

Grouping Objects using Aspect-Oriented Adapters

Stefan Hanenberg, Rainer Unland

Institute for Computer Science
University of Essen, D - 45117 Essen

{shanenbe, unlandR}@cs.uni-essen.de

Abstract. Aspect-Oriented Programming (AOP) is an approach for realizing
separation of concerns and allows different concerns to be weaved into existing
applications. Concerns usually cross-cut the object-oriented structure. When-
ever a concern needs to invoke some operations on objects of the given structure
the problem arises, that those objects have different types, but the concern ex-
pects them to be handled in the same way. Therefore a mechanism for grouping
objects of different types is needed.This paper discusses different mechanisms
and proposes aspect-oriented adapters for grouping types and shows how this
approach permits a higher level of flexibility and reduces the limitations of
known approaches. Aspect-oriented adapters are not limited to a specific gen-
eral purpose aspect language (GPAL). Nevertheless the examples in this paper
are realized in AspectJ, which is by far the most popular and well-established
general purpose aspect language.

1 Motivation and Problem Description

Let us assume we want to make objects persistent, which are created by an existing
simulation-application. As pointed out in [3] persistency is a concern and so this is a
typical application of Aspect-Oriented Programming [4]. Every newly created object
should be added to a persistent storage and whenever the state of a certain object
changes, its representation on the store must be updated. There is no need to offer an
interface for retrieving objects, because the simulation itself does not use former ob-
jects. Instead the information is used by another application which directly accesses
the storage for retrieving information about the simulation. The objects to be stored
are all instances of class Point.

A suitable (straight-forward) solution for this problem in AspectJ [5] would be an
aspect, which writes the state to the store every time an object is created and when-
ever its state changes (fig. 1). An instance of the aspect PersistentPoint is
created for every Point instance. The aspect generates an object id (realized as an
instance counter) and stores it in its attribute id. After creating a new Point the
object is written to the persistent storage realized in the constructor of Persis-
tentPoint.

The state of a point changes, whenever the methods setX() or setY()are in-
voked. Therefore a pointcut setPC() is defined for any instance of Point receiving
a set-message. Whenever this happens the corresponding pointcut method (or advice
in the AspectJ terminology) is executed which reads a point's state (getX() ,
getY()) and updates the persistent storage.

 aspect PersistentPoint

 of eachobject(instanceof(Point)){
 private static int idnum = 0;
 private int id = ++idnum;
 public PersistentPoint() {
 .. write new (unitialized) object to storage}
 pointcut setPC(Point p): instanceof(p) &&
 (receptions(void setX(float)) ||
 receptions(void setY(float)));
 after(Point p): setPC(p) {
 float x = p.getX());
 float y = p.getY());
 …update x,y of object id}
}

class Point {
 private float x=0;
 private float y=0;
 public float getX() {
 return x;}
 public float getY() {
 return y;}
 public void setX(float x) {
 this.x = x;}
 public void setY(float y) {
 this.y = y;}
}

Figure 1: a) Class Point, b) Aspect PersistentPoint

Let us assume there is another (similar) application having its own implementation

of a point AnotherPoint identical to Point. The proposed solution directly de-
pends on the class Point and cannot be used for other classes. Therefore it would
be more desirable to define a persistency aspect without being limited to class Point.

AspectJ supports inheritance relationships between aspects and allows to declare
abstract aspects, so it seems to be a good choice to define an abstract aspect Per-
sistentObject, which is responsible for creating the object id and reading the
object's state (fig. 2, see [2] for a detailed discussion on inheritance and AOP). Its sub-
aspects only have to define the class this aspect should be weaved to. Therefore
PersistentObject contains an abstract pointcut weavedClassPC(), which
has to be defined by the subaspects. We want the aspects to be instantiated for every
instance of Point and AnotherPoint, so the definitions of weaved-
ClassPC()in our concrete aspects corresponds to that.

