
Path Expression Pointcuts: Abstracting over Non-Local
Object Relationships in Aspect-Oriented Languages

Mohammed Al-Mansari, Stefan Hanenberg

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen, Campus Essen

Schützenbahn 70, 45117 Essen
Mohammed.Al-Mansari@icb.uni-due.de

Stefan.Hanenberg@icb.uni-due.de

Abstract: In aspect-oriented programming, aspects require access to join point
information for selecting join points within pointcuts as well as for specifying
aspect-specific behavior at such join points within advice. Unfortunately, aspect-
oriented systems typically provide only local information about join points, i.e.
information that is directly accessible from the execution context at the
corresponding join points like the target object within a method call. However,
there are many situations where the needed information is not directly available
and relies on object information that is non-local concerning the execution context
at the corresponding join points. As a consequence, developers are forced to
specify a number of work-arounds – pointcuts and advice that neither reflect on the
conceptual join point selection nor purely on the conceptual aspect behavior. In
this paper, we show recurring situations in which “local” join point information is
not sufficient for specifying aspects. We propose so called “path expression
pointcuts” that permit to abstract over (non-local) object-relationships within
pointcuts – and show that this overcomes the problem.

1 Introduction

One of the main contributions of aspect-oriented programming (AOP, [15]) is the notion
of join points. Join points are principled points in the execution of a program [14] that
can be selected by so-called pointcuts and adapted by so-called advice. Pointcuts specify
selection criteria on join points based on available join point properties (cf. [11, 8]) –
join point information that is provided by the underlying aspect-oriented system. Based
on the selection of a join point, a corresponding advice often requires access to some
properties of this join point in order to perform some calculations on it. Thereto, aspect-
oriented languages typically provide a mechanism called context exposure which
transfers objects addressed by pointcuts to the advice by binding such objects to
explicitly defined variables within the advice (see [12]). However, not all join point
properties can be exposed by using context exposure mechanism. For example, in
AspectJ signature patterns cannot be exposed to the advice.

There are different kinds of join point properties [8]. For example, systems like AspectJ
[14] provide for method call join points properties like target object, method name and
actual parameters. These join point properties have in common that they can be directly
derived from the local execution context of the corresponding expression representing
the method call. Consequently, because of this local availability we call corresponding
properties local join point properties [11, 8]. Since access to local join point properties
can be relatively easily implemented aspect-oriented systems typically provide a large
variety of such local properties.

However, aspect-oriented systems are quite miserly with properties that cannot directly
be derived from the local execution context of join points. We call such properties non-
local properties [11, 8]. One example of such a non-local property is the call-stack
information. While in Smalltalk this information is locally available, it is a non-local
information in other programming languages such as Java and C++. In the later case, the
call-stack information is utilized for example in AspectJ by means of the cflow pointcut.
With the aid of cflow, it is possible to specify criteria on the call stack like, for example,
the occurrence of a certain actual type as target of a method call on the stack. In contrast
to local properties, the provision of non-local join point properties is typically much
more complex: The aspect-oriented system’s task is to collect some data at runtime in
order to use it at a later point in time for evaluating pointcuts. Due to this additional
effort, non-local properties are rather rarely provided. In fact, most aspect-oriented
systems provide only call-stack information as non-local join point properties.

One intention of aspect-oriented systems is to provide pointcut languages that permit the
developer to specify expressive pointcuts [21] where the join point selections correspond
to the developer’s mental model [25]. This also implies, that the available join point
properties provided by an aspect-oriented system must suffice the developers’ needs.

However, it turns out that there are situations where it is desirable to have constructs
within the pointcut language that rely on non-local join point properties. Especially,
there is a large number of situations where pointcuts are needed that refer to object-
relationships that cannot be calculated based on a join point’s local context. As a
consequence, developers cannot directly specify the mental model of join point
selection. Rather, they are forced to implement a number of work-arounds that tend not
only to be cumbersome and error prone, but also to mix the semantics of the join point
selection with the advice code.

This paper addresses the problem of pointcuts that refer to non-local join point properties
relying on object-relationships. Thereto, the problem is explained in more detail by an
example. To overcome this problem, we propose a new language construct (path
expression pointcuts) that permits to specify constraints on the object graph.

The rest of the paper is organized as follows. In section 2, we illustrate the problem by
means of an example. We describe the concept of path expression pointcut in section 3
and present its semantics. Then, we show how this new construct could be used to solve
the motivating problem. Section 4 discusses some related work. After some discussion
presented in section 5, we conclude the paper in section 6.

