure
or behavior. The AODM provides these model elements with
extra meta-properties to hold (so-called) weaving instructions.
Weaving instructions specify which model elements in a base
design model are to be crosscut. In the following, the specification
of the crosscutting model elements is presented at first. After-
wards, the designation of the elements being crosscut (i.e., the
specification of weaving instructions) is described.

2.1 Specification of Crosscutting Elements
AOP introduces a new modular unit, called "aspect", to serve as
container for crosscutting elements. In the AODM, aspects are
represented as UML classes of a special stereotype (called «as-
pect», in imitation to AspectJ's aspects). As such, they are instan-
tiatable entities (analogous to aspects in AspectJ; note that aspects
are instantiated "on need" rather than "on demand") which may
contain crosscutting design constructs provided by the AODM
(see sections 2.1.1 and 2.1.2 for details). Besides that, they may
contain ordinary features such as attributes and operations. Fur-
ther, classes of stereotype «aspects» may participate in associa-
tion, generalization, and dependency relationships just like stan-
dard UML classes. Aspects are represented in the AODM as
special stereotypes of standard UML classes, because other model
elements which could serve as container for crosscutting elements
(such as packages and collaborations) cannot be instantiated (and
thus have no runtime semantic) and/or cannot own ordinary fea-
tures (such as attributes and operations) or participate in relation-
ships (such as associations, generalizations, and dependencies).

For example, Figure 1 shows two aspects which realize timing
and billing features for a simple model of telephone connections
(the telecom model is shown in Figure 2, right side; the example
is take from [1]). The aspects contain crosscutting elements that
alter the type structure and the behavior of the telecom model (by
means of collaboration templates of stereotype «introduction» and
operations of stereotype «advice», respectively; see sections 2.1.1
and 2.1.2 for further details). The Timing aspect further contains
a "pointcut" element (which is a generalized "procedure" of pure
weaving instructions; see section 2.2.1 for further explanations)
that is used by the crosscutting operations advice_id04 and
advice_id06 (these dependencies are explicitly indicated by
means of «use» relationships). Apart from the crosscutting ele-
ments, the aspects contain ordinary attributes and operations. The
aspects are supplied with tagged values that specify how the
aspects are to be instantiated (in this example, both aspects are
instantiated once per Java Virtual Machine). Finally, a «domi-

nate» dependency indicates that the crosscutting effects on be-
havior of the Billing aspect precede the crosscutting effects on
behavior of the Timing aspect.

2.1.1 Structural Crosscutting
In the AODM, crosscutting of the type structure of a program
(implemented, for example, by means of introductions in AspectJ)
is specified by means of collaboration templates.

In standard UML, a collaboration describes a particular slice or a
projection of a design model (cf. [5]). It specifies a set of in-
stances together with their members and relationships (i.e., a
structural context) and a set of interactions that describes some
behavior performed by these instances. A template is a para-
meterized model element that is used to generate other model
elements by binding its template parameters to actual arguments.
The AODM adopts the collaboration concept to specify crosscut-
ting features (such as attributes and operations) and relationships
(such as association, generalization, or realization relationships)
and the template concept to generate (i.e., insert) them into the
existing base class structure.

The templates concept was chosen because with its help both
features and relationships can be inserted into an existing base
class structure. Other approaches (using stereotyped relationships,
such as stereotyped generalization relationships between classifi-
ers or stereotyped permission dependencies between packages)
soon proved to be incapable to do so and thus were discarded.

Collaborations were chosen because they describe, rather then
declare, features and relationships. That is, collaborations specify
non-instantiatable roles of classifiers, together with the relation-
ships (i.e., constraints) that must exist between them. So, during
the instantiation (or binding) of a collaboration template, no in-
stantiatable entity is generated in the base class structure. In con-
trast to this, other model elements that could be used to specify
crosscutting features and relationships (such as packages and
classifiers) define instantiatable entities. This means that during
the instantiation of a template of these model elements, the base
class structure would be supplemented with new instantiatable
entities. This, however, does not go with the idea of crosscutting.

