
Specifying Aspect-Oriented
Design Constraints in AspectJ

Stefan Hanenberg and Rainer Unland

Institute for Computer Science
University of Essen, 45117 Essen, Germany

{shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT
Aspect-oriented programming comes with new composition
mechanisms which permit to modularize code which crosscuts
other modules using traditional composition techniques. Although
such mechanisms permit a better modularization they do not
guarantee it: if the aspect-oriented code is better modularized
depends on the design of the aspect-oriented applications. This
paper describes typical design failures in AspectJ and introduces a
tool implemented on top of AspectJ which permits to specify
design constraints on AspectJ code.

1. INTRODUCTION
Aspect-oriented software programming [5] is about modularizing
concerns which cannot be cleanly encapsulated using traditional
composition techniques. To achieve this better kind of separation
of concerns [2] aspect-oriented languages like AspectJ [1] offer
different composition mechanisms on top of the existing ones.
Nevertheless, although these mechanisms permit to modularize
crosscutting code, they do not guarantee a better modularization.
If the resulting aspect-oriented applications really modularize the
different concerns depends on the programmer's design decision.
A misuse of the composition mechanism might directly lead to bad
modularization and incorrect applications.

AspectJ already offers to specify constrains on the object-
oriented application to be woven by declaring errors which refer to
pointcuts. The pointcuts are related to object-oriented features in
Java but not to aspect-oriented features in AspectJ. Hence, it is
not possible to specify constraints on the usage of the new
composition mechanisms pointcut, advice and introduction. In that
way error declarations in AspectJ do not help to check if certain
design constraints are obeyed in a given application or not. This
paper presents a tool which permits to specify design constraints
on the usage of the aspect-oriented features of AspectJ.

In the following section we describe a number of typical design
failures committed when developing applications in AspectJ.
There we concentrate on the usage of introductions. Afterwards
we present the tool AJDC (AspectJ Design Checker) and illustrate
its basic features. Afterwards we show how the tool permits to
prevents programmers to commit the previous shown design
failures. Finally, we conclude the paper and give an outlook on
specifying design constraints in the code.

2. TYPICAL ASPECTJ DESIGN FAILURES
2.1 Tangled introductions
A typical implementation of the visitor design-pattern [3] in
AspectJ is shown in figure 1: two interface VisitedElement
and Visitor are created and the double-dispatch method is
introduced to the interface VisitedElement. Hence, every
class implementing the interface gets the double dispatch method.
To adapt the abstract visitor aspect it has to be connected to the
target classes, that means the interface VisitedElement just
has to be introduced. There are different ways of performing such
introductions.

interface VisitedElement {}
interface Visitor {
 visit(A node); visit(B node); visit(C node);
}
aspect VisitedElementLoader {
 public void VisitedElement+.accept(Visitor v){
 v.visit(this);
 }
}
class ConcreteVisitor implements Visitor{...}

Figure 1: Abstract Visitor

For example one aspect could introduce the interface to all classes
in different declare parents statements or one aspect could
introduces the interface in to all targets by using an appropriate
type pattern. Nevertheless, it is also possible to define an aspect
for each visited class and introduce there VisitedElement.

aspect MakeAVisitedElement {
 declare parents: A implements VisitedElement;}
aspect MakeBVisitedElement {
 declare parents: B implements VisitedElement;}
aspect MakeCVisitedElement {
 declare parents: C implements VisitedElement;}

Figure 2: Tangled introductions

Figure 2 shows such a code which connects the visitor by defining
one aspect for each target class. In that case the introductions,
which logically belong to one single concern occur in several
aspects and contradict the aimed separation of concerns, because
the introductions are not separated in one single module. We call
such occurances of introductions tangled introductions. In this
concrete example the tangled introductions obviously contradict
the aimed design of the visitor aspect.