2 Motivation

The motivating example comes from the domain of object persistency. Our intention is
to provide object persistency as an ad-hoc functionality similar to the idea of
spontaneous containers [22]. The idea is to provide a class PersistedList whose
instances persist all contained elements. The elements that are to be added, do not need
to be prepared for becoming persistent, i.e. persistency is not preplanned for the objects
added to the list.

items

1

* AdHocPersistStorage

PersistedList

changed(Object o)

PersonAddress

Object

Figure 1: UML design for the problem structure.

Figure 1 illustrates an extraction from a class hierarchy making use of a persistent list. A
PersistedList has a uni-directional one-to-many relationship to Object which is the
system’s root class. Furthermore, there is a class Person (extending Object) in the
system that might be potentially added to a PersistedList. Each person object has an
association to an Address object.

From the aspect-oriented point of view, it is desirable to write an aspect that handles the
persistency issue for PersistedList. Hence, it is the aspect’s task to notify the
corresponding PersistedList whenever the state of one of its contained objects
changes to ensure that the new state is stored in the persistent storage.

a

*

c:PostCodeConverter

setPostCode()
Local join

point
context

Relevant non-local context

1
a:Address

p:Person

l:PersistedList

Figure 2: Person’s postCode being changed by PostCodeConverter client.

Figure 2 describes a possible collaboration of objects from the previous class definitions.
Furthermore, there is a PostCodeConverter object that changes for some reasons the
postal code of person objects. This set operation represents the join point at which the
persistedList must be notified that the owning person object has changed. From this
perspective, it is desirable to specify a pointcut “state change of an object owned by an
object within a persisted list” which exposes the owning object (the person) and the
persisted list to an advice. Then, the advice sends the persisted list a message telling, that
the person object has changed.

In Figure 2, there are two regions of relevant context to the change join point. The left
area contains local information of the join point. This area contains the context that is
provided by current AO systems, e.g., in AspectJ, this and target pointcuts are used
to expose the objects c and a respectively. The right area represents the relevant non-
local join point context. The non-local property in this case is the “referencing” objects,
that is the corresponding persistent list l and the person p. The person object which
owns the address a being changed should be known because it needs to be
communicated to the persisted list. Also, the list itself must be accessed since it is the
receiver of the message telling that the person has changed.

AspectJ provides only control flow information as non-local properties. Hence, neither
the person object nor the persisted list object can be considered for join point selection or
for join point adaptation in the example. Hence, it is not directly possible to express the
underlying conceptual selection and adaptation in terms of pointcut and advice. Instead,
the developer needs to implement some workaround for it.

The code in Figure 3 illustrates one possible workaround where the aspect
PersistedListsAspect collects all persisted lists as soon as they are instantiated
(pointcut persistentList and the corresponding advice). Furthermore, whenever an
object in the application changes its state (pointcut stateChange) the corresponding
advice traverses all persistent lists in order to check whether the changing object is
reachable from a persistent list. Such code relies on the introspective facilities of Java. In
case the changed object is reachable, the aspect sends a message changed to the
corresponding list with the owning object as a parameter.

public aspect PersistListsAspect {
 WeakHashMap map = new WeakHashMap();
 // storing all persistedLists into a local data structure
 pointcut persistentLists(PersistedList list):
 execution(new(..)) && target(list);
 after returning(PersistedList list): persistentLists (list) {
 map.put(list, list);
 }

 pointcut stateChange(Object o): set(*.*) && target(o);

 after returning(Object o): stateChange(o)
 { ...
 traverse all lists to determine whether o is referenced (directly or indirectly) by a persisted list
 in such a case determine the object owning the changing object and send PersistedList a message
 changed(owningObject)
 ... }
}

Figure 3: AspectJ solution - exposing non-local context by additional code.

Although this solution is technically correct, it suffers from a serious problem: Neither
the pointcut nor the advice represents the mental model underlying the join point
selection. The join points the developer is interested in are the state changes. However,
the pointcut stateChange does not reflect on the idea that only those join points should
be selected where the changing object is reachable from a persistent list. In fact, this
selection logic is specified within the corresponding advice itself – the separation of join

point selection and join point adaptation is no longer given. Furthermore, the pointcut
persistentLists and the corresponding advice are not directly related to the pointcut
stateChange. Instead, they are only responsible for providing the corresponding data
structure that can be used within the advice belonging to stateChange. Consequently,
understanding and maintaining the aspect is not that easy, because the mental model of
join point selection and adaptation (which conceptually just consists of a single pointcut
and a single advice) is hidden by its implementation.

