
Roles and Aspects: Similarities, Differences, and Synergetic
Potential

Stefan Hanenberg and Rainer Unland

Institute for Computer Science, University of Essen, 45117 Essen, Germany
{shanenbe | unlandR}@cs.uni-essen.de

Abstract. Both, the role concept and aspect-oriented programming are techniques
which permit a flexible adaptation of object-oriented constructs and therefore can be
used to adjust existing software to new challenges. While the former one is already
well known in the object-oriented world, the latter was only recently introduced.
Currently, both techniques co-exist without affecting each other and therefore con-
crete software projects either use the one or the other approach. There are some
situations where the result of utilizing the one or the other is approximately the
same. Therefore, it is reasonable to analyze each approach in respect to its underly-
ing philosophy and its impact on the implementation level and to compare them on
the basis of those observations. This paper discusses the equivalences and differ-
ences between the role concept and aspect-oriented programming and reveals poten-
tial synergies between both approaches.

1 Introduction

In the traditional object-oriented literature real-world entities are represented by ob-
jects which interact with their environment. Entities in this environment interact with
an object by using its intrinsic properties. Nevertheless, as pointed out by Harrison
and Ossher in [11] users have different perspectives on an object. In that way the o b-
servable properties are not only objective, intrinsic properties, but also subjective, e x-
trinsic properties which depend on a user's perspective.

The core assumption of the role concept is that there are (extrinsic) properties and
behavior of an object which may change during its lifetime. In other words, it is as-
sumed that the original classification of an object may change during life-time. A
similar argumentation was done against class-based programming languages, for ex-
ample Lieberman argues in [17] that people do not think in classes but in prototype
object whose "essential properties" represent people's view on a class.

The concept of roles and its relation to object-oriented programming has been al-
ready widely discussed (cf. [20], [16], [15], [7]). Nevertheless, popular programming
languages like C++ or Java do not support roles as first class entities on the language
level. So developers who need to apply the role concept usually use a framework.

In the recent past, aspect-oriented programming (AOP) became more and more
popular. One of the major observation in [14] is that there are concerns which cannot
be cleanly encapsulated using traditional composition techniques and therefore are
somehow tangled with other modules. Aspect-oriented programming is about modu-
larizing such concerns, which are called aspects. [3] introduces AOP as "the idea that
computer systems are better programmed by specifying the various concerns (…) of a

system and some description of their relationships". The underlying aspect-oriented
environment is responsible for assembling those concerns together. The result of such
a composition is that there are numerous (object-oriented) building blocks stemming
from different concerns spread all over the object hierarchy. Hence, an object's mem-
ber and the classification of objects are not only determined by the corresponding
class definition, but also by all aspects which influence the class definition after the
(aspect-oriented) composition.

The equivalences between the role concept and aspect-oriented programming are
obvious. Both approaches soften the strict restrictions of static typed, class-based pro-
gramming languages, since the association of class, members and behavior is not com-
pletely determined at class-definition time. If such a characteristic is needed in a
class-based programming language, developers have to determine which approach
serves better the needs at hand and what implementation techniques are the most ade-
quate for the given problem. Currently, there is no known combination of both ap-
proaches so they can just be used mutually exclusive. For deciding what technique to
use it is necessary to analyze the intention of both approaches, their equivalences,
trade-offs and their impact on the resulting code.

In this paper we discuss the similarities and differences between the role concept
and aspect-oriented programming. We introduce both concepts in section 2 and 3. Af-
terwards we discuss both approaches with respect to their similarities, differences and
potential synergies. In section 5 we propose a software framework to support the role
concept. In section 6 we discuss the result of applying this framework and aspect-
oriented programming simultaneously. Finally, we summarize the paper.

