
Orthogonal Persistence and AOP: a Balancing Act
Mohammed Al-Mansari, Stefan Hanenberg, Rainer Unland

Institute for Computer Science and Business Information Systems (ICB)
University of Duisburg-Essen, Germany

{ Mohammed.Al-Mansari, Stefan.Hanenberg, Rainer.Unland }@icb.uni-due.de

ABSTRACT
In order to increase the productivity of the application developers,
it is desirable to remove the persistence concern from their
responsibility. For this purpose, the orthogonal persistence
concept was introduced along with three principles: type
orthogonality, persistence independence and transitivity. From an
aspect-oriented point of view these principles have to be
considered from the perspective of obliviousness. There is already
a number of aspect-oriented persistence solutions where it is not
that clear whether they handle the previous principles really in an
oblivious way. In this paper, we discuss to what extent these
aspect-oriented solutions really make the developer oblivious of
the persistence concern. As a conclusion, we find that these
systems in general defeat the orthogonal persistence and
consequently, using them distracts developers from concentrating
on the application logic. In order to increase the obliviousness of
the persistence concern we propose a combination of two new
concepts: persisting containers and path expression pointcuts.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Classes and objects, Dynamic storage management.

Keywords
Orthogonal persistence, obliviousness, persisting containers,
locality of join point properties, path expression pointcuts.

1. INTRODUCTION
The term orthogonal object persistence, as defined by Atkinson
and Morrison in [5], is about automating object persistence so that
the application developer can focus on the application logic
without having the persistence concern in mind. Using
(implicitly) existing persistence mechanisms increases the
developer’s productivity. In order to achieve this goal, persistence
systems must comply with the principle of orthogonal object
persistence. According to [4], the available conventional
persistence solutions such as Enterprise JavaBeans (EJB, see [17])
and Java Data Objects (JDO, see [16]) fail to support this
principle.

From the perspective of aspect-oriented programming (AOP,

[12]), the obliviousness characteristic [14] is synonymous to the
term orthogonality. Applying it to the domain of persistence
implies that the application code does not have to be prepared in
order to introduce persistence.

Until now, the aspect-oriented community has made a significant
effort to apply AOP in providing orthogonal object persistence
(see e.g. [25, 27, 28]). Accordingly, it is crucial to assess whether
these proposals comply with the principle of orthogonal
persistence, i.e. whether they do not require to prepare code in
order to make objects persistent.

This paper critically discusses the extent to which current AO
persistence proposals meet orthogonal persistence. Thereto, we
distinguish between different levels of code (depending on the
role the code plays for persistence) and also consider conventional
solutions such as EJB and JDO. Based on this characterization we
see that current AO solutions provide a better localization of the
persistence concern, however, they do not comply completely
with the orthogonal persistence principle.

This paper goes a step further in providing a better level of
obliviousness to the object persistence. In order to achieve this
goal, we propose a combination of the two new concepts:
persisting containers and path expression pointcuts [1]. We will
show how this proposal solves the problem of breaking the
orthogonal persistence principle resulting from current AO
solutions. We insist that achieving full obliviousness for the
persistence concern is not possible especially for complex
systems like [19, 20]. However, the paper discusses how our
proposal can be used to address some aspects that are considered
in [20].

It should be noted that this paper neither considers all persistence
issues nor does it provide a complete persistence framework.
Rather, it analyzes the shortcoming of the current AO persistence
solutions and gives a first step into the direction of providing an
even more oblivious implementation of the persistence concern.

The paper is organized as follows: Section 2 motivates the need
for (still) discussing persistence from the aspect-oriented
perspective. In Section 3 we describe our proposal: the
combination of persisting containers and path expression
pointcuts that addresses the problem. Section 4 discusses some
related work. In Section 5 we discuss some issues of our proposal
and the future work, then we conclude the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Workshop ACP4IS '07, March 12-13, 2007 Vancouver, British
Columbia, Canada
Copyright 2007 ACM 1-59593-657-8/07/03... $5.00.

2. MOTIVATION
This section first describes the idea of orthogonal persistence.
Then, it discusses the impact of current persistence approaches
with respect to achieve orthogonal persistence. The problem is
summarized at the end of this section.