Within collaboration templates, designers may use the full range
of UML's modeling facilities (cf. [3]) to specify crosscutting
features (i.e., attributes and operations) and relationships (such as
associations, generalizations, or constraining dependencies) that
are to be introduced to the base class structure. The ADOM pro-
vides a special instantiation mechanism that ensures that the
model elements generated from the collaboration template will not
be ill-formed. In particular, this instantiation mechanism comple-
ments the existing base class structure according to the role speci-
fications made in the collaboration template. Further, it extracts
model elements that may not reside in actual collaborations (such
as state machines and activity graphs, for example).

In the AODM, collaboration templates that specify crosscutting of
the type structure of a design model are stereotyped with «intro-
duction» (in imitation to AspectJ's introductions). In Figure 2 a

«aspect»
Timing {instantiation = perJVM}

long getTotalConnectTime(Customer cust)
Timer getTimer(Connection conn)

«pointcut» pointcut endTiming(Connection c)
{base = target(c) && call(void Connection.drop())}

«advice» advice_id03 after(Connection c)
{base = target(c) && call(void Connection.complete()}

«advice» advice_id04 after(Connection c)
{base = endTiming(c)}

«introduction»
Connection

«containsWeavingInstructions»
BaseType {base = Connection}

«aspect»
Billing {instantiation = perJVM}

long LOCAL_RATE=3
long LONG_DISTANCE_RATE=10

Customer getPayer(Connection conn)
long getTotalCharge(Customer cust)

«advice» advice_id05 after(Customer cust) returning (Connection conn)
{base = args(cust, ..) && call(void Connection+.new()}

«advice» advice_id06 after(Connection conn)
{base = Timing.endTiming(conn)}

 Operations

 Attributes

«introduction»
Connection

«containsWeavingInstructions»
BaseType {base = Connection}

«containsWeavingInstructions»
BaseType {base = LongDistance}

«introduction»
Customer

«containsWeavingInstructions»
BaseType {base = Customer}

 Operations

 Attributes

«introduction»
Local

«containsWeavingInstructions»
BaseType {base = Local}

«introduction»
Customer

«containsWeavingInstructions»
BaseType {base = Customer}

«introduction»
LongDistance

«dominate»

«use»

«use»

Figure 1: An Aspect-Oriented Design Model

Vector

connections

Call

«introduction»
Local

«introduction»
LongDistance

«introduction»
Connection

«introduction»
Customer

«containsWeavingInstructions»
BaseType {base = Customer}

BaseType

long totalCharge

void addCharge(long charge)

 Attributes

 Operations

BaseType

long callRate()

 Attributes

 Operations Customer

payer

«containsWeavingInstructions»
BaseType {base = Connection}

BaseType

long callRate()

 Attributes

 Operations

BaseType

long callRate()

 Attributes

 Operations

«containsWeavingInstructions»
BaseType {base = LongDistance}

«containsWeavingInstructions»
BaseType {base = Local}

«crosscut»

«crosscut»

Vector

calls

Local

Long
Distance

Connection

Customer«crosscut»

«crosscut»

Figure 2: Designing Structural Crosscutting

couple of such «introduction» templates are shown describing
various features and relationships that are to be introduced to the
base class structure. The crosscutting attributes, operations, and
associations are specified using UML collaboration diagrams (in
the UML, collaboration diagrams are used to describe the struc-
tural characteristics of a collaboration; cf. [3]). Each collaboration
template has one template parameter (named "BaseType") which
is bound to the base class being crosscut (in the AODM, binding
is specified by means of special tags (named "base") that are
attached to the template parameters (which are labeled to «con-
tainWeavingInstructions»); see section 2.2.1 for further explana-
tions). The instantiation of collaboration templates of stereotype
«introduction» is represented by means of crosscut relationships
(see section 2.2.2 for further details on that relationship).