But now a new problem arises: how can the state of the object be read in the point-
cut method? The intention of the aspect is to be woven to classes, having the meth-
ods getX(), getY(), setX(float) and setY(float). The set-methods are
used for the pointcut definition, and the get-methods are needed by the aspect in-
stance to read an object’s state. But although knowing those method signatures the
concrete type of those classes is unknown and left to those aspects, which make the
abstract pointcut concrete. Because aspects crosscut the inheritance structure of
classes usually those classes do not have any common type but
java.lang.Object. So it is not possible to send getter-messages to the related
object, because the type is unknown and therefore a typecast is not possible.1 A pos-

1 We assume here general purpose aspect languages with static type checking like AspectJ or

Sally [8] which are both based on the programming language Java.

sibility would be to use reflection for those method calls, but that requires an enor-
mous effort.

 abstract aspect PersistentObject of

eachobject(weavedClassPC) {
 private static int idnum = 0;
 private int id = ++idnum;
 public PersistentObject() {
 .. write new (unitialized) object to storage}
 abstract pointcut weavedInstances(Object o);
 pointcut setPC(Object o): weavedInstances(o) &&
 (receptions(void setX(float)) ||
 receptions(void setY(float)));
 after(Object p): setPC(p) {
 ..write state to data storage}
}

aspect PersistentPoint
 extends PersistentObject {
 pointcut
 weavedInstances(Point p):
 instanceof (p);
}

aspect PersistentAnotherPoint
 extends PersistentObject {
 pointcut weavedInstances
 (AnotherPoint p):
 instanceof (p);
}

Figure 2: abstract persistency aspect (trial)

The concrete problem is, that aspect-oriented programming groups objects in an-

other way than the predefined object-oriented structures do. So a mechanism is
needed how to group objects of different types and allow to sent messages to them.

In the next section we discuss approaches related to this problem and demonstrate
that they do not solve this problem appropriately. Afterwards we introduce and dis-
cuss aspect-oriented adapters for grouping types and show how this approach allows
a higher level of flexibility and reduce the limitations of other approaches. We will also
apply the adapter to the introducing example. In the forth section we map the introduc-
ing example to aspect-oriented adapters. Finally we summarize and conclude the paper.

2 Related Work

AspectJ offers a mechanism called introductions which can be applied to the given
problem. The mechanism allows aspects to change the structure of the object-oriented
classes. In this way additional methods and attributes can be inserted into existing
classes. For the purpose of grouping objects introductions allow to insert new types
to the target classes. So the interface needed by an aspect has to be defined and af-
terwards integrated into those classes.

Applied to the example from the first section that means, that an interface needed
by the aspect PersistentObject has to be specified. This interface has to con-
tain the getter-methods the aspect needs to invoke for reading a point’s state. The
concrete aspects PersistentPoint and PersistentAnotherPoint have to
introduce this interface to the classes Point and AnotherPoint. The type of the
parameter in the pointcut and pointcut method must be of that introduced interface, so
the advice can invoke the getter-methods.

But this way to handle the problem leads to additional problems:

• Tangled introduction statements: The introduction-statements in every sub-aspect
logically belong to the abstract aspect. They have to be implemented redundantly
and are in that way tangled.

• Confusing class structure: After weaving the classes of the original application
implement a new interface (fig. 3). If a lot of aspects are woven this approach leads
to numerous interfaces spread all over the class structure. In this way the original
code becomes confusing and makes it difficult for developers to understand the
original code for reasons of reuse.

• Lack of structure after unweaving: After weaving developers extending the appli-
cation can use the common interfaces introduced by the aspects, because they
cannot distinguish the original interface from the introduced ones. So after unweav-
ing the aspects the original classes do not implement those interfaces any longer,
and so the extended application is incorrect.
Because of this we regard introductions to be inappropriate for the given problem.