2.1 Orthogonal Persistence
Orthogonal persistence means that persistence can be achieved
without requiring the programmers to address persistence issues
on their own. To achieve this goal, persistence systems must
comply with three principles (as proposed by Atkinson in [4]):

� Type Orthogonality: All objects can be persistent or transient
irrespective of their types, sizes or any other property. This
ensures that the programmer does not have to specify by
hand the persistence support for any type. Such handwork
preparation distracts the programmer from focusing on the
application logic.

� Transitivity: Persisting the whole object (i.e. the object and
its directly and indirectly referenced objects) ensures the
persistence by reachability mechanism [11]. This assures the
consistency of the stored data and also the correct
interpretation of the objects when data retrieval is required.

� Persistence Independence: The source and byte code should
not require any changes to persisting objects. The developer
is not concerned with writing code for moving objects from
and to the datastore. Hence, for the code it does not matter
whether it is used in a persistent or in a transient
environment.

In other words, orthogonal persistence does not require the
developer to do any special preparation within the application
code to request or receive the persistence service. From an aspect-
oriented programming perspective, this requirement meets with
the obliviousness property [14]: By examining the code, one
cannot tell that the persistence aspect is applied.

From that perspective, it seems obvious to use aspect-oriented
programming techniques in order to achieve orthogonal
persistence, since orthogonality is considered to be an essential
part of aspect-orientation. In the meantime, some AOP solutions
for providing object persistence have been proposed, e.g. [25, 27,
28]. These systems provide somehow complete persistence
frameworks that cover many issues of persistence: concurrency
control, transaction management, distribution, object-relational
mapping and SQL translation in case of relational databases, etc.

We distinguish between the following different kinds of how
applications are required to be prepared in order to provide the
functionality of persistence:

� The type-level preparation for persistence is about
introducing persistence-related parts to the types definitions.
For example making a persistent type implementing
persistence-specific interfaces.

� The code-level preparation is about to include some code
that participates in deciding when the objects should be made
persistent. This kind of preparation can be noticed statically
by examining the base code, for example, when the base
code contains an invocation to a method that persists a given
object.

� The object-level preparation cannot be figured out statically
and it must be determined at run-time. For example, one
cannot decide upfront whether an object is reachable from a
persistent object.

The following sections discuss these different kinds of
preparations in more detail and show that current approaches for

achieving persistence do not completely fulfill the requirements
of orthogonal persistence.

2.2 Preparation on Type-Level
One of the main problems with conventional persistence systems
such as EJB is that they require the developers to define within
their code the types and classes whose objects are to be made
persistent. The programmers have to follow certain rules of the
persistence framework. For example, in order to define a
persistent type in EJB, the programmers define entity beans that
must implement the interface javax.ejb.EntityBean. Also two
other interfaces should be defined: javax.ejb.EJBObject and
javax.ejb.EJBHome. Moreover, certain naming conventions must
be followed. This breaks the type orthogonality principle since
only the objects of types that follow these restrictions can be
persisted. Also, this breaks the persistence independence principle
since the code cannot be used in a non-persistence environment.

In the AO persistence solutions [25, 27, 28], developers have to
write their own concrete application-specific aspect to define the
persistent types, e.g., to let them extend the PersistentRoot class
[27]. Moreover, they have to be sure that they can introduce a
new superclass to the targets, i.e. it is not valid if the target class
already extends a different class due to single inheritance in Java.
Then the class that directly extends another class cannot be made
persistent, which contradicts with type orthogonality.

persistence system

Legend: base code module
persistence relevant code
application programmer contribution

base code

third-party code main base code

Part(a) – type preparation in conventional persistence systems

persistence systembase code

third-party code main base code

Part(b) – type preparation in current AOP persistence systems

ab
st

ra
ct

as

pe
ct

s
A

pp
lic

at
io

n-
sp

ec
ifi

c
 a

sp
ec

ts
 extends

Figure 1. Preparation of persistent objects on type-level.

Moreover, these proposals require the developers to apply certain
naming conventions for types and their interface. As an example,
in [28] the names of business layer classes must have the postfix
Record. Also, the setter and getter methods in [27, 28] should start
with set and get, respectively, when defining the interface of a
type whose objects are to be made persistent. In [25] the
programmers are encouraged to follow such constraints when

defining their classes, otherwise they have to define such naming
conventions in the configuration files of the framework which is
still a type preparation.

