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Abstract: In aspect-oriented programming, aspects require access to join point 
information for selecting join points within pointcuts as well as for specifying 
aspect-specific behavior at such join points within advice. Unfortunately, aspect-
oriented systems typically provide only local information about join points, i.e. 
information that is directly accessible from the execution context at the 
corresponding join points like the target object within a method call. However, 
there are many situations where the needed information is not directly available 
and relies on object information that is non-local concerning the execution context 
at the corresponding join points. As a consequence, developers are forced to 
specify a number of work-arounds – pointcuts and advice that neither reflect on the 
conceptual join point selection nor purely on the conceptual aspect behavior. In 
this paper, we show recurring situations in which “local” join point information is 
not sufficient for specifying aspects. We propose so called “path expression 
pointcuts” that permit to abstract over (non-local) object-relationships within 
pointcuts – and show that this overcomes the problem. 

1 Introduction 

One of the main contributions of aspect-oriented programming (AOP, [15]) is the notion 
of join points. Join points are principled points in the execution of a program [14] that 
can be selected by so-called pointcuts and adapted by so-called advice. Pointcuts specify 
selection criteria on join points based on available join point properties (cf. [11, 8]) – 
join point information that is provided by the underlying aspect-oriented system. Based 
on the selection of a join point, a corresponding advice often requires access to some 
properties of this join point in order to perform some calculations on it. Thereto, aspect-
oriented languages typically provide a mechanism called context exposure which 
transfers objects addressed by pointcuts to the advice by binding such objects to 
explicitly defined variables within the advice (see [12]). However, not all join point 
properties can be exposed by using context exposure mechanism. For example, in 
AspectJ signature patterns cannot be exposed to the advice. 



There are different kinds of join point properties [8]. For example, systems like AspectJ 
[14] provide for method call join points properties like target object, method name and 
actual parameters. These join point properties have in common that they can be directly 
derived from the local execution context of the corresponding expression representing 
the method call.  Consequently, because of this local availability we call corresponding 
properties local join point properties [11, 8]. Since access to local join point properties 
can be relatively easily implemented aspect-oriented systems typically provide a large 
variety of such local properties. 

However, aspect-oriented systems are quite miserly with properties that cannot directly 
be derived from the local execution context of join points. We call such properties non-
local properties [11, 8]. One example of such a non-local property is the call-stack 
information. While in Smalltalk this information is locally available, it is a non-local 
information in other programming languages such as Java and C++. In the later case, the 
call-stack information is utilized for example in AspectJ by means of the cflow pointcut. 
With the aid of cflow, it is possible to specify criteria on the call stack like, for example, 
the occurrence of a certain actual type as target of a method call on the stack. In contrast 
to local properties, the provision of non-local join point properties is typically much 
more complex: The aspect-oriented system’s task is to collect some data at runtime in 
order to use it at a later point in time for evaluating pointcuts. Due to this additional 
effort, non-local properties are rather rarely provided. In fact, most aspect-oriented 
systems provide only call-stack information as non-local join point properties. 

One intention of aspect-oriented systems is to provide pointcut languages that permit the 
developer to specify expressive pointcuts [21] where the join point selections correspond 
to the developer’s mental model [25]. This also implies, that the available join point 
properties provided by an aspect-oriented system must suffice the developers’ needs.  

However, it turns out that there are situations where it is desirable to have constructs 
within the pointcut language that rely on non-local join point properties. Especially, 
there is a large number of situations where pointcuts are needed that refer to object-
relationships that cannot be calculated based on a join point’s local context. As a 
consequence, developers cannot directly specify the mental model of join point 
selection. Rather, they are forced to implement a number of work-arounds that tend not 
only to be cumbersome and error prone, but also to mix the semantics of the join point 
selection with the advice code. 

This paper addresses the problem of pointcuts that refer to non-local join point properties 
relying on object-relationships. Thereto, the problem is explained in more detail by an 
example. To overcome this problem, we propose a new language construct (path 
expression pointcuts) that permits to specify constraints on the object graph. 

The rest of the paper is organized as follows. In section 2, we illustrate the problem by 
means of an example. We describe the concept of path expression pointcut in section 3 
and present its semantics. Then, we show how this new construct could be used to solve 
the motivating problem. Section 4 discusses some related work. After some discussion 
presented in section 5, we conclude the paper in section 6. 