As illustrated, the join point selection mechanism requires the availability of the join
point property “referenced by a persisted list” at every state change join point of a
person object. Unfortunately, this property could not be derived from the local
information of those join points, and as a consequence, it could not be used for join point
selection. This is due to the fact that in current pointcut languages the context exposed is
mostly local. The only exception is the cflow pointcut in AspectJ that provides non-
local information about call stacks. Because of this restriction to local join point
properties, aspect-developers are forced to specify pointcuts and advice that do no longer
reflect on the conceptual model they have in mind which makes it hard to understand
and maintain the aspect.

3 Path Expression Pointcuts

This section introduces a proposal of an extension to current pointcut languages. We
utilize the well-known path expression technique in a new pointcut construct called path
expression pointcuts that permits to specify constraints on the object graph. Accordingly,
developers can abstract over objects, the actual types of these objects and their
relationships. Another contribution of the proposal is the adapted semantics of context
exposure and advice execution mechanisms in the presence of path expressions. We
implemented path expression pointcuts in our prototype language called “PurityA” [23].
Although, we use AspectJ in our examples for illustrative purposes.

Section 3.1 discusses the syntax and the semantics of the path pointcut. In section 3.2 we
show how this new pointcut relates to context exposure in a language like AspectJ. In
section 3.3 we explain how an adapted advice execution mechanism based on parameter
bindings and the ordering of those executions. Finally, in section 3.4 we revisit the
motivating example showing how path expression pointcuts solve the problem.

3.1 Syntax and Semantic

Path expressions [3], are a well-known technique used for synchronization of operation
calls on data objects. They specify how threads are allowed to perform a sequence of
message sends on a given object. We utilize the technique in this work such that a path
expression is applied to object paths in the object graph.

The path pointcut picks out only those join points where a path described by a
PathExpressionPattern from one object to another object exists in the object graph.
Its general form is path(PathExpressionPattern).

PathExpressionPattern ::= (ObjectPattern "—"

 FieldPattern "->")*
 ObjectPattern.

ObjectPattern ::= (TypePattern Identifier) |

 (Identifier).

FieldPattern ::= IdPattern | "/".

IdPattern ::= ("*" [IdPattern]) |

 (Identifier "*" [IdPattern]).

TypePattern ::= definition of type patterns according to AspectJ syntax

Identifier ::= definition of Identifiers according to Java syntax

Figure 4: PathExpressionPattern syntax.

Figure 4 depicts the syntax of PathExpressionPattern. A pattern consists of a list
of object patterns and field patterns separated by the tokens “—“ and “->”. According to
the syntax of AspectJ a FieldPattern might include lexical abstractions, i.e. it permits
to abstract from concrete names using the wildcard “*”. Furthermore, a field pattern can
consist only of the token “/”. The path expression pointcut can be directly added to the
AspectJ syntax by declaring path expressions as pointcuts. Consequently, this permits to
compose path expressions using the operators “&&“,“||”, and “!”.

A path expression describes object paths in the (directed) object graph in an application
from a source object to a target object passing a number of intermediate objects.
Furthermore, the fields representing the object relationships can be specified within the
path expression.

Each participating object within a path is described in terms of an object pattern which
specifies the runtime type of an object and declares a name for the object that can be
later used for the purpose of context exposure (which will be explained in section 3.2).
According to AspectJ, it is possible to specify a lexical abstraction over type names
using the wildcards “*” and “..” (cf. [2, 16]).

The field pattern between an object o1 and an object o2 describes the fieldname over
which o2 must be accessible from o1. For example, a path pattern “o1 – f1 -> o2”
describes a selection criterion where object o2 must be accessible from object o1 via the
field named f1. Likewise to type patterns, field patterns also provide lexical abstractions
via the wildcard “*”.

A special construct for field patterns is the operator “/”. This operator permits to specify
an indirect relationship between an object o1 and o2. For example, a path pattern “o1 -
/ -> o2” describes a selection criterion where object o2 must be reachable from object
o1 over a path of any length.

path(C1 s - f1 -> * - / -> * - fn -> Cn d);

s: C1
 f1

 o:C2

x:Cx

p:Cp

d: Cn

fn

Dynamic Types

Figure 5: Exemplary path expression and corresponding matching object structure.