Figure 1 illustrates this situation. In part(a), the developers are
concerned with specifying the types to be persistent in
conventional systems such as EJB. Developers add the
persistence-related code (triangles) to a number of classes
(circles) of the base code. This code is either code they wrote on
their own or code they imported from a third-party (like a tree
package or a given data model). This means that the base code as
well as the developer is not oblivious from the persistence system.

Part(b) of the figure shows how application developers have to be
aware of the persistence by developing concrete extensions to the
aspect-based persistence framework. The definitions of the types
in the base code are still not oblivious since these definitions
contain persistence-related constraints (the triangles).

Consequently, available AO persistence systems defeat the
obliviousness property when modularizing the issue of preparing
persistent types. These systems shift the problem of identifying
the persistent types from the application base code layer to the
persistence system layer: Instead of having for each persistent
type an explicit declaration within its code, the enumeration of
such types becomes part of those aspects that introduce the
corresponding type hierarchy. The persistent types interfaces still
have persistence-related code. On the one hand, this breaks the
type orthogonality since the types that do not follow the
persistence-related constraints cannot be made persistent. On the
other hand, the developers must be sure that their base code types
(including the imported ones) follow these constraints otherwise
they have redefine these types or modify them in order to use
them in the persistent environments, however, this will break the
reusability of those types, hence defeating the persistence
independence principle.

2.3 Preparation on Code-Level
In conventional persistence systems such as JDO [16], deciding
when an object should be persisted is done statically at the code-
level. Developers explicitly invoke methods that persist instances
of persistent types, e.g., by invoking the method makePersistent
of a persistence manager in JDO with the object as an argument.

 1.Company c1 = new Company();
2.Company c2 = new Company();
3.Address a1 = new Address();
4.Address a2 = new Address();
// ... till this point all objects are transient
5. c1.setAddress(a1);
6. c2.setAddress(a2);
7. pm.makePersistent(c1); // persists:c1 and a1
8. a2.setStreet(“NewStreet”); // doesn’t persist: a2
// ... c2 and a2 are transient

Figure 2. Persisting objects in JDO explicitly on code-level.

Figure 2 shows an example where company objects and address
objects are instantiated. The makePersistent method persists the
company instance c1. Its referenced address object a1 is
persistent, as well. Since the company instance c2 is not explicitly
requested to be made persistent, it remains transient. Figure 1(a)
(see previous section) still represents this situation because the
preparation for persistence spreads over the base code. However,

the difference is that the persistence characteristics are not
inherently connected to each object of a given type.

Similarly, in the AO persistence systems [25, 27, 28], the base
code must include explicit invocations to the setter and the getter
methods instead of accessing the fields directly in order to persist
the corresponding objects. Also, the developers have to be sure
that this constraint is fulfilled inside the types themselves, i.e.,
any access to a field inside its class should be done using the
setter and the getter methods.

For example, in the first code line of Figure 3, the state change to
the persistent company object is done by using the set method.
This explicit invocation of the setter method will trigger the
aspect to persist the changes in the object. However, the second
line is changing the address field of the company object but this
line of code does not follow the code constraints by the
persistence aspects (the required invocation of the setter method
for changing an object’s state). Hence, the changes will not be
persisted.

 1. c1.setAddress(a1);
// if c1 is a persistent Company object then this state change is persisted
2. c1.address = a1;
// if c1 is a persistent Company object then this state change is not persisted

Figure 3. Preparing code for persistence in AO solutions.

This situation is depicted in Figure 4. Here, the application
developers are concerned with ensuring persistence in the base
code and in the persistence system level. Note that the application
developer must prepare the third-party code classes for
persistence (in order to fulfill naming conventions, etc.). If these
imported classes are in byte-code format, it would be difficult to
prepare them. This prevents developers from reusing such types in
a persistent and in a transient environment unless the third-party
developer is aware of the AO persistence framework being used.
However, this is against the persistence independence principle.

Legend: base code module
persistence relevant code
application programmer contribution

persistence system
base code

third-party code main base code

ab
st

ra
ct

as

pe
ct

s
A

pp
lic

at
io

n-
sp

ec
ifi

c
 a

sp
ec

ts

extends

Figure 4. Code-Level preparation in AO persistence solutions.