The problem of grouping objects has already been discussed widely in the context of
object-orientation. Classes are templates from which objects are created (cf. [10]) and
in that way group objects. [9] pointed out the importance of classification as a mecha-
nism for conceptual modeling in object-oriented programming. The difference to the
problem handled here is that the needed classification is not an inherent property of
the objects, but depends on an aspect’s subjective perspective on the system.

AnotherPointPoint

Object Object

AnotherPointPoint

interface

PointInterface
Weaving

Figure 3: Using introductions for Point and AnotherPoint

In that way the mechanism of generalization introduced in [7] seems to be appropri-
ate for the problem stated. Generalization permits to define a super-type based on an
existing class. In [7] one of the main purposes of generalization is to achieve a late
classification. That is exactly what aspects are doing: while they cross-cut an existing
structure they accomplish a late classification for their special purposes.

Neglecting the fact, that generalization is not available in popular object-oriented
programming languages, the criticism of that mechanism is corresponds to the of criti-
cism introductions in AspectJ: developers extending the original application can not
distinguish between the original classes and those created for the purpose of late
classification. Also the problem of the confusing class structure stays the same.

3 Aspect-Oriented Adapters

Adapters (cf. [1]) are special classes, which adapt the interface of a class in the way
expected from its clients. In that way the functionality of adapters match the problem

stated above. The traditional use of adapters for mapping interfaces assumes, that
clients expect a certain interface of a class which differs from that class which is able to
fulfill the requests. The problem depicted here is different: advices expect their parame-
ters to have some method signatures to send messages to them. Although the signa-
tures are known, the type of those objects is unknown, respectively those objects do
not have any common type. So an adapter is needed which has the interface expected
by the aspect and which forwards messages to a certain object.

receptions(* *(*))

of eachobject
 (instanceof(Adapter)) <<aspect>>

ForwardingAspect
Adapter

+refObject:Object
+getRefObject():Object
+createAdapter(o:Object,c:Class):Adapter

ConcreteAdapter1

+Operation1……
+Operation2……

ConcreteAdapter2

+Operation1……
+Operation2……

Figure 4: Aspect-Oriented Adapters2

An object-oriented solution for this problem is quite complex: the type of the object
to which the messages have to be forwarded is unknown, so the developer has to use
reflection to realized it. This code has to be used in every method which means an
enormous effort.

public aspect ForwardingAspect
 of eachobject(instanceof(Adapter)) {
 ...
 around() returns Object: receptions(* *()) {
 ...
 return invokeMethodFromReceptionsJoinPoint((ReceptionJoinPoint) thisJoinPoint);

...}
 private Object invokeMethodFromReceptionsJoinPoint(ReceptionJoinPoint jp) throws Exception {
 Method m = getMethodFromReceptionJoinPoint(jp);
 return m.invoke(((Adapter) jp.getExecutingObject()).refObject, jp.getParameters());}

 private Method getMethodFromReceptionJoinPoint(ReceptionJoinPoint jp) throws Exception {
 Adapter wrap = (Adapter) jp.getExecutingObject();
 MethodSignature sig = (MethodSignature) jp.getSignature();
 String methodName = sig.getName();
 Class[] paramTypes = sig.getParameterTypes();
 return wrap.refObject.getClass().getMethod(methodName, paramTypes);}
}

Figure 5: Example-implementation for forward-adapter

The aspect-oriented solution for such adapters is much easier and allows a higher
degree of reusability (figure 4). The abstract class Adapter contains the reference to
the object to which every message is to be forwarded. The aspect ForwardingAs-
pect is responsible for forwarding every message received by an instance of
Adapter. Therefore an instance of ForwardingAspect is created for every in-
stance of Adapter and the aspect contains pointcut methods, which forward every
message received by the adapter to the corresponding object.

2 The UML-like notation used here serves the understanding of the ingredients of the aspect-

oriented wrapper, but does not match the UML standard.