2 Motivation 

The motivating example comes from the domain of object persistency. Our intention is 
to provide object persistency as an ad-hoc functionality similar to the idea of 
spontaneous containers [22]. The idea is to provide a class PersistedList whose 
instances persist all contained elements. The elements that are to be added, do not need 
to be prepared for becoming persistent, i.e. persistency is not preplanned for the objects 
added to the list. 
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Figure 1: UML design for the problem structure. 

Figure 1 illustrates an extraction from a class hierarchy making use of a persistent list. A 
PersistedList has a uni-directional one-to-many relationship to Object which is the 
system’s root class. Furthermore, there is a class Person (extending Object) in the 
system that might be potentially added to a PersistedList. Each person object has an 
association to an Address object.  

From the aspect-oriented point of view, it is desirable to write an aspect that handles the 
persistency issue for PersistedList. Hence, it is the aspect’s task to notify the 
corresponding PersistedList whenever the state of one of its contained objects 
changes to ensure that the new state is stored in the persistent storage.  
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Figure 2: Person’s postCode being changed by PostCodeConverter client. 

Figure 2 describes a possible collaboration of objects from the previous class definitions. 
Furthermore, there is a PostCodeConverter object that changes for some reasons the 
postal code of person objects. This set operation represents the join point at which the 
persistedList must be notified that the owning person object has changed. From this 
perspective, it is desirable to specify a pointcut “state change of an object owned by an 
object within a persisted list” which exposes the owning object (the person) and the 
persisted list to an advice. Then, the advice sends the persisted list a message telling, that 
the person object has changed. 



In Figure 2, there are two regions of relevant context to the change join point. The left 
area contains local information of the join point. This area contains the context that is 
provided by current AO systems, e.g., in AspectJ, this and target pointcuts are used 
to expose the objects c and a respectively. The right area represents the relevant non-
local join point context. The non-local property in this case is the “referencing” objects, 
that is the corresponding persistent list l and the person p. The person object which 
owns the address a being changed should be known because it needs to be 
communicated to the persisted list. Also, the list itself must be accessed since it is the 
receiver of the message telling that the person has changed.  

AspectJ provides only control flow information as non-local properties. Hence, neither 
the person object nor the persisted list object can be considered for join point selection or 
for join point adaptation in the example. Hence, it is not directly possible to express the 
underlying conceptual selection and adaptation in terms of pointcut and advice. Instead, 
the developer needs to implement some workaround for it. 

The code in Figure 3 illustrates one possible workaround where the aspect 
PersistedListsAspect collects all persisted lists as soon as they are instantiated 
(pointcut persistentList and the corresponding advice). Furthermore, whenever an 
object in the application changes its state (pointcut stateChange) the corresponding 
advice traverses all persistent lists in order to check whether the changing object is 
reachable from a persistent list. Such code relies on the introspective facilities of Java. In 
case the changed object is reachable, the aspect sends a message changed to the 
corresponding list with the owning object as a parameter. 

public aspect PersistListsAspect { 
  WeakHashMap map = new WeakHashMap(); 
  // storing all persistedLists into a local data structure 
  pointcut persistentLists(PersistedList list): 
    execution(new(..)) && target(list); 
  after returning(PersistedList list): persistentLists (list) { 
    map.put(list, list);  
  } 
 

  pointcut stateChange(Object o): set(*.*) && target(o); 
 

  after returning(Object o): stateChange(o)  
     {  ...  
          traverse all lists to determine whether o is referenced (directly or indirectly) by a persisted list 
         in such a case determine the object owning the changing object and send PersistedList a message 
          changed(owningObject) 
       ... } 
}  

Figure 3: AspectJ solution - exposing non-local context by additional code. 

Although this solution is technically correct, it suffers from a serious problem: Neither 
the pointcut nor the advice represents the mental model underlying the join point 
selection. The join points the developer is interested in are the state changes. However, 
the pointcut stateChange does not reflect on the idea that only those join points should 
be selected where the changing object is reachable from a persistent list. In fact, this 
selection logic is specified within the corresponding advice itself – the separation of join 



point selection and join point adaptation is no longer given. Furthermore, the pointcut 
persistentLists and the corresponding advice are not directly related to the pointcut 
stateChange. Instead, they are only responsible for providing the corresponding data 
structure that can be used within the advice belonging to stateChange. Consequently, 
understanding and maintaining the aspect is not that easy, because the mental model of 
join point selection and adaptation (which conceptually just consists of a single pointcut 
and a single advice) is hidden by its implementation. 