2.4 Preparation on Object-Level
In Figure 5, the two concrete pointcuts are from the
DatabaseAccess aspect of the persistence framework in [27]. If
the Company and Address classes are declared to extend the
PersistentRoot class in the ApplicationDatabaseAccess aspect,
then the trapInstantiations pointcut selects all Company and
Address objects at the time they are created. The associated
advice will persist these objects preventing the developers from
using, e.g., c2 as a transient object unless it’s declared transient.

A developer must thus consider an inverse problem: How to
specify individual transient objects?

If the intention of the developer is to use the Company object c2 as
a temporary object then (s)he has to define this object as
transient, defeating the persistence independence principle.
Otherwise, if the developer performs a query to know how many
Company instances the database contains so far then the query
returns a wrong number, i.e. 2 instead of 1.

The difference between code level and object-level preparation is
that in the former, one can see the preparation statically (e.g. by
examining the base code). On the other hand, the object
preparation could not be noticed by looking into the base code,
however, it is determined dynamically. In Figure 4, the code does
not reflect the fact that the four objects are to be made persistent,
however, this fact is determined by the persistence aspect. Hence,
we consider this preparation as an object-level situation.

 pointcut traplnstantiations():
 call(PersistentRoot+.new(..));

 pointcut trapUpdates(PersistentRoot obj):
 && (this(obj)
 && execution(public void PersistentRoot+.set*(..)))…;

// The base code
1.Company c1 = new Company();
2.Company c2 = new Company();
3.Address a1 = new Address();
4.Address a2 = new Address();
// ... till this point all objects are persistent

Figure 5. Persisting objects in AO systems on object-level.

Assume that companies are persistent objects and its address
objects are only persistent by reachability. The trapUpdates (cf.
Figure 5) pointcut uses the this designator to expose the current
executing object that must be of type PersistentRoot. In Figure
6, an address instance a is being changed inside the context of a
PostCodeConverter object. Since address objects do not extend
PersistentRoot, the trapUpdates pointcut does not select the set
join points that update addresses. Hence, the pointcut does not
select the change of the postcode of the address object a, and the
update is not recorded in the database. However, due to the
transitivity principle, it is necessary that also changes of the
address object lead to an update of its corresponding database
representation (as an object owned by a company object).

 // The base code inside PostCodeCoverter
public void chgPCode(Address a) {
 a.setPostCode(“D-45117”); // ... a may be persistent
}

Figure 6. Persisting updates in AO systems on object-level.

Nevertheless, current AO systems do not permit to select a join
point due to the reachability between objects (which is an
information about object relationships). The reason is that this
kind of object information is a non-local join point property [15,
1]: It cannot be derived from the available local context at this
join point. Unfortunately, these systems do not provide constructs
for accessing non-local join point properties that are based on
object relationships. In such situations, the reachability would not
be easy to figure and hence breaking the transitivity principle.

2.5 Problem Statement
Current aspect-oriented persistence systems do not support the
obliviousness property. Firstly, the developers of the base code
still need to prepare the objects at type-level for persistence that is
against the type orthogonality. Secondly, the developers still have
to concern with the persistence at the code-level that breaks the
persistence independence property. Thirdly, storing and updating
persistent objects defeat the persistence independence principle
due to the overestimated pointcut specifications. Moreover,
updates may also break the transitivity principle since there is no
support for non-local object-information join point properties.

3. SOLUTION
This section describes our proposal to solve the problems
described above. The first subsection describes the concept of
persisting containers along with an example that shows how using
these containers fulfills type orthogonality and persistence
independence. The second subsection shows how path expression
pointcuts can be used along with persisting containers to fulfill
the transitivity principle of orthogonal persistence.

AdHocPersistStorage

1

1

1

*

*

*

*

*

1

Company

Vehicle
Division Address

*
* fa

m
ily

M
em

be
rs

ownedVehicles

re
si

de
nc

e

items

he
ad

qu
ar

te
r

location

manufacturedby

shipTo

billTo

pr
es

id
en

t

em
pl

oy
ee

s

m
an

ag
er

cu
st

om
er

s

PersistedList

Person

Object

divisions

Employee Customer

A persisting
container is a
PersistedList

Figure 7. Persisting Containers for a Company object model.