2 The Role Concept

Roles are temporary views on an object. A role's properties can be regarded as subjec-
tive, extrinsic properties of the object the role is assigned to. During its lifetime an o b-
ject is able to adopt and abandon roles. Thus, an object's environment can access not
only the object's intrinsic, but also its extrinsic properties. In [15] and [16] Kristensen
formulates some characteristics of roles:
• Identity: An object and its actual role can be manipulated and viewed as one entity
• Dynamicity: Roles can be replaced during an object's lifetime
• Dependency: Roles only exists together with its corresponding object
• Extension only: A role can only add further properties to the original object, but

not remove any
• Multiplicity: An object can have more than one instance of the same role at the

same time
• Abstractivity: Roles are classified and organized in hierarchies

In [7] Gottlob et al. emphasize another characteristic of roles:
• Behavior: A role may change an object's behavior.

The feature abstractivity emphasizes that roles are well-planed and organized in hi-
erarchies similar to object-oriented ones. On the other hand, this characteristic insinu-
ates that the role concept is highly connected to class-based programming languages
and hence roles are classified by classes. Nevertheless, it should be emphasized that
role concepts can also be used in class-less object-oriented programming languages.

An important characteristic of roles is that roles are dynamically added to objects
whereas a role itself has properties (fields and methods). Hence, the accessible proper-
ties of a single object differ from perspective to perspective and from time to time. The
root object describes the intrinsic object, i.e. the original object without any roles. A
role object is the instance of a role which is added to a certain root object. A role is a
generalization of its roles similar to classes. For reason of simplification we use the
term role instead of role object except in situations where it is necessary to stress the
difference. A subject is a special perspective on a root object including (some of) its
roles. A root object has several subjects whereby every subject contains a different set
of included roles. The interface of a subject is an aggregate consisting of the root o b-
ject's interface plus every role object's interface.

One interesting property of roles (in comparison to aspect-oriented programming)
is the behavior characteristic. A role when added to an object may change the object's
behavior. While [7] describes this as an intrinsic role feature, [15] and [16] regard it as
a special kind of role which they call a method role. A method role is a role's method
which is bound to an intrinsic method of the root object. It is important to emphasize
for later examinations that the cardinality between intrinsic method and method role is
1:n, i.e. every intrinsic method may have several method roles, but every method role
has exactly one intrinsic method.

If and how a method role changes an object's behavior depends on what kind of
method role it is. There are method roles, which alter a root object's behavior because
the object's user is aware of the role, i.e. the role containing the method role is part of a
subject used by the user. In that case we call the role method to be subjective . In the
other case there are method roles which replace the root object's behavior independ-
ently of the user's perspective. Although such a behavior is not part of the root object's
intrinsic behavior it is independent of a user's perspective. We call such method roles
non-subjective .

It is obvious that there are several conflicting situations, since more then one role
can be assigned to an object. Whenever an object's intrinsic methods are invoked the
underlying environment has to determine if and how the corresponding roles influ-
ence the resulting behavior. The following conflict situations occur:
• multiple subjective method roles: there is more than one subjective method role as-

signed to the invoked method.
• multiple non-subjective method roles: there is more than one non-subjective

method role assigned to the invoked method.
• mixed method roles: there are at least one subjective and one non-subjective

method role assigned to the invoked method.
Furthermore, there is a conflict if there are at least two members from different roles

with the same selector within the same subject. If an object uses such a selector to ac-
cess a member it has to be determined what member to choose.

Figure 1 illustrates a person that has two jobs in parallel as a bartender. A job is a
temporal role, because persons usually do not keep their job for the whole lifetime.
The person has some properties like name and day of birth which are not influenced
by any role. On the other hand there are the properties phone number and income. The
phone number is on the one hand an intrinsic property, because it describes a person's
private phone number. On the other hand it is an extrinsic property, because it de-

scribes a phone number spe-
cific to the bartender role
(and contains a pub's phone
number). If the phone num-
ber property is realized as a
method, then the bartender's
phone number methods are
subjective, since if someone
asks a person in private for
his number he expects to get
the private number, but if he
asks a bartender for his
number he expects to get the
bar's number. On the other

hand, a person's income directly depends on the income at his jobs. So the income
methods of both bartender roles are non-subjective roles methods.