The aspect-oriented adapter is used by creating a ConcreteAdapter, subclass
of Adapter, which contains all methods needed by the aspect. Those methods have
to contain a dummy implementation needed for compiling the class. The implementa-
tion will never be executed, because the ForwardingAspect replaces it by forward
implementations.

Whenever a client wants an object to be adapted, he has to create an adapter in-
stance by invoking the static createAdapter(..)-method of Adapter. The
parameters of this method are an instance of the object which is about to be adapted,
and a reference to the concrete adapter class. The adapter uses reflection to create a
new instance of the concrete adapter and initializes refObject with the adapted
object. The developer doesn’t have to write glue code for forwarding messages, be-
cause this is already done by the ForwardingAspect.

Figure 5 shows an extract from the implementation of a forward aspect in AspectJ.
The advice overrides every method of the adapter having an arbitrary return type. This
is realized by a receptions pointcut consisting only of wildcards. The implementation
uses the Reflection API part of AspectJ for finding out, what the target method is and
the Java Reflection API for getting a reference to and invoking the target method .

For applying the aspect-oriented adapter to the introducing example a concrete
adapter (PointAdapter) has to be created containing both getter-methods used by
the advice in PersistentObject. The advice has to create an adapter object for
the incoming object using the create method of the abstract adapters:

PointAdapter a = (PointAdapter) Adapter.createAdapter(p, PointAdapter.class);

Afterwards object a can be used as if it is an instance of PointAdapter.

4 Conclusion and further work

We introduced aspect-oriented adapters as a mechanism for grouping objects and
compared it to existing approaches. The main advantage of using adapters is, that
objects can be grouped without touching the existing inheritance structure. The effort
of using aspect-oriented wrappers is compareable to introductions known from the
GPAL AspectJ.

Nevertheless aspect-oriented adapters need to be used very carefully and in a dis-
ciplined maner. Because forwarding messages is realized on object-level using reflec-
tion there is no static type-checking available. So the developer has to be sure, that
the interface of the adapted object really fulfills the signatures specified in the con-
crete adapter.

This presented approach can be used for composing aspectual components [6],
which represent aspects whose interfaces have to be adapted to let them interact with
their environment. In the future we will examine, how such components can be realized
in existing general purpose aspect languages.

References

1. Gamma, E., Helm R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-Wesley, 1995

2. Hanenberg, S., Unland, R.: Concerning AOP and Inheritance. In: Mehner, K., Mezini, M.,
Pulvermüller, E., Speck, A. (Eds.): Aspect-Orientation - Workshop. Paderborn, Mai 2001,
University of Paderborn, Technical Report, tr-ri-01-223, 2001

3. Hürsch, W., Lopes C.: Separation of Concerns. Northeastern University, technical report,
no. NU-CCS-95-03, 1995.

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwing, J.:
Aspect-Oriented Programming. Proceedings of ECOOP '97, LNCS 1241, Springer-Verlag,
pp. 220-242, 1997

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An Overview of
AspectJ. Appears in ECOOP 2001

6. Lieberherr, K., Lorenz, D., Mezini, M.: Programming with Aspectual Components , Technical
Report, NU-CCS-99-01, Northeastern University, Boston, 1999

7. Pedersen, C.: Extending Ordinary Inheritance Schemes to Include Generalization. In: Mey-
rowitz, N. (Ed.): Conference on Object-Oriented Programming: Systems, Languages, and
Applications (OOPSLA'89), October 1-6, 1989, New Orleans, Louisiana, Proceedings.
SIGPLAN Notices 24(10), October 1989

8. Sally: A General-Purpose Aspect Language, http://www.cs.uni-essen.de/dawis/
research/ aop/sally/, January 2001

9. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys, Vol. 28, No. 3, pp.
439-479, 1996

10. Wegner, P.: Dimensions of object-based language design. In: Meyrowitz, N. (Ed.), Proceed-
ings of OOPSLA '87, SIGPLAN Notices 22 (12), pp. 168-182, 1987