3.1 Persisting Containers
The persisting container is an object of type PersistedList that is
maintained by the aspect and provides the persistence service to
all objects it contains as an ad-hoc functionality similar to the idea
of spontaneous containers [26]: When an object is added to a
persisting container, it is provided with the needed persistence
manipulations, when the object is removed from the container, it
will not receive this service anymore. All objects of any type have
the same right to persist since any object can be added to the
containers. Figure 7 shows the design of the persisting containers
and an example of how they can be used.

Accordingly, the developers are free to use any object model
without concerning with preparing the classes in that model by
changing their inheritance structure. In Figure 7, e.g., the Company
object model is used. Hence, any Company object that is added to a
persisting container is going to be persisted along with its
reference closure. In this way, the base code is completely
oblivious with respect to specifying persistent types. Since there
is no need to explicitly declare them as persistent types, e.g., by
means of the declare parents construct. Moreover, the
application developer and the third-party developer can remain
oblivious to this persistence issue. Figure 8 illustrates this result,

where the base code modules (circles) do not contain any
persistence-related parts.

persistence system

Legend: base code module
persistence relevant code
application programmer contribution

base code

third-party code main base code

Figure 8. Obliviousness by Persisting containers on type-level.
Consequently, the type orthogonality and the persistence
independence principles are met with respect to the preparation of
persistent object on the type-level. Firstly, all objects can be
persisted irrespective of their types. Secondly, the base code and
its developers do not have to be aware of the persistence concern
and the same code could be used in either transient or persistent
environments, which in turn promotes the reusability of the code.

3.2 Path Expression Pointcuts
Path expression pointcut [1] (path pointcut for short) is a new
pointcut construct that applies the well-known path expression
technique [7] to AOP in order to provide aspects with access to
the non-local object information and to solve the reachability
queries between objects in the object graph. The general form is
(see section 3.1 in [1] for the path pointcut syntax details):

path(PathExpressionPattern);
The path pointcut searches the object graphs for the reference
paths that match the given path expression pattern. When there is
at least one matching path at a given join point, then this join
point is selected. The path expression patterns can specify some
objects as source, target or intermediate objects of the paths. This
can be achieved either by using the exact type patterns, the exact
objects names or by using the wildcard patterns. Moreover, the
associations between objects can be specified by names or by
using the wildcards “*” and “/”. The path pointcut can be used
like all other pointcut designators and they can be composed by
means of operators “&&”, “||” and “!”.

Consider the following pointcut:
 pointcut pc(Company c, Person p, Object o):
 path(c -*-> Employee p -/-> o)
 && set(* *) && target(o);

This pointcut picks out every set join point whose target is the
object o and there is at least one path between the objects c and o
via p. The “*” in the path expression pattern indicates that there
is a direct relationship between c and p: the object p is the value
of a field in c. However, the name of the field is not relevant for
this path specification. The wildcard “/” indicates that there may
be many objects on the path between these objects: the objects p
and o are indirectly related.

The binding mechanism in the path pointcut binds the objects
described in the path expression to the corresponding variables in
the pointcut’s header. The result of a path expression is a set of
distinct valid parameter bindings irrespective of the number of the

matching paths. This set of parameter bindings is exposed from
the join point context to the aspect.

location

com:Company

divisions
headquarter

div:Division addr:Address

 pointcut pc(Company c, Address a):
 path(c -/-> a) && target(a) …;

Figure 9. Two paths between a company and an address.
For example, in Figure 9, the given path expression matches two
paths: (com –headquarter-> addr) and (com –divisions-> div
-location-> addr), however, the only valid parameter binding
is: (c=com, a=addr).

The path pointcut allows multiple occurances of a variable name
and it applies a sort of unification so that all these occurrences
points to the same object. In Figure 9, the variable name a, used
as a target in the path expression and then it is used in the target
pointcut, but the path pointcut binds both to the addr object.

shipTo customers

div:Division
c2:Customer

balance=1000

ad1:Addressc1:Customer

balance=750

ad2:Address
shipTo

 pointcut pc(Division d, Customer c, Address a):
 path(d -/-> c -/-> a) …;