An exemplary path expression pointcut is illustrated in Figure 5. This pointcut selects
all join points where there exists at least one path in the object graph from the source
object “s” of a dynamic type “C1” to the destination object “d” of dynamic type “Cn”.
The first edge in each path must be an association between “s” and the object
represented by the field “f1” in “s”, say e.g. “o”. Similarly, the last edge should be an
association between an object that has a field named “fn”, say e.g. “p” and the
destination object “d”. The circle at the center of the path corresponds to any number (≥
0) of possible inner objects (nodes) which are specified by the wildcard “/”.1

3.2 Context Exposure

One of the most important features of pointcuts in languages such as AspectJ is the
context exposure mechanism [12]. Context exposure in AspectJ permits to pass objects
from a pointcut described by the dynamic pointcuts this, target or args to a
pointcut’s header and then to an advice’s header. This decouples the join point selection
from the advice and permits different pieces of advice to access join point properties in a
unique way. As we mentioned before, some kinds of join point properties, e.g., signature
patterns in AspectJ, cannot be exposed by the context exposure mechanism.

Objects described within a path expression can be directly bound to a pointcut variable
(and exposed in that way). Context exposure in the presence of path expressions works
similar to context exposure in AspectJ. First, all object identifiers being used within a
path expression are bound to the same identifiers declared within a pointcut’s header.
Since a pointcut’s header already declares a dynamic type for objects described by a
dynamic pointcut (corresponding to the definition of this, target or args) path
expressions also permit to do so: If a pointcut header already specifies a dynamic type on
an object declared within a path expression, it is allowed to leave out the type pattern
within the object pattern. In case there is a type specified within the header as well as
within the path expression, the combination of both type information is being used as the
actual type. For example, if within the header a type A for variable x is defined (A
subtypes Object) and within the path expression the type for x is declared to be B

1 The indirect relationship between object o to x and x to p corresponds to the corresponding visualization of
Join Point Designation Diagrams [26, 25].

(whereby B subtypes A), the dynamic type is B. Corresponding, if within the header a
type B for variable x is defined and within the path expression the type for x is declared
to be A, the dynamic type is also B.

c: Customer

a: Address

n: Name

billTo shipTo

name

1. pointcut p1(Customer c, Address a): path(c - * -> a);

2. pointcut p2(Customer c, Address a): path(c - billTo -> a);

3. pointcut p3(Customer c): path(c - * -> *) && set(* *) && target(c);

Figure 6: Different situations for context exposure.

Figure 6 illustrates a number of path expressions and a corresponding object graph. In
the pointcut p1, objects c and a in the path expression are exposed and made available
for the selection and adaptation mechanisms. The number of matching paths is 2, both
are from c to a and of length 1. The first path is via the field billTo and the other one
via the field shipTo. Likewise, the path expression in pointcut p2 matches one path of
length 1 from c to a via the field billTo. According to both pointcuts, objects c and a
are exposed. Finally, there are three matching paths of length 1 according to the path
expression pointcut in p3. These paths are: c – name -> n, c – billTo - > a,
and c – shiptTo -> a, where only object c needs to be exposed.

One interesting observation from the definition of pointcut p3 in the above example is
that the variable c has been used twice: In the source of the path expression and in the
target pointcut. This is not valid in AspectJ, however, in the presence of path
expression pointcuts this is permitted since there is a means to unify all these occurances
to refer to the same corresponding exposed object.

3.3 Advice Execution, Parameter Binding and Ordering

One consequence of path expressions is that it is possible (or rather the usual case) that a
pointcut containing a path expression provides a number of different results as valid
parameter bindings in the pointcut.

Figure 7 illustrates such a situation. The pointcut pc selects all setter join points where
the target object is an instance of Customer. Furthermore, it binds the changing
customer object to the variable c and all member objects to the variable o. The customer
refers to two objects (a Name instance and an Address instance) via three different
paths: cust – name -> n, cust – billTo - > a, and cust – shiptTo -> a.

However, only the distinct valid variable bindings in the pointcut are considered. Hence,
in the above example, there are two valid bindings of the variables c and o: One binding
(c=cust, o=n) and one binding (c=cust, o=a).

Because of that, a new semantics for advice execution is necessary that differs widely
from the current semantics of advice execution in AspectJ. According to the example
above, each associated advice to the pointcut pc must run as many times as there are
valid parameter bindings2. Therefore, an explicit ordering of pointcuts might become
important and developers require means to specify the execution order of advice.

cust: Customer

a: Address

n: Name

billTo shipTo

name

 pointcut pc(Customer c, Object o):
 path(c - * -> o) && set(* *) && target(c);

 Parameter Bindings: (cust, a) and (cust,n)

Figure 7: Multiple bindings of pointcut parameters.