2.2 Container Misusage
In [4] we designated the previous implementation as an
application of an often occurring pattern called indirect
introduction: the interface VisitedElements depicts a
container to which members are introduced and which can be later
assigned to a target class. The intention of a container is to be used
only within introductions. Nevertheless, if a class directly
implements the container it automatically receives all its members.
This is usually a design failure: a container is a placeholder for a
number of extrinsic features. By directly implementing such a
container the difference between intrinsic and extrinsic features is
mixed up. Figure 3 shows such a misuse of a container. Although
there are no tangled introductions, the implements-relationship
between D and VisitedElement comes logically from the
visitor concern. Hence, this relationship should be specified in the
same module like the other introductions. We call such design
failures container misusage.
aspect AllVisitedClasses {
 declare parents: A implements VisitedElement;
 declare parents: B implements VisitedElement;
 declare parents: C implements VisitedElement;}
class D implements VisitedElement {...}

Figure 3: Container Misusage

2.3 Fragile, Aspect-Dependent Classes
Classes which directly access introduced members are quite fragile,
since they directly depend on the aspect which performs the
introduction but this dependency cannot be seen in the code.
Furthermore such classes mix up intrinsic and extrinsic class
members: an introduced member is extrinsic and concern specific
while the usual class members are usually regarded as intrinsic
members. If an intrinsic member depends on an extrinsic member,
the difference between intrinsic and extrinsic features is mixed up.

aspect LogNumberOfFieldAccesses {
 private int (TargetClass).numFieldAccesses;
}
class TargetClass {
 ...
 public String toString() {
 return "#fieldAccesses=" + numFieldAccesses;
 }
}

Figure 4: Fragile, aspect-dependent class

In case the aspect performing the introduction is only temporarily
woven, e.g. just for debugging purposes, and not part of the final
product the class cannot be compiled if the aspect is unwoven.
Figure 4 contains such a fragile, aspect-dependent class which uses
the introduced member numFieldAccesses in method
toString. Since in this concrete case the aspect is just woven
for debugging purposes, TargetClass is fragile, since it cannot
be compiled without the woven aspect. We call classes which
depend on introduced members fragile classes.

2.4 Accidental Overridden Extrinsic Methods
Methods introduced to a class can be overridden by subclasses.
Such things usually happen accidental, because the programmers
of the subclass are not aware of the introduced extrinsic method.

Accidental overridden extrinsic methods often lead to unexpected
behavior: the introducing aspect expects a certain behavior of the
target class because of the introduction, but instead subclasses of
that aspect behave in a different way. From our point of view
extrinsic members should be overridden only by aspects which
perform an introduction on subclasses, because this makes clear
that an extrinsic feature is overridden.
aspect PerformIntroduction {
 public void (TargetClass).doSomething() {...}
}
class TargetClass {}
class TargetClassSubClass extends TargetClass {
 // accidental overriden method
 public void doSomething() {...}
}

Figure 5 : Overridden extrinsic method

2.5 Introducing Mutual Exclusive Containers
Assume two abstract aspects in the system like given in figure 6:
every class to which Subject is introduced can play the role of a
subject in the observer design pattern, i.e. whenever the state of
the subject changes its observers are informed. Classes to which
FieldAccessCount is introduced have a variable counter
which is increased every time a public field is accessed.
public interface Subject {}
public interface FieldAccessCount {}
aspect SubjectLoader {
 public List Subject.obs = new ArrayList();
 pointcut stateChanges(Subject s):
 (set(* *) && target(s) && target(Subject));
 after(Subject s): stateChanges(s) {
 for(Iterator i=s.obs.iterator();i.hasNext();)
 ((Observer)i.next()).update();
 }
}
aspect FieldAccessCountLoader {
 pointcut fieldAccess(FieldAccessCount c):
 (set(public * *) || get(public * *)) &&
 target(c) && target(FieldAccessCount);
 after(FieldAccessCount c): fieldAccess(c){
 c.counter++;
 }
 private int FieldAccessCount.counter=0;
}
aspect ErroneousMutualExclusiveAspectConnection {
 declare parents: X implements Subject;
 declare parents: X implements FieldAccessCount;
}

Figure 6 : Weaving Mutual Exclusive Aspects

At the design level it is clear that both interfaces should never be
connected to the same target class, since both containers (and the
aspects they represent) are mutual exclusive: every time the field
obs is accessed the counter is increased which directly leads to
informing the observers, and so on. Since both aspects are
designed to be mutual exclusive, the developer should be
prevented from connecting both to the same class at weave time.

3. AJDC: ASPECTJ DESIGN CHECKER
AspectJ provides the possibility to specify constraints within the
code. Errors and warnings can be declared which consist of a
referring pointcut and a message. At weave time it is checked if
any errors and warning should be thrown. In such a case the
specified message it shown to the developer. In AspectJ pointcuts
just refer to object-oriented constructs like method calls but do not
permit to refer to any aspect-oriented feature. Hence, it is not
possible to declare any errors which might occur because of design
failures caused by introductions like illustrated above.