Figure 10. Two paths from Division to Address via Customer.
If the path pointcut returns more than one binding, then the
associated advice must be executed as many times as the number
of the bindings. For example, in Figure 10, the resulting bindings
of the pointcut pc are: (d=div, c=c1, a=ad1) and (d=div,

c=c2, a=ad2). Hence, each advice that is associated with this
pointcut must be executed two times, each with a single binding.

 public boolean addrChg(Object[] o1, Object[] o2) {
 Customer cust1 = (Customer) o1[1];
 Customer cust2 = (Customer) o2[1];
 return cust1.getBalance() > cust2.getBalance();
 }
 pointcut pc(Div d, Customer c, Address a):
 set(* *)&& target(a)
 && path(d -/-> c -/-> a) orderBy(this.addrChg);

Figure 11. Possible ordering method specification.

Assume that there are two concurrent transactions each updates
one of the objects ad1 and ad2 and that the developer wants to run
these concurrent changes in a descending order by customers’
balances. Since the balance of c2 is greater, the advice must be
executed first on the binding: (d=div, c=c2, a=ad2).

For this purpose, the developer can use the orderBy construct with
the path pointcut. It takes a name of the method containing the
ordering code specified by the developer in a similar way to the
compare method of the Comparable interface in the Java API. For
example, in the pointcut pc of Figure 11, the parameter of the
orderBy is the name of the method addrChg that has two array
parameters of type Object each represents a binding. The method
extracts the second element from both arrays, casts them to type
Customer and returns the comparison result between their balance
fields. When no orderBy clause is specified, then the order would
be undefined.

p:PersistedList

c1:Company

pres:Employee a1:Address

a2:Address

c2:Company

pcc2:PostCodeConverter

pcc1:PostCodeConverter

pointcut trapUpdates(PersistedList pl, Object o):
 set(* *) && target(o) && path(pl -/-> o);

The resulting bindings: (pl=p, o=a1).

postCode()

president

postCode() residence

headquarter

Figure 12. Obliviousness by path pc and persisting containers.
Figure 12 illustrates how our proposal could be used to support
persistence by reachability. Two PostCodeConverter objects,
pcc1 and pcc2, modify the states of objects a1 and a2,
respectively. Object a1 is part of the company object c1, which
belongs to the container p; hence c1 and its object closure are
made persistent. However, c2 is not persisted since it is not a part
of any container.

The pointcut trapUpdates uses the path pointcut and it picks out
all set join points where the target object o is reachable from a
persisting container pl. There is only one matching path between
a container and an object being changed. This path is resolved to
one binding: (pl=p, o=a1), which is exposed to the aspect so that
all relevant local and non-local object information at the selected
join point can be accessed. As a result, the trapUpdates pointcut
picks out only the state changes on the object a1 and not a2.

According to this example, persisting containers and path
pointcuts can be used in an oblivious way to the base code and the
application developer when preparing object for persistence. The
base code contains no signs of the availability of the persistence
service with respect to any level (type, code and object). Hence,
this solution complies with type orthogonality and persistence
independence principles without defeating the transitivity.

4. RELATED WORK
In [26], the idea of spontaneous containers was introduced to
provide dynamic middleware services to any object, e.g. mobile
nodes, from the time this object is added to the container. When
the object leaves the container, it won’t receive the service
anymore. In our proposal we use this idea in order to provide the
persistence middleware service to the contained objects.

Path expressions [7] technique has been applied to many other
domains, e.g. XPath language [8] that is used to address some
parts of the XML [6] documents. In this paper, the intention of
applying path expressions to AOP is to get access to different
parts of object information in the object graph.

Adaptive programming [22] and strategic programming [21] use
the so-called traversal strategies and schemas that are similar to
the path expressions. In aspect-based version of these
technologies, the advice is triggered whenever the visitor
component visits an object from a path that matches the given
traversal. This is in contrast to the path pointcut that could be used
for selecting join points as well as exposing object paths.

A large research effort is done to provide access to the non-local
join point properties. For example, there are approaches for
accessing non-local execution trace [3, 9, 10, 30, 31]. The data
flow pointcut from [23] provides access to non-local data flow
information. Moreover, the cflow pointcut in AspectJ [18]
provides access to the non-local call stack. However, these
proposals neither point to nor solve the problem of using non-
local join point properties that are based on object information
and object relationships.