In our model, we have implemented an additional orderBy clause that can be associated
with a pointcut in order to apply advice executions in a specific order. The orderBy
clause has a target object and method name as a parameter. The corresponding method
specifies how the parameter bindings are to be ordered. If no orderBy clause is
specified, the parameter bindings are unordered.

Developers have to specify an ordering method on their own similar to the method
compare as specified in the J2SE in type Comparable. An ordering method is a method
that has two parameters of type array of Object. Each array represents a single variable
binding. The return type of the ordering method is boolean: The method returns true, if
the first parameter binding should appear before the second one, otherwise the method
returns false.

 public boolean addressChanged(Object[] o1, Object[] o2) {
 Address a1 = (Address) o1[1]; Address a2 = (Address) o2[1];
 return a1.getPostCode() < a2.getPostCode();
 }

 pointcut addressChanged(Person p, Address a):
 set(* *) && target(a) &&
 && path(p -*-> Address a) orderBy(this.addressChanged);

Figure 8: Use of orderBy in pointcuts.

Figure 8 illustrates the use of an ordering clause. The clause orderBy specified at the
end of pointcut addressChanged has this.addressChanged as parameter. Hence,
there must be a method addressChanged defined in the surrounding type that has two
parameters of type Object[]. Figure 8 illustrates a possible implementation of
addressChanged. Within the body, the second element of o1 and o2 are assigned to a
variable of type Address. Then, the postal codes of both address objects are compared

2 Such an approach of advice execution has been already proposed in other pointcut languages (cf. e.g. [24]).

and the lesser postal codes are considered to appear first. Consequently, all multiple
executions of advice referring to pointcut addressChanged will have parameter
binding where the first bindings have smaller postal codes within their address objects
than the latter ones.

Exposed by AspectJ

a
*

1

a:Address

o:Person

pl:PersistedList

Exposed by PEP

 pointcut changePerson(Address a, Object o, PersistedList pl):
 set(* *) && target(a) && path(pl -*-> o -/-> a);
 after(Address a, Object o, PersistedList pl): changePerson(a, o, pl) {

 pl.changed(o);

 }

Figure 9: All relevant JPP’s are made accessible from the join point local context.

The reason for providing such ordering schema is to give developers the ability to
specify their own ordering rules based on the resulting parameter bindings in a more
fine-grained manner. This is due to that the competing executions are on the same advice
but not between different pieces of advice from different aspects. Moreover, each
pointcut that includes a path expression may require its own ordering criteria. Within the
associated ordering method, the developer can use the exposed objects to reach any other
referenced object that she/he wants to use for ordering. Note that a single ordering
method can be used by more than one pointcuts.

3.4 Motivating Example Revisited

Figure 9 shows how path expression pointcuts could be used to provide locality to the
needed join point properties, which in turn, preserves the join point selection semantics.
From the figure, any join point is selected if there is a field setting on the address object
a that is a part of the person object, which is in turn accessible from a persisted list pl.
Objects pl and o are exposed and bound by the path pointcut while the target pointcut
exposes the address object a.

Exposed by
AspectJ

a
*

1

a:Address

o:Person

pl:PersistedList

Exposed by PEP

f:Friend

f

Figure 10: Indirect relationship between o and a accessible by PEP.

Note that the path expression pattern uses the wildcard “/” to indicate that there might
be any number of intermediate objects between the person object o and the address
object a. For example, consider the diagram in figure 10, where the person object is

associated with the object f of type Friend that is, in turn, associated with the address
object a. The path expression in the pointcut changePerson in figure 9 still holds in
this case since object f is an inner object in the path between o and a.

This solutions illustrates how path pointcuts provide access to the relevant non-local
information to the join points. At the same time, the pointcut specifies the object
relationships along the path from pl to a through o which exactly reflects the
developer’s mental model of the corresponding join point selection. Moreover, the
advice specifies only the message to the persisted list and does not contain any code
representing parts of a join point selection. Hence, there is a strict separation of join
point selection and adaptation in the example as desired by the underlying mental model.

4 Related Work

Path Expressions
Path expressions, first introduced in [3], are used in the synchronization of operations on
data objects. In other words, they specify how threads are allowed to perform a sequence
of message sends on a given object. Path expressions are heavily used in object-oriented
query languages such as EJB-QL [1] and [5, 27]. In our work, we studied the benefit of
the application of path expression technique on AO systems and how it increases the
expressiveness of pointcut languages.