Although the benefit of role concepts has been accepted widely, popular object-
oriented programming languages like C++ or Java do not support roles as first class
entities on language level. The reason for it is quite simple: the underlying assumption
for static typed, class-based programming languages is that an object's properties are
entirely known at compile-time and can therefore be classified. Hence, class-based
programming languages do not distinguish between intrinsic and extrinsic properties
([17] discusses this topic in detail). Therefore additional techniques are needed to
support roles in class-based languages.

3 Aspect-Oriented Programming

In [3] aspect-oriented programming (AOP, [14]) is introduced as "the idea that com-
puter systems are better programmed by specifying the various concerns (…) of a sys-
tem and some description of their relationships". The underlying aspect-oriented envi-
ronment is responsible for composing those concerns. The aspect-oriented term for
such a composition is weaving . The composition consists of a transformation of all in-
fluenced building blocks at certain points specified by the developer which are called
join points. They represent input parameters for the weaver.

The major observation in [14] is that there are concerns which cannot be cleanly
encapsulated using traditional composition techniques and therefore the resulting

code is tangled with other
modules. So aspect-oriented
programming is about
modularizing such concerns,
called aspects which cannot be
cleanly separated by traditional
composition techniques. A
typical example of an aspect is
synchronization that has no

Non-subjective
method role

bartender

person

phoneNumber

income

phoneNumber

income

bartender

employmentID

phoneNumber

income
employmentID

foreName

surName

dayOfBirth

Fig. 1. Object person with two roles bartender

Object System with
woven concerns

Object
System

Concerns

Fig. 2. Weaving Concerns into a softw are system

satisfactory pure object-oriented solution (cf. [18]).
Figure 2 illustrates the weaving process. There are different concerns and an object

system defined in separated modules. The weaver is responsible for combining those
concerns with the object system. How each concern is represented in the final woven
system depends on the weaver.

Although there are already numerous works on AOP, there is until now no common
agreement about what the core ingredients of aspect-oriented programming are, i.e.
there is no agreement on what kind of composition mechanisms are necessary for a
technique to be called aspect-oriented. In [4] Filman proposes quantification to be a
major idea of AOP and describes quantification as "the idea that one can write unitary
and separate statements that have effect in many, non-local places in a programming
system". However, Filman does not propose how such a characteristic impacts the u n-
derlying programming languages. So the current situation is that different aspect-
oriented techniques provide different mechanisms to achieve such a quantification
and/or different kinds of quantification (cf. [10]). Nevertheless, there are already dif-
ferent techniques available which are generally accepted to be aspect-oriented.

The most popular ones are AspectJ [1] and HyperJ [8]. In the following we briefly
discuss the communalities between both to work out the core ingredients of AOP. Af-
terwards we discuss the impact of different kinds of weaving.

3.1 AspectJ and HyperJ

AspectJ [1] is currently the most popular general purpose aspect language built on top
of the programming language Java and offers additional composition mechanisms to
modularize cross-cutting concerns. It supports aspects as first class entities that permit
to define cross-cutting code. Aspects contain definitions of join points which are used
by the weaver to change the behavior of objects or to change class definitions. Chang-
ing the behavior of objects is achieved by a method-like language construct called ad-
vice which specifies the new behavior. One advice can be connected to several differ-
ent join points which may be spread all over the object structure. Moreover, several
advices from different aspects can be woven to one join point. There are different
kinds of advices like before, after or around advices. They specify when the new be-
havior is meant to take place in relation to the corresponding join points.