As illustrated, the join point selection mechanism requires the availability of the join 
point property “referenced by a persisted list” at every state change join point of a 
person object.  Unfortunately, this property could not be derived from the local 
information of those join points, and as a consequence, it could not be used for join point 
selection. This is due to the fact that in current pointcut languages the context exposed is 
mostly local. The only exception is the cflow pointcut in AspectJ that provides non-
local information about call stacks. Because of this restriction to local join point 
properties, aspect-developers are forced to specify pointcuts and advice that do no longer 
reflect on the conceptual model they have in mind which makes it hard to understand 
and maintain the aspect. 

3 Path Expression Pointcuts 

This section introduces a proposal of an extension to current pointcut languages. We 
utilize the well-known path expression technique in a new pointcut construct called path 
expression pointcuts that permits to specify constraints on the object graph. Accordingly, 
developers can abstract over objects, the actual types of these objects and their 
relationships. Another contribution of the proposal is the adapted semantics of context 
exposure and advice execution mechanisms in the presence of path expressions. We 
implemented path expression pointcuts in our prototype language called “PurityA” [23]. 
Although, we use AspectJ in our examples for illustrative purposes. 

Section 3.1 discusses the syntax and the semantics of the path pointcut. In section 3.2 we 
show how this new pointcut relates to context exposure in a language like AspectJ. In 
section 3.3 we explain how an adapted advice execution mechanism based on parameter 
bindings and the ordering of those executions. Finally, in section 3.4 we revisit the 
motivating example showing how path expression pointcuts solve the problem. 

3.1 Syntax and Semantic 

Path expressions [3], are a well-known technique used for synchronization of operation 
calls on data objects. They specify how threads are allowed to perform a sequence of 
message sends on a given object. We utilize the technique in this work such that a path 
expression is applied to object paths in the object graph. 



The path pointcut picks out only those join points where a path described by a 
PathExpressionPattern from one object to another object exists in the object graph. 
Its general form is path(PathExpressionPattern). 

PathExpressionPattern ::= (ObjectPattern "—"  

  FieldPattern "->" )*  
                           ObjectPattern. 

ObjectPattern  ::=  (TypePattern Identifier) | 

  (Identifier). 

FieldPattern  ::=  IdPattern | "/". 

IdPattern  ::=  ("*" [IdPattern]) |  

  (Identifier "*" [IdPattern]). 

TypePattern  ::=  definition of type patterns according to AspectJ syntax 

Identifier  ::=  definition of Identifiers according to Java syntax  

Figure 4: PathExpressionPattern syntax. 

Figure 4 depicts the syntax of  PathExpressionPattern. A pattern consists of a list 
of object patterns and field patterns separated by the tokens “—“ and “->”. According to 
the syntax of AspectJ a FieldPattern might include lexical abstractions, i.e. it permits 
to abstract from concrete names using the wildcard “*”. Furthermore, a field pattern can 
consist only of the token “/”. The path expression pointcut can be directly added to the 
AspectJ syntax by declaring path expressions as pointcuts. Consequently, this permits to 
compose path expressions using the operators “&&“,“||”, and “!”.  

A path expression describes object paths in the (directed) object graph in an application 
from a source object to a target object passing a number of intermediate objects. 
Furthermore, the fields representing the object relationships can be specified within the 
path expression. 

Each participating object within a path is described in terms of an object pattern which 
specifies the runtime type of an object and declares a name for the object that can be 
later used for the purpose of context exposure (which will be explained in section 3.2). 
According to AspectJ, it is possible to specify a lexical abstraction over type names 
using the wildcards “*” and “..” (cf. [2, 16]).  

The field pattern between an object o1 and an object o2 describes the fieldname over 
which o2 must be accessible from o1. For example, a path pattern “o1 – f1 -> o2” 
describes a selection criterion where object o2 must be accessible from object o1 via the 
field named f1. Likewise to type patterns, field patterns also provide lexical abstractions 
via the wildcard “*”. 

A special construct for field patterns is the operator “/”. This operator permits to specify 
an indirect relationship between an object o1 and o2. For example, a path pattern “o1 - 
/ -> o2” describes a selection criterion where object o2 must be reachable from object 
o1 over a path of any length. 



path( C1 s - f1 -> * - / -> * - fn -> Cn d ); 

s: C1 
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 o:C2 
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Figure 5: Exemplary path expression and corresponding matching object structure. 