The importance of expressive pointcuts in AOP is discussed in
[24] where it has been proven that expressive pointcuts increase
the modularity and make aspects robust against the changes in the
application base code. Also in [29] the authors insist on the need
for more expressive join point models that reflect the mental
model of the developer. Path expression pointcuts increase the
expressiveness of the pointcut language in order to provide better
designation over object relationships.

5. DISCUSSION AND CONCLUSION
In general, we believe that achieving a complete obliviousness is
not possible, especially when concerning with the rest of
persistence issues such as those applying sophisticated transaction
management techniques [19]. However, the main goal of the
paper is to find the extent to which the current AO persistence
solutions support orthogonal persistence.

We find that these systems do not fulfill type orthogonality and
persistence independence at the type level. Moreover, they break
persistence independence at code level. Also, they defeat
persistence independence and transitivity properties at the object
level. For solving these problems, we proposed the use of
persisting containers and path expression pointcuts.

One important facet of our analysis is that the current AO
persistence proposals suffer from the problem of overestimated
pointcut specifications that make aspects apply to all objects
rather than individual objects. For example, the pointcuts
trapInstantiations and trapUpdates in [27] exhibit this
problem: Save “all” instantiated objects of the specified types and
persist “all” changes to their persistent states, respectively.

This observation meets the one in the AO challenge case study
[20]: How to assign different transaction manipulations to
individual transactional objects? As for persistent objects, our
proposed concepts of persisting containers and path expression
pointcuts could be utilized to modularize some aspects considered
in this study. For example, an aspect can maintain two different
containers each provides a specific transaction mechanism for its
objects. Also, the cascading version-based locking mechanism
[11] requires access to all owner transactional objects of the
currently updated one to check their versions, which can be
solved by the extended path pointcuts [2]. The aspect Versioned
can use path pointcuts to specify transactional objects in the
matching paths from any source to the object being changed.
Moreover, the path pointcuts can be used in the Shared aspect to
designate the transactional-shared object to ensure accessing them
in mutual exclusion.

Our proposal is still in its evolution phase, so that we have a lot of
concerns that need to be resolved. For example, how to provide a
better solution for the problem of specifying persistent objects at
the time they are instantiated. This means how and when to add

an object to the persisting containers. Also, it is needed to
consider the deletion of persistent objects, i.e., removing them
from the persisting containers. Moreover, a special treatment must
be identified for the objects of collections. Further discussion is
needed on how to use this idea to cover other persistence issues.
Other important future work is to discuss how to provide an
efficient implementation to the path pointcut in order to minimize
the complexity (see [2] for a more detailed discussion).

Being aware of these current limitations, we are still convinced
that in order to gain a higher level of orthogonal persistence, it is
essential to provide pointcut language constructs that operate on
the object level instead of the type level.

6. REFERENCES
1. Al-Mansari, M., Hanenberg, S. Path Expression Pointcuts:

Abstracting over Non-Local Object Relationships in Aspect-
Oriented Languages. NODe’06 Erfurt, Germany; 2006.

2. Al-Mansari, M., Hanenberg, S., Unland, R. Aspect-Oriented
Programming: Selecting and Exposing Object Paths. In
Software Composition (SC07), co-located with ETAPS07;
Braga, Portugal; (LNCS - to appear); March 2007.

3. Allan, C., Augustinov, P., Christensen, A. S., Hendren, L.,
Kuzins, S., Lhot´ak, O., de Moor, O., Sereni, D.,
Sittampalam, G., Tibble, J. Adding Trace Matching with
Free Variables to AspectJ. In OOPSLA 2005: 345-364.

4. Atkinson, M. P. Persistence and Java - A Balancing Act.
Objects and Databases 2000: 1-31.

5. Atkinson, M. P., Morrison, R. Orthogonally persistent object
systems. VLDB J. 4 (1995) 319–40.

6. Bray, T., Paoli, J., Sperberg-McQueen. (eds.). Extensible
Markup Language. http://www.w3.org/TR/REC-XML, 1998.

7. Campbell, R., Habermann, A. The Specification of Process
Synchronization by Path Expressions. Sym. on Operating
Systems 1974: 89-102, V16, Springer Verlag, 1974.