HyperJ [8] developed at IBM alphaworks is an offspring of subject-oriented pro-
gramming (SOP, [11]) and is generally accepted to be an aspect-oriented technique. In
contrast to AspectJ, HyperJ does not extend the programming language. So aspects are
not supported as first class entities. Instead, HyperJ is a tool for weaving Java classes,
whereas the weaving instructions are not defined in the building blocks which are
about to be combined, but in separate configuration files. Like AspectJ it is possible to
add fields or methods to classes and to change the behavior of objects.

Another equivalence between HyperJ and AspectJ is that both permit to change an
object's behavior depending on its context: the behavior of an object may depend on
the client who sends a message to the object (AspectJ even permits to define behavior
for certain control flows). Furthermore, both approaches have in common they allow
to group join points based on lexical similarities. A typical example is the grouping of
all method calls where the method selector begins with the tokens "set".

3.2 Static and Dynamic Weaving

Above we introduced weaving as a mechanism for composing separate defined con-
cerns into a software system. The underlying system is responsible for weaving the
concerns. Nevertheless, the question is when concerns are to be woven to the system.
Weaving may either occur before or at runtime. The first case is usually called static
weaving, the latter one dynamic weaving. The point in time when static weaving oc-
curs may correspond to the compile time of the concerns (as implemented in AspectJ),
or it is after compile time and before runtime (HyperJ). If weaving occurs during run-
time, concerns can be woven and unwoven depending on the systems state. Moreover,
there are load-time approaches, like Binary Component Adaption (BCA, [12]) which
utilize the Java-specific class-loading for transforming the concerns to be woven and
the classes they affect. Load-time approaches are a special kind of dynamic weaving
since the transformations are done during runtime.

The underlying weaving mechanism has a direct impact on the kind of quantifica-
tion that can be supported. Static weaving permits to use all kinds of static information
(type information, syntax tree, etc.) while dynamic approaches only use state informa-
tion. An aspect that appears only at runtime cannot influence the whole system since
parts of it are already executed without the aspect's influence. On the other hand dy-
namic weaving reduces the preplanning restrictions: instead of determining already at
compile time what aspects appear in the system, this can also be achieved at runtime.

3.3 Characteristics of AOP

Based upon the observations above we can extract the following characteristics of as-
pect-oriented programming:
• Aspect Proclamation: Aspects arise by declaring them, i.e. the underlying envi-

ronment is responsible at weaving time for identifying the objects influenced by
the aspects and generating the new woven objects.

• Context dependence: Aspects allow to change objects' behavior depending on a
certain context. E.g. HyperJ and AspectJ permit to define an object's behavior de-
pending on the caller.

• Split aspects: A single aspect may influence several objects. An aspect may touch
every part of an object structure at weaving time.

• Cardinality between method and advice: AspectJ and HyperJ permit a cardinality
of n:m between the original methods and the added behavior. I.e. for every method
there may be several advices and every advice may be added to several methods.
It is emphasized by numerous authors that aspect-oriented programming is not just

restricted to object-oriented programming, but may also be applied to other para-
digms. Nevertheless, almost all known approaches are built on object-oriented lan-
guages. Assuming an underlying object-oriented language, the characteristics above
show that aspect-oriented programming represents an extension to object-oriented
programming. In the traditional object-oriented literature it is accepted that "an o bject
may learn from experience. Its reaction to an operation is determined by its i nvocation
history" [22]. In aspect-oriented programming an object's behavior is additionally d e-
termined by its invocation context and the existence of other concerns.

4 Comparing Aspects and Roles

In the previous sections we have seen that both concepts permit to adapt the behavior
and structure of objects. Here, we compare both approaches based on the above men-
tioned characteristics.

First of all we analyze in what way aspects match the characteristics of roles.
• Identity: Aspects do not have to be instantiated for each object they are woven to.

This is done by the underlying environment. Furthermore, a single aspect may in-
fluence numerous objects (split aspect) which means that an aspect and the objects
it is woven to do not form one single entity/unit.