An exemplary path expression pointcut is illustrated in Figure 5.  This pointcut selects 
all join points where there exists at least one path in the object graph from the source 
object “s” of a dynamic type “C1” to the destination object “d” of dynamic type “Cn”. 
The first edge in each path must be an association between “s” and the object 
represented by the field “f1” in “s”, say e.g. “o”. Similarly, the last edge should be an 
association between an object that has a field named “fn”, say e.g. “p” and the 
destination object “d”. The circle at the center of the path corresponds to any number (≥ 
0) of possible inner objects (nodes) which are specified by the wildcard “/”.1

3.2 Context Exposure 

One of the most important features of pointcuts in languages such as AspectJ is the 
context exposure mechanism [12]. Context exposure in AspectJ permits to pass objects 
from a pointcut described by the dynamic pointcuts this, target or args to a 
pointcut’s header and then to an advice’s header. This decouples the join point selection 
from the advice and permits different pieces of advice to access join point properties in a 
unique way. As we mentioned before, some kinds of join point properties, e.g., signature 
patterns in AspectJ, cannot be exposed by the context exposure mechanism. 

Objects described within a path expression can be directly bound to a pointcut variable 
(and exposed in that way). Context exposure in the presence of path expressions works 
similar to context exposure in AspectJ. First, all object identifiers being used within a 
path expression are bound to the same identifiers declared within a pointcut’s header. 
Since a pointcut’s header already declares a dynamic type for objects described by a 
dynamic pointcut (corresponding to the definition of this, target or args) path 
expressions also permit to do so: If a pointcut header already specifies a dynamic type on 
an object declared within a path expression, it is allowed to leave out the type pattern 
within the object pattern. In case there is a type specified within the header as well as 
within the path expression, the combination of both type information is being used as the 
actual type. For example, if within the header a type A for variable x is defined (A 
subtypes Object) and within the path expression the type for x is declared to be B 
                                                           
1 The indirect relationship between object o to x and x to p corresponds to the corresponding visualization of 
Join Point Designation Diagrams [26, 25]. 



(whereby B subtypes A), the dynamic type is B. Corresponding, if within the header a 
type B for variable x is defined and within the path expression the type for x is declared 
to be A, the dynamic type is also B. 

c: Customer 

a: Address 

n: Name 

billTo shipTo 

name 
 

 
 
 
 
 
 

1. pointcut p1(Customer c, Address a): path(c - * -> a); 

2. pointcut p2(Customer c, Address a): path(c - billTo -> a); 

3. pointcut p3(Customer c): path(c - * -> *) && set(* *) && target(c); 
 

Figure 6: Different situations for context exposure. 

Figure 6 illustrates a number of path expressions and a corresponding object graph. In 
the pointcut p1, objects c and a in the path expression are exposed and made available 
for the selection and adaptation mechanisms. The number of matching paths is 2, both 
are from c to a and of length 1. The first path is via the field billTo and the other one 
via the field shipTo. Likewise, the path expression in pointcut p2 matches one path of 
length 1 from c to a via the field billTo. According to both pointcuts, objects c and a 
are exposed. Finally, there are three matching paths of length 1 according to the path 
expression pointcut in p3. These paths are: c – name -> n, c – billTo - > a, 
and c – shiptTo -> a, where only object c needs to be exposed. 

One interesting observation from the definition of pointcut p3 in the above example is 
that the variable c has been used twice: In the source of the path expression and in the 
target pointcut. This is not valid in AspectJ, however, in the presence of path 
expression pointcuts this is permitted since there is a means to unify all these occurances 
to refer to the same corresponding exposed object. 

3.3 Advice Execution, Parameter Binding and Ordering 

One consequence of path expressions is that it is possible (or rather the usual case) that a 
pointcut containing a path expression provides a number of different results as valid 
parameter bindings in the pointcut. 

Figure 7 illustrates such a situation. The pointcut pc selects all setter join points where 
the target object is an instance of Customer. Furthermore, it binds the changing 
customer object to the variable c and all member objects to the variable o. The customer 
refers to two objects (a Name instance and an Address instance) via three different 
paths: cust – name -> n, cust – billTo - > a, and cust – shiptTo -> a.  

However, only the distinct valid variable bindings in the pointcut are considered. Hence, 
in the above example, there are two valid bindings of the variables c and o: One binding 
(c=cust, o=n) and one binding (c=cust, o=a). 