2.1.2 Behavioral Crosscutting
In the AODM, crosscutting of the behavior of a program (imple-
mented, for example, by means of advice in AspectJ) is visualized
by highlighting messages in UML interaction diagrams. Behav-
ioral crosscutting takes place at the link that is used to communi-
cate the message (i.e., to communicate the stimulus that dis-
patches the action associated with the message). The crosscutting
behavior itself is specified by standard UML collaborations.

Links were chosen because they represent principal points in the
dynamic execution of a program (therefore, links correspond to
join points in AspectJ). In the UML, links are instances of asso-
ciation relationships that connect two (or more) classifiers. No
interaction can take place between two objects, if they are not
connected by a link (i.e., if the sender object has no reference to
the receiver object). Links can be interpreted as vertices in a sim-
ple object call graph. In that graph, control passes each link twice,
once the control is passed "down" to the called instance, and once
control flows back "up" again to the calling instance. In the
AODM (in analogy to AspectJ), behavioral crosscutting may take
place in either direction.

By utilizing links as fix points for behavioral crosscutting the
AODM provides a sound instrumentality to crosscut any (in-
ter)action that is communicated over a link, such as method and
constructor invocations and object creations. In addition, the
AODM specifies a couple of stereotypes to allow crosscutting of
(intra)actions as well, such as method, constructor, and exception
handler executions, class and object initializations, and field

accesses. Usually, these (intra)actions are not communicated over
links. However, they always come to pass in close conjunction
with an (inter)action that is communicated over a link, or they
may be designed as a "pseudo" (inter)actions that is communi-
cated over a link. Crosscutting of (intra)actions then takes place at
the link of the affiliated (inter)action.

Figure 3 demonstrates how the various crosscuttable actions are
visualized in an (imaginary) UML interaction diagram. Note how
(intra)actions that usually do not result in communications (such
as method and constructor executions, object initializations, or
field accesses) are indicated by special stereotypes (i.e., «exe-
cute», «initialize», «set», and «get»). Note further that the stereo-
types «execute» and «initialize» are placed beneath the (in-
ter)action (e.g., a «call» or «create» action) with which they are
affiliated; the action stereotypes are arranged in a manner that
signifies their order of processing.

In the AODM, the crosscutting behavior itself is specified in
terms of standard UML interactions. The interactions are con-
tained in standard UML collaborations that realize operations of
special stereotype (called «advice», in imitation to AspectJ's
advice). These operations set up a (formal and) structural context
in which the crosscutting behavior is performed. This context may
include instances that are part of the context of the behavior being
crosscut. Such instances are specified as parameters. During the
weaving process, invocation calls to these operations are inserted
at every link at which the crosscutting behavior is to be executed.

«call» drop()

DropButton: b1

«create»
Connection: c1

«set» set(att, val)

«get» get(att)

val

«execute»

«initialize»

click()

constructor call

«execute»«execute»

field assignment

field reference

method call

constructor execution

object initialization

method execution

«destroy»

Figure 3: Indicating Join Points in Interaction Diagrams

«call»

c1: Call

«execute»

hangup()

«association»
connections: Vector

«call» e := elements() «local»
e: Enumeration

«call» drop()

*[e.hasMoreElements()]

«call» c := nextElement() «local»
c: Connection

Collab_Call.hangup

«aspect»
Billing

[...]

[...]
«advice» advice_id06 after(Connection conn)

{base = target(conn) && call(void Connection.drop())}

 Operations

 Attributes

«call»

«aspect»
b: Billing

«execute»

advice_id06
after(conn)

«local»
payer: Customer

«parameter»
conn: Connection

«call» addCharge(cost)

Collab_Billing.advice_id06

«call» getPayer(conn)

«call» rate := callRate()

payer

«set» set(cost, rate time)

«call» time := getTime()

«get» payer := get(payer)

«local»
clock: Timer

«crosscut»

«realize»