• Dynamicity: The question whether aspects can be added dynamically depends on
the underlying aspect-oriented system. Dynamic weavers permit it while static
weavers do not. Therefore dynamicity is not a mandatory characteristic of aspects.

• Dependency: Aspects do not exist on their own. Instead they depend on the object-
oriented structure they are woven to. Hence, aspects have this characteristic.

• Extension only: Based on the above introduction of AOP the answer needs to be:
yes, like roles aspects are extension only. On the other hand, systems like AspectJ
permit to declare restrictions on the object-oriented structure. It is possible to e.g.
declare that "a class A must not have a method B. Otherwise class A will not be
compiled". This means that aspects are not extension only. However, up to now
there is no common agreement on whether this is an essential aspect-oriented fea-
ture or not. Hence, it cannot be finally decided whether aspects meet this character-
istic.

• Multiplicity: From the technical point of view there is no reason why an aspect may
not be applied to the same object twice. Nevertheless, the major focus of AOP is to
weave different concerns at the same time into a system. Usually a single concern
is not applied to an object or class for more than one time. This implies that multi-
plicity is not a characteristic of AOP.

• Abstractivity: Like roles, aspects can be organized in hierarchies. In AspectJ as-
pects are treated like classes. In HyperJ it is possible to define dependencies be-
tween the configuration files. So, aspects meet this characteristic.

• Behavior: Aspects and roles can change the behavior of the structure they are
woven to. While a role may change the behavior of single objects using method
roles, aspects may change the behavior of larger units (collection of objects). Usu-
ally aspects are woven to classes and not to single objects.
On the other hand we have to check if roles share some properties of aspects:

• Aspect Proclamation: Roles are always assigned to objects. Therefore, aspect
proclamation is not supported by roles.

• Context dependence: Roles do not permit to change an object's behavior depending
on the context. Either a method role is added to a root object or not. E.g. a method
role does not vary its behavior in dependence of the clients sending a message to
the root object.

• Cardinality between method and advice : As already mentioned, the cardinality be-
tween method and its roles is (usually) 1:n. AspectJ and HyperJ permit a cardinal-
ity of n:m between the original methods and the added behavior. However, it is

possible to implement the role concept in a way that is supports this n:m relation-
ship.

• Split aspect: A role instance can only influence the behavior of the object it is as-
signed to. A role cannot be split so that each subpart influences a different object.
The overall conclusion is that aspects (especially when based on dynamic weaving)

match almost every characteristic of roles while roles do not match the characteristics
of aspects. Nevertheless, it should be emphasized that current aspect-oriented ap-
proaches (like AspectJ or HyperJ) provide only static weaving and, therefore, do not
support d ynamicity. But dynamicity is a very important characteristic of roles.

The above discussion clearly indicates that developers currently have to decide
whether they need dynamicity. In case they do they cannot use current aspect-oriented
techniques. If developers need to exploit context dependent object behavior they can-
not use roles. Moreover, if developers want to declare concerns in their system, i.e.
want to adapt numerous classes and objects without the additional effort of identifying
and modifying the sources to be changed, they need the characteristic of aspect proc-
lamation which is not supported by the role concept.

0..*

root

roles

thisProxy

root
ObjectInvocationHandler

interface
java.lang.reflect.InvocationHandler

MethodMapping

InsteadMethodMapping

+invoke:Object
+proceed:Object

BeforeMethodMapping

+invoke:void

AfterMethodMapping

+invoke:void

RoleObjectImpl

+getRoot:ObjectWithRoles
#addMethodMapping:void

ObjectWithRolesImpl

interface
RoleObject

interface
ObjectWithRoles

+getThis:
 ObjectWithRoles
+addRole:void
+removeRole:void
+getRoles:ArrayList

Fig. 3. Framework to Support Roles in Java

5 Implementing Roles in Java

There are mainly two different directions for realizing roles. On the one hand there are
approaches on the implementation level which directly depend on language specific
features. E.g. Gottlob et al propose in [7] a Smalltalk implementation, which is based
on the Smalltalk specific feature of handling incoming messages on the meta level.
[15] discusses implementations in BETA by extending the compiler. In [21] VanHilst
and Notkin use C++ class templates to implement roles and Neumann and Zdun pro-
pose in [19] per-object-mixins which use message interception techniques. [13] pro-

poses an aspect-oriented implementation of the role concept but neglects the impact of
static weaving for the characteristic of dynamicity.