AJDC (AspectJ Design Checker) is a small extension of the
language AspectJ. It permits to write errors and warnings which
are based on AspectJ language features. Hence, it permits to
specify constraints on object-oriented and aspect-oriented
features. For specifying the errors (and warnings), AJDC provides
an own (logical) pointcut language which is based on the logical
programming language TyRuBa [6]. AJDC generates facts and
rules out of the parse tree to be compiled and provides some rules
for retrieving information like subclass relationships. For example
the predicate fieldAccess permits to determine all field
accesses, or class permits to determine all classes to be
compiled.

aspect ForbidMyClassSubclass {
 ajdcError forbidSubclass
 {No MyClass subclass allowed: ?class} =
 forbiddenSubclass(?class);
 ajdcPointcut forbiddenSubclass(?class) =
 class(?classID,MyClass) &&
 superclass(MyClass,?class);
}

Figure 7: Forbid MyClass subclasses

In addition to AspectJ AJDC provides three new keywords:
ajdcError, ajdcWarning and ajdcPointcut. The first
ones are for specifying the error or warning messages which
should be thrown, ajdcPointcut specifies the pointcuts
responsible for triggering the errors and warnings. All three
constructs are specified within classes or aspects. In the pointcut
definition the programmer can use all language features of
TyRuBa. The syntax slightly differs from TyRuBa. For example
conjunction and disjunction are expressed by the boolean
operators || and && from Java.
Error thrown by " forbidSubclass " in
"ForbidMyClassSubclass":
{No MyClass subclass allowed: A}

Error thrown by " forbidSubclass " in
"ForbidMyClassSubclass":
{No MyClass subclass allowed: B}

2 errors

Figure 8: Thrown Error messages

Figure 7 shows an example of an error declaration in AJDC: an
error forbidSubclass with the error message {No MyClass
subclass allowed: ?class} which refers to a pointcut
forbidSubclass. The error message contains a logical variable
which is replaced every time the corresponding pointcut delivers a

corresponding value. The pointcut substitutes ?class with the
name of each subclass of MyClass. That means for every
subclass of MyClass an error is thrown at compile time. Of
special interest is the variable ?classID in the predicate class.
For each node in the parse tree a unique id is generated. This id can
be used for performing more complex queries on the parse tree.

In case there are classes A and B that extend MyClass the
compiler throws an exception as shown in figure 8.

4. ASPECT-ORIENTED DESIGN
CONSTRAINTS IN ASPECTJ
In this paper we neglect to introduce the whole features of AJDC.
Instead we just introduce only those which are used to specify
design constraints to protect developers from the previous
mentioned failures.

4.1 Tangled Introductions
The tangled introduction in 2.1 occurs, because the interface
VisitedElement was introduced in more than one aspect to
the corresponding target classes. Hence, at weave time it should be
checked if such a design failure was made and the programmer
should be prevented from compiling such tangled introductions.
aspect VisitedElementLoader {
 ajdcError forbidTangledIntroductions {..msg} =
 allIntroducingAspects(?aspect);
 ajdcPointcut allIntroducingAspects(?aspect) =
 FINDALL(
 introducedType(?aspect, VisitedElement),
 ?aspect, ?aspectList
) && length(?aspectList,?length) &&
 greater(?length,1) &&
 member(?aspect,?aspectList);
 ...
}
Figure 9: Preventing tangled VisitorElement introduction

Figure 6 contains the code which specifies that an error should be
thrown when a programmer tries to compile code which contains a
tangled introduction of VisitedElement. The pointcut
allIntroducingVariables has one parameter (?aspect).
In case there is more than one aspect which performs an
introduction of VisitedElement, the pointcut substitutes
?aspect with the aspects' names and delivers it to the error
definition. FINDALL, greater and member are valid TyRuBa
terms and will not be discussed here. The term
introducedType(?aspect, Visited) substitutes
?aspect with all aspects which introduce VisitedElement.