Figure 4: Designing Behavioral Crosscutting

Figure 4 demonstrates how crosscutting behavior is specified in
the AODM using UML sequence diagrams (in the UML, se-
quence diagrams are used to determine the time ordering of inter-
actions (i.e., messages) in a collaboration; cf. [3]). The collabora-
tion realizes an operation of stereotype «advice», named ad-
vice_id06 after. In the AODM, advice are named with an
unique "pseudo" identifier of style advice_id#, followed by a
keyword indicating at which point relative to the execution of the
action being crosscut the crosscutting behavior shall be performed
(in imitation to AspectJ, these keywords are "before", "after", and
"around"). The operation is adorned with a special "base" tag that
contains a (so-called) link set expression. Link set expressions
define the set of links at which the operation is to be executed and
specify which instances contained in the dynamic execution con-
text of the links are passed to the operation as parameters (for
further explanations, refer to section 2.2.1). In Figure 4, the link
set expression specifies that the operation crosscuts all method
calls to the drop operation of the Connection class. This
crosscutting effect is visualized by means of a crosscut relation-
ship from the operation to the crosscut link (see section 2.2.2 for
further details on that relationship). The link set expression speci-
fies further that the receiver (or target) instance of the method
call (i.e., the Connection instance in the upper collaboration in
Figure 4) is passed to the operation as parameter (conn).

2.2 Designation of Crosscut Elements
In the AODM, the model elements being crosscut are specified by
means of weaving instructions, which are stored in special meta-
attributes in the aspect (e.g., with the collaboration templates of
stereotype «introduction» or the operations of stereotype «ad-
vice»). The crosscutting effects of these weaving instructions are
illustrated by means of a special crosscut relationship. This sub-
section explains how weaving instructions for structural and
behavioral crosscutting may be specified in the AODM. Further, it
introduces the new crosscut relationship.

2.2.1 Weaving Instructions
In the case of structural crosscutting (rendered by collaboration
templates of stereotype «introduction»; see section 2.1.1), weav-
ing instructions define which classes in a base class hierarchy are
to be crosscut. In other words, the weaving instructions specify
the actual arguments (i.e., the base classes) to which the collabo-
ration templates' parameters are bound. Note that this binding of
the template parameters to actual arguments cannot be accom-
plished using the standard UML binding relationship, because
then a base class could be crosscut at most once (the UML well-
formedness rules state that "a model element may participate in at

most one binding as a client" [5], i.e., as an actual argument). That
is why the weaving (or binding) instructions are specified in
special meta-attributes (named "base") which are attached to the
collaboration templates' parameters. This meta-attribute contains
no single type name but a general type pattern to allow binding to
multiple base classes. Table 1 presents wildcards and operators
that may be used to define those type patterns.

In the case of behavioral crosscutting (rendered by operations of
stereotype «advice»; see section 2.1.2), weaving instructions
specify which links in a base class collaboration are to be cross-
cut. In other words, the weaving instructions define the points in
the dynamic execution of a program at which the operation of
stereotype «advice» is to be run. Further, the weaving instructions
specify which instances in the dynamic execution context of the
links may be passed to the operation (i.e., its collaboration) real-
izing the crosscutting behavior as parameters. This time, the
weaving instructions are stored in a special meta-attribute (named
"base") with the method implementing the crosscutting behavior
(i.e., implementing an operation of stereotype «advice»). The set
of links being crosscut is specified by means of a link set expres-
sion. Table 2 contains examples of designators that may be used
to select links and parameters in link set expressions (link set
expressions in the AODM correspond to pointcut declarations in
AspectJ; further designators may be found in [1]). In the AODM,
weaving instructions are included into the implementation of the
crosscutting operation (of stereotype «advice») because this way
the weaving instructions become subject of inheritance. They may
be declared abstract in super-aspects, and they may be overridden
in subaspects (to gain from the latter possibilities, designers must
use pointcuts; see next paragraph for further explanations).