On the other hand, there are approaches for supporting roles at design time. E.g.
Fowler discusses in [5] different ways for designing roles based on some design pat-
terns [6]. The usual argument against the latter approach is the preplanning problem,
i.e. "the use of the patterns for extension must be done in advance of an actual need to
exploit its flexibility for a particular piece of software" [9]. For realizing roles this
means that the designer has to decide what type of object may realize what kind of
roles. On the other hand this is a limitation to the dynamicity characteristic, since at
design time is must be determined which objects may have what roles (if any) at run-
time.

The approaches above cannot be applied to Java, since Java does not provide the
necessary features: It does neither permit to alter the implementation of meta classes
nor to extend the compiler. Likewise, Java does not support class templates. Although
extensions like generic java (see [2]) permit the usage of generic types until now this
is not part of standard java. Furthermore, Java does not provide any mechanisms for
mixins.

Since version 1.3 Java contains a mechanism called dynamic proxies. A dynamic
proxy is an object, whose interfaces are specified during runtime. An invocation han-
dler permits to reflect and redirect incoming messages. Although the main contribu-
tion of dynamic proxies is that objects can be created whose interfaces are specified
during runtime, for realizing roles the ability to intercept message is much more im-
portant. In the following we propose a framework to address the role concept and dis-
cuss its structural elements. Implementation details are out of the scope of this paper.

Figure 3 illustrates a framework to support roles in Java based on dynamic proxies.
Each class is divided into interface and implementation. Each interface extends the
root interface ObjectWithRoles which contains methods for attaching and detach-
ing role objects. Each implementation extends the root class ObjectWithRole-
sImpl. The constructor of ObjectWith-RolesImpl creates an invocation handler
(instance of ObjectInvocationHandler) and registers the new created instance at
the handler (attribute root). Furthermore, the constructor creates a new proxy object
initialized with the invocation handler (thisProxy). Clients creating a new instance
only use the proxy instance for further work.

Each class, which represents a role must also be split into interface and implementa-
tion and extends the interface RoleObject respectively RoleObjectImpl. The
constructor of RoleObjectImpl has an ObjectWithRoles parameter which
represents the root object. Furthermore, the framework contains method mappings. A
method mapping is an object which determines which methods of the root object are
influenced by which method roles. The framework supports three kinds of role meth-
ods: before, after and instead mappings. A before method mapping allows method
roles to be executed before the original invocation takes place, after and instead map-
ping behave correspondingly. Instead method mappings differ slightly from the other
ones: they have a method proceed() which allows the root method to be invoked.

The invocation handler receives messages sent to the root object and analyzes if
there are attached roles that contain method mappings matching the called method.
Afterwards the invocation handler invokes the method role with the highest priority

(in our implementation the role added at last has the highest priority). Details about
how the handler works are out of scope of this paper.

Figure 4 shows how an income method role of the type mentioned in section 2 is
implemented: the income of a person is calculated by adding the income of all roles.
The method proceed() returns the value of the next method role (either the next
method role registered to the same method or the target method itself). The parameter
ic contains some context information necessary for method roles. The constructor of
the method mapping contains parameters to determine to what entity the method role
is registered. The parameters in figure 4 determine that the method role is registered to
a method getIncome() without any parameters.