Expressive Pointcuts and Non-local Information
In [21], the authors discuss the need for expressive pointcuts in order to increase the
modularity. Their argument is based on a comparison between an object-oriented and an
aspect-oriented solution for the observer pattern [6]. Their observation is that current
pointcut languages are not sufficient with respect to absorbing changes. In their
prototype language, ALPHA, pointcuts are Prolog queries over a database of a number
of different semantic models of the program. This meets with our work that we, too,
make the object graph accessible during the execution of the program. ALPHA requires
a significant large database since it may store almost all program models. In contrast,
path expression pointcuts needs only the heap to be stored.

The need for dynamic information non-local to the join points is stated also in [28, 4].
Stateful aspects are aspects that define triggering conditions based on finite state
transitions. Those conditions are used by the advice to trigger their executions on a
protocol sequence of join points. However, the kind of join point property needed here is
similar to call stack information, which differs from “referenced by” information, which
represents relationships between objects rather than protocol or sequences of events.
Some other works already show the need for more pointcut constructs based on non-
local join point properties. For example, data flow pointcuts [19], solved the problem of
non-locality of data flow information join point property.

Adaptive Programming
In adaptive programming (AP), the program changes its behavior based on the current
state of its environment [7]. DJ [20] is a pure Java library that provides class graphs,
traversal strategies and adaptive visitors to traverse objects of an application. The
traversal strategy is a path expression where traversals are specified using the “from-to”
expression and when needed “through and bypassing”. In contrast to path expression
pointcuts, AP is not applied on pointcut language constructs.

Strategic Programming
Strategic Programming promises to provide the programmer with full traversal control
[17]. SP traversals resulted from applying traversal schemes with basic data processing
computations as arguments. To define object-oriented strategies, the strategic
programmer has to modify the visitor objects and extend them by his/her strategy.
Beside this overhead, the strategies are applied to tree-shaped data, and complying the
object structures, which are mostly graph-based, needs hard compromises.
StrategoAspect [13], is being developed to combine AO and SP.

Association Aspects
Sakurai et. al. [24] introduce a new pointcut designator to AspectJ, namely associate,
which is used to associate extended per-object aspect instances to a group of objects.
These associations are used at runtime to implement crosscutting concerns that have
stateful behavior related to a particular group of objects, however, the associations
should be determined upfront which is opposite to the intention of path expression
pointcuts. Moreover, the authors did not specify the ordering of the multiple executions
of the advice in the associated aspect instances.

Morphing Aspects
There are other attempts to provide abstraction on object relationships for the purpose of
join point selection. Morphing aspects [10] are proposed to solve the problem
unnecessary join point checks caused by complete weaving feature of current aspect-
oriented languages. Also, specifying join points based on non-local object relationships
is presented in [9]. These works strength our argument that pointcut languages must
provide a means to quantify on join points based on object relationships, however, these
solutions make use of reflective features of the underlying programming languages and
not by means of pointcut constructs.

5 Discussion

While we consider path expressions to be good abstractions for pointcut languages in
aspect-oriented systems there are still a number of issues that need to be discussed in
more detail.

First of all, there seems to be some agreement in the aspect-oriented community that
there is a need to guarantee the termination of the evaluation of pointcuts. Hence, each
new pointcut language construct should be checked whether it fulfills this characteristic.
Path expression pointcut fulfills this requirement due to how variable binding is defined.
A typical problem of non-determination is the existence of cycles in the path that is
compared against the path expression. Figure 11 illustrate an object graph that has a
cycle between the objects o and e. Consequently, there is an infinite number of paths in
this graph. However, the defined variable binding as explained in section 3.3 requires
only checking all possible bindings for the defined variables within the path expression.
This guarantees the termination of a path expression pointcut for a given path. Figure 11
contains an exemplary application of path expression pointcut with the variable x, y and
z. Since variable x is bound to the actual type Manager, all resulting bindings have the
object d bound to the variable x. For the variables y and z, all combinations of o and e
are valid variable bindings. Hence, the variable bindings of this pointcut are finite,
although there is an infinite number of paths.

r

pointcut pc(Manager x, Object y, Object z): path(x -/-> y -/-> z)…

Parameter bindings: (x=d, y=o, z=e), (x=d, y=o, z=o), (x=d, y=e, z=o),
 and (x=d, y=e, z=e)

o: Office e: Employee

d: Manager

Figure 11: Cycles in object graphs.