Because of that, a new semantics for advice execution is necessary that differs widely 
from the current semantics of advice execution in AspectJ. According to the example 
above, each associated advice to the pointcut pc must run as many times as there are 
valid parameter bindings2. Therefore, an explicit ordering of pointcuts might become 
important and developers require means to specify the execution order of advice. 

cust: Customer 

a: Address 

n: Name 

billTo shipTo 

name 
 

 
 
 
 
 

         pointcut pc(Customer c, Object o):  
           path(c - * -> o) && set(* *) && target(c); 
 

            Parameter Bindings: (cust, a) and (cust,n)  

Figure 7: Multiple bindings of pointcut parameters. 

In our model, we have implemented an additional orderBy clause that can be associated 
with a pointcut in order to apply advice executions in a specific order. The orderBy 
clause has a target object and method name as a parameter. The corresponding method 
specifies how the parameter bindings are to be ordered. If no orderBy clause is 
specified, the parameter bindings are unordered. 

Developers have to specify an ordering method on their own similar to the method 
compare as specified in the J2SE in type Comparable. An ordering method is a method 
that has two parameters of type array of Object. Each array represents a single variable 
binding. The return type of the ordering method is boolean: The method returns true, if 
the first parameter binding should appear before the second one, otherwise the method 
returns false. 

  public boolean addressChanged(Object[] o1, Object[] o2) {  
    Address a1 = (Address) o1[1]; Address a2 = (Address) o2[1];  
    return a1.getPostCode() < a2.getPostCode(); 
  } 
 

  pointcut addressChanged(Person p, Address a):  
    set(* *) && target(a) && 
    && path(p -*-> Address a) orderBy(this.addressChanged);  

Figure 8: Use of orderBy in pointcuts. 

Figure 8 illustrates the use of an ordering clause. The clause orderBy specified at the 
end of pointcut addressChanged has this.addressChanged as parameter. Hence, 
there must be a method addressChanged defined in the surrounding type that has two 
parameters of type Object[]. Figure 8 illustrates a possible implementation of 
addressChanged. Within the body, the second element of o1 and o2 are assigned to a 
variable of type Address. Then, the postal codes of both address objects are compared 

                                                           
2 Such an approach of advice execution has been already proposed in other pointcut languages (cf. e.g. [24]). 



and the lesser postal codes are considered to appear first. Consequently, all multiple 
executions of advice referring to pointcut addressChanged will have parameter 
binding where the first bindings have smaller postal codes within their address objects 
than the latter ones. 

Exposed by AspectJ 

a 
*

1

a:Address 

 

o:Person

 
pl:PersistedList 

 

Exposed by PEP 
 
 
 
 

 pointcut changePerson(Address a, Object o, PersistedList pl): 
   set(* *) && target(a) && path(pl -*-> o -/-> a);  
 after(Address a, Object o, PersistedList pl): changePerson(a, o, pl) { 

    pl.changed(o); 

 }  

Figure 9: All relevant JPP’s are made accessible from the join point local context. 

The reason for providing such ordering schema is to give developers the ability to 
specify their own ordering rules based on the resulting parameter bindings in a more 
fine-grained manner. This is due to that the competing executions are on the same advice 
but not between different pieces of advice from different aspects. Moreover, each 
pointcut that includes a path expression may require its own ordering criteria. Within the 
associated ordering method, the developer can use the exposed objects to reach any other 
referenced object that she/he wants to use for ordering. Note that a single ordering 
method can be used by more than one pointcuts. 

3.4 Motivating Example Revisited 

Figure 9 shows how path expression pointcuts could be used to provide locality to the 
needed join point properties, which in turn, preserves the join point selection semantics. 
From the figure, any join point is selected if there is a field setting on the address object 
a that is a part of the person object, which is in turn accessible from a persisted list pl. 
Objects pl and o are exposed and bound by the path pointcut while the target pointcut 
exposes the address object a. 

Exposed by 
AspectJ 
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*

1

a:Address 

 

o:Person

 
pl:PersistedList 

 

Exposed by PEP

f:Friend
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Figure 10: Indirect relationship between o and a accessible by PEP. 

Note that the path expression pattern uses the wildcard “/” to indicate that there might 
be any number of intermediate objects between the person object o and the address 
object a. For example, consider the diagram in figure 10, where the person object is 



associated with the object f of type Friend that is, in turn, associated with the address 
object a. The path expression in the pointcut changePerson in figure 9 still holds in 
this case since object f is an inner object in the path between o and a. 