Fig. 4. Implementation of an income method role

6 Collaboration with AspectJ

In the previous section we introduced a framework to support the role concept. Here
we discuss how the proposed framework collaborates with aspect-oriented program-
ming by using AspectJ1 as the most popular general purpose aspect language. The
proposed framework fulfills the characteristics of the role concept. Especially the
characteristic of dynamicity which is not provided by AspectJ is supported.

Since AspectJ is an extension of Java it seems to be reasonable to use it in addition
to the framework. Nevertheless, for the following reasons there are some difficulties:
AspectJ uses the compilation unit's syntax trees for weaving. The framework (or more
precisely: the invocation handlers) on the other hand uses reflection to redirect incom-
ing messages which are not transformed in AspectJ. The consequences of this are not
that obvious:
• Double advice invocation: Each context independent advice, i.e. each advice that

adapts an object's behavior independently of the calling object, is invoked twice.
The reason for this is that AspectJ tests the type of the target object for each redi-
rected call in the woven code. If the class does not match the place where the a d-
vice is woven to the advice (more precisely: the advice's Java representation) is

1 The observations in this paper are based on AspectJ, v 1.0.3

public class BartenderImpl extends
 RoleObjectImpl implements Bartender {

 ...
 {
 addMethodMapping(
 new InsteadMethodMapping ("getIncome", new Class[0]) {
 public Object invoke(InvocationContext ic)
 throws Throwable {
 return getIncome()+ proceed(ic);
 }
 });
 }

 float income;
 public float getIncome() { return income; }
 ...
}

invoked directly. However, in the proposed framework the target object is always
a dynamic proxy. So AspectJ invokes the advice twice.

• Inelegant weaving in method roles: For mainly two reasons there is no elegant so-
lution for weaving advices to method roles: in the framework the method mapping
classes are abstract and it turned out to be a good idiom to use anonymous classes
for registering method roles (see figure 4). Since AspectJ uses lexical similarities
to identify join points, these classes can hardly be identified.

• No context dependent behavior in method roles: The static weaver in AspectJ
cannot accomplish call dependent weavings in method roles, since the root ob-
ject's invocation handler is responsible for invoking method roles and reflective
calls are not transformed by the weaver.

• Non-natural parameter passing: parameters which are related to the calling object
or the target object are always instances of implementations. Nevertheless, the
framework assumes clients to work on the proxy instances. Hence, advices always
need to execute the thisProxy instance for each passed parameter. Therefore,
parameter passing is in a way not natural.

It should be mentioned that technical solutions exist for all above mentioned prob-
lems. Nevertheless, the developer has to be aware of these problems, because they in-
fluence the usage of both, the underlying framework for roles and AspectJ.

7 Conclusion

In this paper we discussed the similarities and differences between the role concept,
introduced in section 2, and aspect-oriented programming. In section 3 we elaborated
some aspect-oriented characteristics based on AspectJ and HyperJ. Moreover, we dis-
cussed the impact of different weaving techniques. Afterwards we compared both a p-
proaches. In section 5 we proposed a software framework for the support of the role
concept. Section 6 discussed the consequences of applying the proposed framework
and AspectJ simultaneously.

The paper provides two important contributions. First, we showed that there is a dif-
ference between aspects and roles. This conclusion is quite interesting, since both a p-
proaches are about object adaptation and there are numerous identical coding exam-
ples which claim to be typical applications for only one approach (e.g. an implementa-
tion of the observer pattern). Moreover our comparison showed that there is a differ-
ence between dynamic weaving and the role concept. Second, we discussed the conse-
quences of using roles and aspects at the same time by introducing a framework based
on AspectJ that supports roles. We showed that this leads to undesired results and re-
stricts the usage of both approaches.

Both, roles and aspects offer valuable mechanisms for adapting software systems
which have some characteristics in common. Nevertheless, it has to be considered that
an integration of both techniques requires more effort than a first glimpse may pre-
tend.

References

[1] AspectJ Team, The AspectJ Programming Guide, http://aspectj.org/doc/dist/progguide/

[2] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler, Making the future safe
for the past: Adding Genericity to the Java Programming Language, OOPSLA 98, Vancou-
ver, October 1998.