However, since the here proposed approach also permits developers to specify an
ordering of variable bindings using ordinary methods of the base language, and since the
base language is Turing-complete, the definitions of ordering methods do not guarantee
the termination characteristic. Although this could be considered to be a weakness in the
approach, we still rely on this approach for two reasons. First, defining an ordering
method can be considered rather as a trivial task. Hence, we do not think that the
developer is overstrained with a definition of a terminating ordering method. Second,
until now, we were not able to determine common abstractions of what ordering schemes
are typically desired by the developer (like for example forward or backward rules like
the one used in [18]). Consequently, we did not provide special language constructs for
this task.

One further issue with path expression pointcuts is that their expressiveness is probably
more restricted than needed in order to guarantee the termination. However, our current
experiences with path expression pointcuts did not reveal any examples, where a more
expressive construct for reasoning on the object graph is required.

One typical problem with the evaluation of path expressions is the performance problem.
In general, a path expression pointcut potentially requires the traversal of a large object
graph which is a time consuming task. In our current implementation of path
expressions, we do not provide any static analysis in order to exclude already paths that

can never match a given path expression. A first possible approach could be to utilize
static type information of type hierarchies in order to reduce the number of potentially
matching paths. This would correspond to the static analysis techniques for join point
shadows as applied in AspectJ (cf. [12]).

How far such problems become relevant and how far the potential solutions are feasible
for path expressions depend on how path expressions will be used. The main problem
here is to determine how often and in what situations path expressions will be used in
order to approximate the caused runtime overhead. Unfortunately, we have until now no
overview how the existence of path expressions potentially influences the specification
of aspects in the future. Hence, we cannot come until now to any conclusion about the
performance problems.

6 Conclusion

This paper focuses on the locality issues of join point properties that are based on object
relationships in aspect-oriented systems. We illustrated the importance for the non-local
properties to be accessible from join points execution context for selecting as well as
adapting those join points. We used an example from the object persistence domain to
show how current aspect-oriented approaches fail to make relevant non-local
information accessible from the aspects by means of the available pointcut constructs.

As a solution to this problem, we proposed path expression pointcuts that selects join
points based on given path expression patterns. Path pointcuts select the join points when
there exists at least one path that matches the given path expression pattern. Developers
are able to use the proposed pointcut to make non-local relevant information accessible
from the pointcuts and the associated advice declarations. This is achieved by the help of
the context exposure mechanism of the path expression pointcuts.

We discussed the possible technical issues that should be addressed carefully in any
implementation of path expression pointcuts and we presented some possible solutions
to those limitations. These issues are going to be our main focus for the future work.
Another important work direction that we are concerning also is completing the formal
semantics of the path expression pointcut.

Although we are currently only aware of a number of examples how path expressions
help specifying aspects, we are not completely aware of the impact path expressions
might have on aspect-oriented systems in the future. However, our current studies have
shown that path expressions are good abstractions that permit developers to specify their
mental model of join point selection and join point adaptation in a more adequate way
than provided by current aspect-oriented systems.

References

[1] Adatia, R. et al.: Professional EJB – Wrox Press, ISBN 1-861005-08-3, 2001.

[2] AspectJ homepage: http://eclipse/org/aspectj.
[3] Campbell, R.; Habermann, A.: The Specification of Process Synchronization by Path

Expressions. Lecture Notes in Computer Science (Editor G. Goos and J. IIartmanls), pp. 89-
102, V16, Springer Verlag, 1974.

[4] Douence, R.; Fradet, P.; Südholt, M.: Composition, Reuse and Interaction Analysis of
Stateful Aspects. In Proceedings. of AOSD’04: 141-150, Lancaster, UK, March 2004.

[5] Frohn, J.; Lausen, G.; Uphoff, H.: Access to Objects by Path Expressions and Rules. I Proc.
Of VLDB’94, pages 273-284; Santiago, Chile, 1994.

[6] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns. AddisonWesley, 1995.
[7] Gouda, M. G.; Herman, T.: Adaptive programming. IEEE Transactions on Software

Engineering, vol. 17, no. 9, pages 911-921, September 1991.
[8] Hanenberg, S.: Design Dimensions of Aspect-Oriented Systems. PhD dissertation. Duisburg-

Essen University, January 2006.
[9] Hanenberg, S.; Hirschfeld, R.; Unland, R.: Aspect Weaving: Using the Base Language's

Introspective Facilities to Determine Join Points. Workshop on Advancing the State-of-the-
Art in Runtime Inspection at ECOOP, Darmstadt, Germany, July 21, 2003.

[10] Hanenberg, S.; Hirschfeld, R.; Unland, R.: Morphing Aspects: Incompletely Woven Aspects
and Continuous Weaving. In Proceedings of AOSD’04; Lancaster, UK; March 22-26; ACM-
Press, pp. 46-55; 2004.