This solutions illustrates how path pointcuts provide access to the relevant non-local 
information to the join points. At the same time, the pointcut specifies the object 
relationships along the path from pl to a through o which exactly reflects the 
developer’s mental model of the corresponding join point selection. Moreover, the 
advice specifies only the message to the persisted list and does not contain any code 
representing parts of a join point selection. Hence, there is a strict separation of join 
point selection and adaptation in the example as desired by the underlying mental model. 

4 Related Work 

Path Expressions 
Path expressions, first introduced in [3], are used in the synchronization of operations on 
data objects. In other words, they specify how threads are allowed to perform a sequence 
of message sends on a given object. Path expressions are heavily used in object-oriented 
query languages such as EJB-QL [1] and [5, 27]. In our work, we studied the benefit of 
the application of path expression technique on AO systems and how it increases the 
expressiveness of pointcut languages. 

Expressive Pointcuts and Non-local Information 
In [21], the authors discuss the need for expressive pointcuts in order to increase the 
modularity. Their argument is based on a comparison between an object-oriented and an 
aspect-oriented solution for the observer pattern [6]. Their observation is that current 
pointcut languages are not sufficient with respect to absorbing changes. In their 
prototype language, ALPHA, pointcuts are Prolog queries over a database of a number 
of different semantic models of the program. This meets with our work that we, too, 
make the object graph accessible during the execution of the program. ALPHA requires 
a significant large database since it may store almost all program models. In contrast, 
path expression pointcuts needs only the heap to be stored. 

The need for dynamic information non-local to the join points is stated also in [28, 4]. 
Stateful aspects are aspects that define triggering conditions based on finite state 
transitions. Those conditions are used by the advice to trigger their executions on a 
protocol sequence of join points. However, the kind of join point property needed here is 
similar to call stack information, which differs from “referenced by” information, which 
represents relationships between objects rather than protocol or sequences of events. 
Some other works already show the need for more pointcut constructs based on non-
local join point properties. For example, data flow pointcuts [19], solved the problem of 
non-locality of data flow information join point property.  



Adaptive Programming 
In adaptive programming (AP), the program changes its behavior based on the current 
state of its environment [7]. DJ [20] is a pure Java library that provides class graphs, 
traversal strategies and adaptive visitors to traverse objects of an application. The 
traversal strategy is a path expression where traversals are specified using the “from-to” 
expression and when needed “through and bypassing”. In contrast to path expression 
pointcuts, AP is not applied on pointcut language constructs. 

Strategic Programming 
Strategic Programming promises to provide the programmer with full traversal control  
[17]. SP traversals resulted from applying traversal schemes with basic data processing 
computations as arguments. To define object-oriented strategies, the strategic 
programmer has to modify the visitor objects and extend them by his/her strategy. 
Beside this overhead, the strategies are applied to tree-shaped data, and complying the 
object structures, which are mostly graph-based, needs hard compromises. 
StrategoAspect [13], is being developed to combine AO and SP. 

Association Aspects 
Sakurai et. al. [24] introduce a new pointcut designator to AspectJ, namely associate, 
which is used to associate extended per-object aspect instances to a group of objects. 
These associations are used at runtime to implement crosscutting concerns that have 
stateful behavior related to a particular group of objects, however, the associations 
should be determined upfront which is opposite to the intention of path expression 
pointcuts. Moreover, the authors did not specify the ordering of the multiple executions 
of the advice in the associated aspect instances. 

Morphing Aspects 
There are other attempts to provide abstraction on object relationships for the purpose of 
join point selection. Morphing aspects [10] are proposed to solve the problem 
unnecessary join point checks caused by complete weaving feature of current aspect-
oriented languages. Also, specifying join points based on non-local object relationships 
is presented in [9]. These works strength our argument that pointcut languages must 
provide a means to quantify on join points based on object relationships, however, these 
solutions make use of reflective features of the underlying programming languages and 
not by means of pointcut constructs. 

5 Discussion 

While we consider path expressions to be good abstractions for pointcut languages in 
aspect-oriented systems there are still a number of issues that need to be discussed in 
more detail. 