[3] Tzilla Elrad, Robert E. Filman, Atef Bader, Aspect-oriented programming: Introduction,
Communications of the ACM, Volume 44 , Issue 10, October 2001, pp. 29-32

[4] Robert E. Filman, What is Aspect-Oriented Programming, Revised, Workshop on Advanced
Separation of Concerns, ECOOP 2001

[5] Fowler, M., Dealing with Roles, Proceedings of the 4th Annual Conference on the Pattern
Languages of Programs, Monticello, Illinois, USA, September 2-5, Washington University
Technical Report 97-34, 1997.

[6] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[7] Georg Gottlob, Michael Schrefl, Brigitte Röck, Extending Object-Oriented Systems with
Roles, ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996.

[8] IBM alphaworks, HyperJ Homepage, http://www.alphaworks.ibm.com/tech/hyperj, last ac-
cess: February 2001

[9] IBM Research, Subject-Oriented Programming and Design Patterns,
http://www.research.ibm.com/sop/sopcpats.htm, last access: January 2001

[10] Hanenberg, S., Unland, R.: A Proposal For Classifying Tangled Code, Workshop Aspekt-
Orientierung der GI-Fachgruppe 2.1.9, Bonn, February, 2002

[11] William Harrison, Harold Ossher, Subject-Oriented Programming (A Critique of Pure Ob-
jects), Andreas Paepcke (Ed.): Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), SIGPLAN Notices 28(10), October 1993.

[12] Keller, R., Hölzle, U., Binary Component Adaption, ECOOP 1998, LNCS, 1445, 1998, pp.
307-329.

[13] Elizabeth A. Kendall, Role Model Designs and Implementations with Aspect-Oriented Pro-
gramming, Proceedings of Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA '99), SIGPLAN Notices 34 (10), 353-369.

[14] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwing, J.,
Aspect-Oriented Programming. Proceedings of ECOOP '97, LNCS 1241, Springer-Verlag,
pp. 220-242.

[15] Bent Bruun Kristensen, Object-Oriented Modeling with Roles, Proceedings of the 2nd Inter-
national Conference on Object-Oriented Information Systems (OOIS'95), Dublin, Ireland,
1995.

[16] Bent Bruun Kristensen, Kasper Østerb ye, Roles: Conceptual Abstraction Theory & Practical
Language Issues''. Theory and Practice of Object Systems, Vol. 2, No. 3, pp. 143-160, 1996.

[17] Lieberman, Henry, Using Prototypical Objects to Implement Shared Behavior in Object Ori-
ented Systems, Proceedings of OOPSLA 1986, SIGPLAN Notices 21(11) pp. 214-223

[18] Matsuoka, S., Yonezawa A., Analysis of Inheritance Anomalies In Object-Oriented Concur-
rent Programming Languages, In: Agha, G., Wegner, P., Yonezawa, A. (eds.), Research Di-
rections in Concurrent Object-Oriented Programming Languages, MIT-Press, 1993, pp. 107-
150 ́

[19] Gustav Neumann and Uwe Zdun. Enhancing object-based system composition through per-
object mixins. In Proceedings of Asia-Pacific Software Engineering Conference (APSEC),
Takamatsu, Japan, December 1999.

[20] Pernici, Objects with Roles, Proceedings of OOIS, 1990
[21] VanHilst, M., D. Notkin, “Using Role Components to Implement Collaboration- Based De-

signs,” Proceedings of the Conference on Object-oriented Programming Systems, Languages,
and Applications (O OPSLA'96), ACM Press, 1996, pp. 359 - 369.

[22] Peter Wegner. The Object-Oriented Classification Paradigm. In: Bruce Shriver and Peter
Wegner (eds.), Research Directions in Object-Oriented Programming, MIT Press, 1987, pp
479-560