[11] Hanenberg, S.; Stein, D.; Unland, R.: Eine Taxonomie für aspektorientierte Systeme. In Proc.
of Software Engineering 2005, Essen, Germany, March, 8-11, 2005, LNI P-64, pp. 167-178.

[12] Hilsdale, E.; Hugunin, J.: Advice weaving in AspectJ. In Proceedings. of AOSD’04, p. 26-35.
ACM Press, 2004.

[13] Kalleberg, K.; Visser, E.: Combining Aspect-Oriented and Strategic Programming. In
H. Cirstea and N. Marti-Oliet, editors, Workshop on Rule-Based Programming (RULE'05),
Electr. Notes Theor. Comput. Sci. 147(1): 5-30, Nara, Japan, April 2005.

[14] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An overview
of AspectJ. In Proceedings of ECOOP ’01, p. 327-353, Budapest, Hungary, June 18-22, 2001.

[15] Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.; Lopes, C.; Loingtier, J.-M.; Irwin, J.:
Aspect-oriented programming. In Proceedings of ECOOP’97, volume 1241, pages 220-242.
SpringerVerlag, 1997.

[16] Laddad, R.: AspectJ in Action - Practical Aspect-Oriented Programming, Manning Pub. Co.
2003, ISBN: 1930110936.

[17] Lämmel, R.; Visser, E.; Visser, J.: Strategic Programming Meets Adaptive Programming. In
Proceedings of AOSD’03, pages: 168-177, Boston, USA, March 2003.

[18] Lieberherr, K.; Patt-Shamir, B.; Orleans, D.: Traversals of Object Structures: Specification
and Efficient Implementation. In ACM TOPLAS 2004, pages 370-412.

[19] Masuhara, H.; Kawauchi, K.: Dataflow pointcut in aspect-oriented programming. In 1st Asian
Symposium on Programming Languages and Systems, LNCS-vol 2895, pages 105-121, 2003.

[20] Orleans, D.; Lieberherr, K.: DJ: Dynamic Adaptive Programming in Java. Proceedings of the
3rd International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns, p.73-80, September 25-28, 2001.

[21] Ostermann, K.; Mezini, M.; Bockisch, C.: Expressive pointcuts for increased modularity. In
proceedings of ECOOP ’05, pages: 214-240, 2005.

[22] Popovici, A.; Alonso, G.; Gross, T.: Spontaneous Container Services. In Proceedings of
ECOOP’03, pages: 29-53, Darmstadt, Germany, July 2003.

[23] PurityA project homepage: http://dawis.icb.uni-due.de/research/aosd/puritya/.
[24] Sakurai, K.; Masuhara, H.; Ubayashi, N.; Matsuura, S.; Komiya, S.: Association aspects.

Proceedings of AOSD’04, p.16-25, March 22-24, 2004, Lancaster, UK.
[25] Stein, D.; Hanenberg, S.; Unland, R.: Expressing Different Conceptual Models of Join Point

Selections in Aspect-Oriented Design. In Proceedings. of AOSD’06, pages: 15-26, Bonn,
Germany, March 20-24, 2006, ACM Press.

http://dawis.icb.uni-due.de/staff/?sname=Unland

[26] Stein, D.; Hanenberg, S.; Unland, R.: Query Models; in: Baar, Th., Strohmeier, A., Moreira,
A., Mellor, St., Proc. of the 7th International Conference on the Unified Modeling Language
(UML 2004), Lisbon, Portugal, October 11-15, 2004, Springer, LNCS 3273, pp. 98-112.

[27] Van den Bussche, J.; Vossen, G.: An Extension of Path Expressions to Simplify Navigation in
Object-Oriented Queries. In Proc. of Intel. Conference on Deductive and Object-Oriented
Databases (DOOD), pages 276-282, 1993.

[28] Vanderperren, W.; Suvée, D.; Cibrán, M. A.; De Fraine, B.: Stateful aspects in JAsCo. In
Proceedings of SC 2005, LNCS, pages: 167-181, Edinburgh, Scotland, Apr. 2005.

	1 Introduction
	2 Motivation
	3 Path Expression Pointcuts
	3.1 Syntax and Semantic
	3.2 Context Exposure
	3.3 Advice Execution, Parameter Binding and Ordering
	3.4 Motivating Example Revisited

	4 Related Work
	Path Expressions
	Expressive Pointcuts and Non-local Information
	Adaptive Programming
	Strategic Programming
	Association Aspects
	Morphing Aspects

	5 Discussion
	6 Conclusion
	References