First of all, there seems to be some agreement in the aspect-oriented community that 
there is a need to guarantee the termination of the evaluation of pointcuts. Hence, each 
new pointcut language construct should be checked whether it fulfills this characteristic. 
Path expression pointcut fulfills this requirement due to how variable binding is defined. 
A typical problem of non-determination is the existence of cycles in the path that is 
compared against the path expression. Figure 11 illustrate an object graph that has a 
cycle between the objects o and e. Consequently, there is an infinite number of paths in 
this graph. However, the defined variable binding as explained in section 3.3 requires 
only checking all possible bindings for the defined variables within the path expression. 
This guarantees the termination of a path expression pointcut for a given path. Figure 11 
contains an exemplary application of path expression pointcut with the variable x, y and 
z. Since variable x is bound to the actual type Manager, all resulting bindings have the 
object d bound to the variable x. For the variables y and z, all combinations of o and e 
are valid variable bindings. Hence, the variable bindings of this pointcut are finite, 
although there is an infinite number of paths. 

 
 
 

r 
 

pointcut pc(Manager x, Object y, Object z): path(x -/-> y -/-> z)… 
 

Parameter bindings: (x=d, y=o, z=e), (x=d, y=o, z=o), (x=d, y=e, z=o),  
 and (x=d, y=e, z=e) 

o: Office e: Employee 

  
d: Manager 

 

 

Figure 11: Cycles in object graphs. 

However, since the here proposed approach also permits developers to specify an 
ordering of variable bindings using ordinary methods of the base language, and since the 
base language is Turing-complete, the definitions of ordering methods do not guarantee 
the termination characteristic. Although this could be considered to be a weakness in the 
approach, we still rely on this approach for two reasons. First, defining an ordering 
method can be considered rather as a trivial task. Hence, we do not think that the 
developer is overstrained with a definition of a terminating ordering method. Second, 
until now, we were not able to determine common abstractions of what ordering schemes 
are typically desired by the developer (like for example forward or backward rules like 
the one used in [18]). Consequently, we did not provide special language constructs for 
this task. 

One further issue with path expression pointcuts is that their expressiveness is probably 
more restricted than needed in order to guarantee the termination. However, our current 
experiences with path expression pointcuts did not reveal any examples, where a more 
expressive construct for reasoning on the object graph is required.  

One typical problem with the evaluation of path expressions is the performance problem. 
In general, a path expression pointcut potentially requires the traversal of a large object 
graph which is a time consuming task. In our current implementation of path 
expressions, we do not provide any static analysis in order to exclude already paths that 



can never match a given path expression. A first possible approach could be to utilize 
static type information of type hierarchies in order to reduce the number of potentially 
matching paths. This would correspond to the static analysis techniques for join point 
shadows as applied in AspectJ (cf. [12]). 

How far such problems become relevant and how far the potential solutions are feasible 
for path expressions depend on how path expressions will be used. The main problem 
here is to determine how often and in what situations path expressions will be used in 
order to approximate the caused runtime overhead.  Unfortunately, we have until now no 
overview how the existence of path expressions potentially influences the specification 
of aspects in the future. Hence, we cannot come until now to any conclusion about the 
performance problems. 

6 Conclusion 

This paper focuses on the locality issues of join point properties that are based on object 
relationships in aspect-oriented systems. We illustrated the importance for the non-local 
properties to be accessible from join points execution context for selecting as well as 
adapting those join points. We used an example from the object persistence domain to 
show how current aspect-oriented approaches fail to make relevant non-local 
information accessible from the aspects by means of the available pointcut constructs. 

As a solution to this problem, we proposed path expression pointcuts that selects join 
points based on given path expression patterns. Path pointcuts select the join points when 
there exists at least one path that matches the given path expression pattern. Developers 
are able to use the proposed pointcut to make non-local relevant information accessible 
from the pointcuts and the associated advice declarations. This is achieved by the help of 
the context exposure mechanism of the path expression pointcuts. 

We discussed the possible technical issues that should be addressed carefully in any 
implementation of path expression pointcuts and we presented some possible solutions 
to those limitations. These issues are going to be our main focus for the future work. 
Another important work direction that we are concerning also is completing the formal 
semantics of the path expression pointcut. 

Although we are currently only aware of a number of examples how path expressions 
help specifying aspects, we are not completely aware of the impact path expressions 
might have on aspect-oriented systems in the future. However, our current studies have 
shown that path expressions are good abstractions that permit developers to specify their 
mental model of join point selection and join point adaptation in a more adequate way 
than provided by current aspect-oriented systems. 
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