4.2 Container Misuse
To prevent container misuse an exception should be thrown
whenever a class directly implements a container, i.e. the
implements relationship exists without any corresponding
introduction. AJCD provides the predicate implements with
two parameters for getting all interfaced implements by a class:
the term implements(Aclass,?interface) substitutes all
interface implemented by AClass to the variable ?interface.
The term introducedType with three parameters can be used

to determine what interfaces are introduced to what classes in a
certain aspect. E.g. introducedType(?aspect,
MyInterface,?targetClass) determines all aspects which
introduce MyInterface to a target class.
aspect VisitedElementLoader {
 ajdcError forbidContainerMisusage {..msg} =
 misusingContainerClass(?class);
 ajdcPointcut misusingContainerClass(?class) =
 implements(?class, VisitedElement) &&
 NOT(introducedType(?introducingAspect,
 VisitedElement,?class));
 ...
}

Figure 10: Preventing VisitorElement misuse

To prevent the programmer from a container misusage like given in
figure 3 we specify an error every time a class implements
VisitedElement without the existence of a corresponding
introduction. The code is given in figure 10. The pointcut
misusingContainerClass determines all classes which
implement the interface VisitedElement whereby this
implement-relationship does not come from an introduction.

4.3 Fragile Classes
To prevent fragile classes like shown in figure 4 error messages
should be thrown whenever introduced members are used within
ordinary classes.
public class WarnFragileFieldAccess {
 ajdcWarning fragileFieldAccessWarning{..msg} =
 fragileFieldAccess (?class,? fN,?tClass);
 ajdcPointcut fragileFieldAccess(?c,?fN,?tc) =
 class(?classID,?c) &&
 field(?fieldID,?tc,?type,?fN) &&
 fieldAccess(?fAID,?tc,?type,? fN) &&
 parentNode(?classID,?fAID) &&
 introduced(?fieldID) &&
 NOT(introduced(?fAID);
}

Figure 11: Preventing Fragile Classes

The clause fieldAccess(?fAID,?tc,?type,?fN)
determines all accesses of fields having the identifier ?fN of type
?type in class ?tc and the id ?id. The term
introduced(?id) determines if the node with the id ?id was
introduced. The clause field(?fieldID,?tc,?type,
?fName) determines fields with the identifier ?name of type
?type in class ?tc (including super-class fields). ParentNode
determines all nodes in the parse tree which are parents of second
parameter. Hence, the pointcut fragileFieldAccess in figure
11 determines all field not introduced accesses of introduced fields.

4.4 Introducing Mutual Exclusive Containers
To prevent the introduction of mutual exclusive containers to one
class the developer has to define that such containers cannot be
connected to the same target classes. That means a pointcut
referred by an error declaration has to be defined which determines
if a there is a class which implements the mutual exclusive
containers. The corresponding pointcut for the example from
figure 6 is shown in figure 12.

public class ... {
 ...
 ajdcPointcut fragileFieldAccess(?c,?fN,?tc) =
 class(?classID,?c) &&
 implements(Subject,?c) &&
 implements(FieldAccessCount,?c);
}

Figure 12: Preventing mutual exclusive aspect weaving

5. CONCLUSION
In this paper we identified some often occurring design failures
committed in AspectJ applications which contradict the achieved
aim of separation of concerns and presented the tool AJDC which
permits to specify aspect-oriented design constrains on AspectJ
application. Such constraints are specified inside the code and
checked at weave-time.

Since design constraints are specified inside the code they become
part of the module which is logically responsible for the
constrains. Nevertheless, there are constraints, which are not
logically part of one single module. For example the prevention of
fragile classes is more a general design guideline than an aspect-
specific design constraint. Hence, for such cases new modules
should be created which just contain the constraint definition.
Furthermore, the developer has to be careful when defining
constraints. For example it is not that clear when a container is
misused: there are examples which prefer to connect to container
directly declaring a corresponding implements in the class
defintion.

Mainly, design constraints are interesting for developers which
provide collections of abstract aspect which assume a certain
design when connected to applications.

6. ACKNOWLEDGMENTS
We would like to thank Arno Schmidmeier for his help during
endless discussions about aspect-oriented design.

7. REFERENCES
[1] AspectJ Team, The AspectJ Programming Guide,

http://aspectj.org/doc/dist/progguide/.

[2] Dijkstra, E.: A Discipline of Programming. Prentice-Hall,
1976.

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[4] Hanenberg, S., Costanza, P., Connecting Aspects in AspectJ:
Strategies vs. Patterns, First Workshop on Aspects,
Components, and Patterns for Infrastructure Software, 2002

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., Irwing, J., Aspect-Oriented
Programming. Proceedings of ECOOP '97, 1997.

[6] De Volder, K., D'Hondt, T., Aspect-Oriented Logic Meta
Programming, Proceedings of Reflection '99, 1999