Wildcards Meaning
* alone all types
* in an identifier any sequence of characters,

not including "."
.. in an identifier any sequence of characters

starting and ending with "."
+ appended to an identifier indicate all subtypes
[] appended to an identifier indicate array types
Operators Meaning
TypePattern1 && TypePattern0 all types in both type patterns
TypePattern1 || TypePattern0 all types in either type pattern
! TypePattern all types not in TypePattern

Table 1: Defining Type Patterns (cf. [1])

Designators (Examples) Meaning
call(Signature) all links that are used to com-

municate a call action to an
operation with signature pattern
Signature (note: signature
patterns may contain the same
wildcards and operators as type
patterns; see Table 1)

this(TypePattern)
target(TypePattern)

all links that are used for com-
munications sent from/to in-
stances matching TypePattern;
that instance may be passed to
the operation as parameter

args(TypePattern, ..) all links that are used for com-
munications that pass argu-
ments matching TypePattern;
the argument may be passed to
the operation as parameter

within(TypePattern) all links that are used for com-
munications defined in classifi-
ers matching TypePattern

cflow(LinkSetExpr) all links that are located in the
subtrees of the links designated
by LinkSetExpr in a simple
object call graph

Operators Meaning
LinkSetExpr1 && LinkSetExpr0 all links in both link set expression
LinkSetExpr1 || LinkSetExpr0 all links in either link set expression
! LinkSetExpr all links not in LinkSetExpr

Table 2: Defining Link Set Expressions (cf. [1])

The AODM provides a special "pointcut" concept (in analogy to
AspectJ's pointcut concept) to define generalized "procedures" of
weaving instructions for behavioral crosscutting. These "proce-
dures" of weaving instructions may be referred to in (other)
weaving instructions – similar to the way ordinary operations are
referred to in ordinary program code. The parameters of such a
"procedure" refer to instances that are contained in the dynamic
execution context of the links appointed by the weaving instruc-
tions. These instances may be passed to the crosscutting opera-
tions (of stereotype «advice») to which the weaving instructions
are applied. Pointcuts may be overridden and may be declared
abstract. In that case, their implementation (i.e., the weaving
instructions) is (re)defined in subaspects. In regard to these char-
acteristics, pointcuts are represented in the AODM as operations
of special stereotype (called «pointcut»). In contrast to standard
UML operations (and to crosscutting operations of stereotype
«advice»), operations of stereotype «pointcut» specify purely
weaving instructions. Pointcuts are visualized in the AODM by
highlighting all links that are appointed by the pointcut's weaving
instructions (i.e., by the link set expression in the pointcut's "base"
meta-attribute). The AODM (analogous to AspectJ) does not
provide means to define generalized "procedures" of weaving
instructions for structural crosscutting.

2.2.2 Crosscut Relationship
In the AODM, the crosscutting effects of weaving instructions are
visualized by a special crosscut relationship. The AODM intro-
duces that relationship in imitation of the extend relationship that
is already provided by the UML [5]. It is no special stereotype of
the extend relationship, though, because extend relationships may
only exist between two use cases. Crosscut relationships, how-
ever, generally connect aspects and (base) classes.

Similar to extend relationships, the crosscut relationship is a
directed relationship from an aspect to a (base) class indicating
that the aspect depends on the presence of the (base) class in a
way that the aspect's implementation or functioning requires the
presence of the (base) class. At the same time, the relationship
denotes that the (base) class is affected by the aspect in a way that
the aspect's code is woven into the (base) class according to the
weaving mechanism described in section 3. This characteristic

makes (the extend relationship as well as) the crosscut relation-
ship distinct from other relationships in the UML, such as the
various kinds of dependency relationships.

Crosscut relationships and weaving instructions correlate to each
other by a one-to-one mapping. So, the crosscutting effects of
aspects may be determined either by drawing crosscut relation-
ships or by specifying weaving instructions.

3. ASPECT-ORIENTED COMPOSITION
After crosscutting elements and weaving instructions are speci-
fied, an aspect-oriented design model may be transformed to an
ordinary UML design model. For that purpose, the AODM im-
plements a weaving mechanism, describing how collaborations
realizing crosscutting and crosscut behavior may be merged (e.g.,
by tools) using standard UML means. Further, it specifies how
weaving may be represented on a more abstract level.