8. Clark, J., Derose, S. (eds.). XML Path Language (XPath).
version 1.0. http://www.w3.org/TR/Xpath, 1999.

9. Douence, R., Fradet, P., Südholt, M. Composition, Reuse and
Interaction Analysis of Stateful Aspects. In Proceedings. of
AOSD’04: 141-150, Lancaster, UK, March 2004.

10. Douence, R., Fradet, P., Südholt, M. Trace-based aspects. In
[13], pages: 201–217.

11. Elmasri, R. and Navathe, S. B. Fundamentals of Database
Systems. (3rd ed.), Addison-Wesley, 2000.

12. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., and
Ossher, H. Discussing Aspects of AOP. Communications of
the ACM 44, 10 (October 2001), 33–38.

13. Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. (eds).
Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2005.

14. Filman, R. E. and Friedman, D. Aspect-Oriented
Programming is Quantification and Obliviousness. In [13],
pages: 21-35.

15. Hanenberg, S. Design Dimensions of Aspect-Oriented
Systems. PhD thesis, Duisburg-Essen University 2005.

16. Jordan, D. and Russell, C. Java Data Objects. O’Reilly
Media, 1st edition, 2003.

17. JSR-220. Enterprise JavaBeans v.3: Java Persistence
API. http://java.sun.com/products/ejb/docs.html.

18. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W. G. Getting Started with AspectJ. Comm. of
the ACM, 2001, 59-65.

19. Kienzle, J., and Guerraoui, R. AOP - Does It Make Sense?
The Case of Concurrency and Failures. In Proc. of
ECOOP’02, Malaga, Spain, 2002, pp.37 – 61.

20. Kienzle, J. and Gélineau, S. AO challenge -implementing the
ACID properties for transactional objects. In Proc. of
AOSD’06, Bonn, Germany, 2006, pp.202 – 213.

21. Lämmel, R., Visser, E., Visser, J. Strategic Programming
Meets Adaptive Programming. In Proceedings of AOSD’03,
pages: 168-177, Boston, USA, March 2003.

22. Lieberherr, K., Lorenz, D. Coupling Aspect-Oriented and
Adaptive Programming. In [13], pages: 145-164.

23. Masuhara, H., Kawauchi, K. Dataflow pointcut in aspect-
oriented programming. In 1st Asian Sym. on Prog. Lang.
and Sys., LNCS, vol. 2895, pp:105-121, 2003.

24. Ostermann, K., Mezini, M., and Bockisch, C. Expressive
pointcuts for increased modularity. In Proc. of ECOOP’05,
Glasgow, UK, 2005, Springer Verlag, pp. 214 – 240.

25. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-
Aubry, F. and Martelli, L. JAC: an aspect-based distributed
dynamic framework. Softw., Pract. Exper. 34(12): 1119-1148
(2004).

26. Popovici, A., Alonso, G. and Gross, T. Spontaneous
Container Services. In Proc. of ECOOP’03, Darmstadt,
Germany, 2003, pp: 29-53.

27. Rashid, A. and Chitchyan, R. Persistence as an Aspect. In
Proc. of AOSD’03, Boston, USA, 2003: 120-129.

28. Soares, S., Laureano, E., and Borba, P. Implementing
distribution and persistence aspects with AspectJ. In Proc. of
OOPSLA, 2002, ACM Press, pp. 174-190.

29. Stein, D., Hanenberg, S., Unland, R.: Expressing Different
Conceptual Models of Join Point Selections in Aspect-
Oriented Design. In Proc. of AOSD’06, ACM Press, pp: 15-
26, Bonn, Germany, March 2006.

30. Vanderperren, W., Suvée, D., Cibrán, M. A., De Fraine, B.
Stateful aspects in JAsCo. In Proceedings of SC 2005,
LNCS, pages: 167-181, Edinburgh, Scotland, Apr. 2005.

31. Walker, R., Viggers, K. Implementing protocols via
declarative event patterns. In ACM SIGSOFT Intel. Sym. on
Foundations of Soft. Eng. FSE-12, p. 159–169, 2004.

	INTRODUCTION
	MOTIVATION
	Orthogonal Persistence
	Preparation on Type-Level
	Preparation on Code-Level
	Preparation on Object-Level
	Problem Statement

	SOLUTION
	Persisting Containers
	Path Expression Pointcuts

	RELATED WORK
	DISCUSSION AND CONCLUSION
	REFERENCES