3.1.1 Structural Crosscutting
In the case of structural crosscutting (rendered by collaboration
templates of stereotype «introduction»; see section 2.1.1), weav-
ing is realized by instantiating collaboration templates. During the
instantiation process, the base classes (specified in the template
parameter's "base" tag) are supplemented with the features and
relationships specified in the collaboration template so that the
design model will not be ill-formed. This instantiation mechanism
is defined on an informal (meta-meta-)level and cannot be ren-
dered with help of standard UML concepts (just like the standard
UML instantiation mechanism). However, it can be represented
on a more abstract level using UML use cases. Please refer to [7]
to see how this is accomplished.

3.1.2 Behavioral Crosscutting
In contrast to weaving of structural crosscutting, weaving of
behavioral crosscutting (specified by operations of stereotype
«advice»; see section 2.1.2) can be rendered using standard UML
concepts. Weaving of behavioral crosscutting is a matter of split-
ting and composing collaborations. Splitting always takes place in
the collaboration describing the crosscut behavior, at the link at
which the crosscutting behavior is to be executed. Depending on
the direction in which the control flow shall is to be crosscut (see

c1: Call «local»
e: Enumeration

«call» drop()

«call» c := nextElement() «local»
c: Connection

Collab_Call.hangup_loop

c1: Call «local»
e: Enumeration

«call» c := nextElement()

Collab_Call.hangup_loop_step1

c1: Call

Collab_Call.hangup_loop_step3

Glue_Collab_AfterAdvice

advice_id06 after(conn)

«call»

«aspect»
b: Billing

Collab_Billing.advice_id06

[...]
advice_id06
after(conn)

c1: Call

«call» drop()

«local»
c: Connection

Collab_Call.hangup_loop_step2

1. split 2. generate

3. compose
«aspect»

b: Billing
c1: Call

Figure 5: Weaving Collaborations

section 2.1.2), a new collaboration is composed to the split col-
laboration before or after (or "around") the link at which the col-
laboration was split. That collaboration invokes the operation (of
stereotype «advice») that implements the crosscutting behavior.
Composition of collaborations is accomplished according to stan-
dard UML rules (cf. [5]) by identifying and matching instances
that participate in each collaboration being composed.

For example, Figure 5 demonstrates how the collaboration realiz-
ing the operation (of stereotype «advice») advice_id06 af-
ter from Figure 4 is woven into the collaboration that it cross-
cuts (for the sake of simplicity, the collaboration in Figure 5
describes only the (for-)loop of the collaboration specified in
Figure 4). At first, the crosscut collaboration Collab_Call.
hangup_loop is split into three collaboration fragments. One
contains the behavior being crosscut, i.e., the link at which cross-
cutting has to take place (Collab_Call.hangup_loop
_step2). The others describe the behavior before (..._step1)
and after (..._step3) that link. Then, a glue collaboration (Glue
_Collab_AfterAdvice) is generated that invokes the opera-
tion (of stereotype «advice») implementing the crosscutting be-
havior. This glue collaboration may be generated automatically
from the instance sending the action being crosscut (i.e., c1:
Class), from the operation (of stereotype «advice») being in-
voked (i.e., advice_id06 after), and from the aspect con-
taining the invoked operation (i.e. b: Billing). The generated
glue collaboration is composed to the collaboration fragments.
Since the operation's signature contains the keyword "after", the
glue collaboration is inserted behind the collaboration containing
the behavior (i.e., the link) being crosscut (Collab_Call.
hangup_loop_step2).

Just like the weaving mechanism for structural crosscutting, the
weaving mechanism of behavioral crosscutting may be repre-
sented on a more abstract level using UML use cases. Please refer
to [7] to see how this is accomplished.

4. SUMMARY AND REVIEW
The AODM demonstrates how the UML may be extended to
allow the design of aspect-oriented crosscutting. The AODM uses
standard UML extension mechanisms to derive aspect-oriented
design concepts like they are defined in AspectJ (such as join
points, pointcuts, pieces of advice, introductions, and aspects)
from standard UML model elements. This way, the AODM pro-
vides means to specify crosscutting on type structure and on
behavior of existing design models. Further, the AODM imple-
ments a weaving mechanism in the UML that generates standard
UML design models from aspect-oriented design models accord-
ing to the crosscutting specifications. Doing so, the AODM fa-
cilitates the perception of aspect-orientation in general and of
AspectJ programs in particular. It carries over the advantages of
aspect-oriented modularity (such as higher comprehensibility,
adaptability, and reusability) to the design level. Its tight adher-
ence to the semantics of AspectJ and to the specification of the
UML allows an immediate and effective deployment by aspect-
oriented software developers.

The tight adherence to AspectJ and UML, however, sometimes
imposes some problems on the AODM specifications. One com-
plication, for example, originates from the fact that collaboration
templates of stereotype «introduction» (see section 2.1.1) are
contained in the model element representing the aspect (i.e., in a
class of stereotype «aspect»; see section 2.1). Doing so conflicts

with the UML specification because templates may not be used
directly in design models (instead, the model elements generated
from the template can be used in models; cf. [5]). Therefore, the
AODM provides a secondary instantiation mechanism for col-
laboration templates of stereotype «introduction» (beside the one
that generates (i.e., introduces) the template's contents into the
base class structure). That mechanism generates a collaboration
inside the class containing the template and supplements the class
with all elements needed so that the design model will not be ill-
formed. This secondary instantiation mechanism occurs implicitly
and is not explicitly visualized in aspect-oriented diagrams. Its
only purpose is to avoid clashes with the UML specification. The
complication could be resolved by excluding the design of struc-
tural crosscutting from the model element representing the aspect.
This, however, would conflict again with standard AOP semantic.

Another quandary arises from the fact that pointcuts (see section
2.2.1) are represented as special stereotypes of standard UML
operations (called «pointcut»), although they do not "specify a
service that can be requested from an object to effect behavior"
[5]. While this is perfectly all right with the UML specification
version 1.3 (which states that "a stereotype shares the attributes,
associations, and operations of its base class but it may have
additional well-formedness constraints as well as a different
meaning and attached values" [5]), it may become a problem in
UML version 1.4 (which states that stereotypes define "virtual
subclasses of UML meta-classes with new meta-attributes and
additional semantics" [6]). It remains to be investigated to what
extend pointcuts constitute "virtual" subclasses of operations (note
that apart from this obstacle, the UML version 1.4 specifies a
much better framework to implement the AODM extensions).

At last, the utility of the AODM needs to be verified in practical
deployment. Based on the practical experience, revisions may
become necessary. In that case, it needs to be examined to what
extent the AODM specification can be amended to facilitate the
design of aspect-oriented programs without clashing with the
semantic of AOP and AspectJ and the specification of the UML.
A possible amendment would be, for example, to summarize all
crosscutting effects of one aspect on structure in a single collabo-
ration template (having multiple parameters, each one specifying
a distinct type pattern) rather than specifying one collaboration
template for each type pattern (see Figure 2 for an example).

5. REFERENCES
[1] AspectJ Team. The AspectJ Programming Guide.

http://aspectj.org/doc/dist/progguide/index.html, Sep. 2001

[2] AspectJ, http://www.aspectj.org, Ver. 1.0b, Sep. 2001

[3] Booch, G., Jacobson, I., Rumbaugh, J. The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA, 1999

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch.,
Lopes, Ch., Loingtier, J.-M., Irwin, J. Aspect-Oriented Pro-
gramming. in Proc. of ECOOP '97 (Jyv skyl , Finland, Jun.
1997), LNCS 1241, 220-242

[5] Object Management Group (OMG). Unified Modeling Lan-
guage Specification. Version 1.3, Mar. 2000

[6] Object Management Group (OMG). Unified Modeling Lan-
guage Specification. Version 1.4, Sep. 2001

[7] Stein, D., Hanenberg, St., Unland, R. A UML-based Aspect-
Oriented Design Notation For AspectJ. to appear in Proc. of
AOSD '02 (Enschede, The Netherlands, Apr. 2002), ACM

