
Aspect-Oriented Programming: Selecting and Exposing 
Object Paths 

Mohammed Al-Mansari, Stefan Hanenberg, Rainer Unland 

University of Duisburg-Essen, Schützenbahn 70, 
45117 Essen, Germany 

{Mohammed.Al-Mansari,Stefan.Hanenberg,Rainer.Unland} 
@icb.uni-due.de 

Abstract. Aspects require access to the join point context in order to select and 
adapt join points. For this purpose, current aspect-oriented systems offer a large 
number of pointcut constructs that provide access to join point information that 
is local to the join point context, like parameters in method call join points. 
However, these systems are quite miserly with non-local information that can-
not directly be derived from the local execution context. Recently, there have 
been some proposals that offer access to some kind of non-local information. 
One such proposal is the path expression pointcut that permits to abstract over 
non-local object information. Path pointcuts expose non-local objects that are 
specified in corresponding path expression patterns. In this paper, we show re-
current situations where developers need to access the whole object paths, and 
consequently, they add workarounds other than pointcut constructs to get the 
required accesses. Then, we present and study an extension to the path expres-
sion pointcuts to permit exposing the object paths and show how this extension 
overcomes the problem. 

1   Introduction 

Aspect-oriented programming aims to increase the modularity of software. This is 
achieved by features that are used to select points in the execution of the program and 
to adapt them. Pointcuts are the language constructs used for selecting these points, 
which are called join points [15]. The join point adaptation is achieved by the so-
called advice. The selection and the adaptation of a join point depend on the charac-
teristics of this join point. 

These characteristics are called join point properties [1, 12] and are divided into 
two categories: Local and non-local join point properties depending on whether they 
are accessible and derivable from the join point context or not, respectively. For ex-
ample, the current executing object at a method execution join point is considered a 
local join point property, which can be accessed with the this pointcut in AspectJ 
[15]. In general, current aspect-oriented systems offer several pointcut constructs that 
can be used to derive the local information of a join point. On the other hand, these 
systems provide only a small number of pointcut constructs that provide access to the 
non-local join points properties, like the call stack in languages such as Java and C++. 



One intention of aspect-oriented systems is to provide pointcut languages that 
permit the developer to specify expressive pointcuts [27] where the join point selec-
tions correspond to the developer’s mental model [32]. This also implies that the 
available join point properties provided by an aspect-oriented system must suffice the 
developers’ needs. In addition to that, the resulting aspects would be easier to main-
tain, more robust against changes, and contain no mixture between the pointcut and 
advice code. As a consequence, it has been pointed out by a number of researchers 
that there is a need for more pointcuts that offer abstractions over non-local properties 
[2, 23, 35]. However, none of these proposals provide abstractions over the non-local 
properties that are based on object information, for which we proposed the path ex-
pression pointcut [1] as an explicit construct. 

In this paper we take a step forward by extending the path expression pointcut that 
allows aspects to access the whole object information in the matching paths. We 
motivate our proposal using two examples from the object persistence concern. These 
examples illustrate why we need to get not only object references from the whole 
path but also field information that establishes the relationships between these ob-
jects. This is achieved by exposing the whole non-local part of the object graph that is 
related to the join point to the aspect. 
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Fig. 1. Class diagram for the problem domain 

The rest of the paper is organized as follows: In the rest of this section, we first de-
scribe the object model of an example that is used throughout the paper. Then for the 
purpose of self-containedness, we give a brief description on the current version of 
the path expression pointcut. In section 2, we discuss two motivating examples and 
the problem statement. Section 3 presents the extension to the path expression point-
cut. We talk about related works in section 4. In section 5 we discuss some issues 
regarding our proposal and its implementation. The paper is concluded in section 6. 

1.1   Example 

Figure 1 shows a class hierarchy adopted from [17] for a company object model. The 
intention is to persist all company objects that are added to special containers called 
“persistent lists”: Instances of PersistedList class that persist all contained objects. 



These objects are not prepared to be persistent; rather they become persistent at the 
time they are added to the lists. This persistence service is an ad-hoc functionality 
provided by the persistent lists in a similar way to spontaneous containers [29].  

As Figure 1 elaborates, each company has a number of divisions, a president 
and a headquarter address. Each division in turn has a manager, a number of em-
ployees, a number of customers and a location address. Customer (which we 
added) and Employee are subtypes of Person. Each person object is associated with a 
collection of Vehicle objects. Finally, vehicle objects are associated with correspond-
ing company objects by the relation manufacturedBy. 

1.2   Path Expression Pointcut 

The path pointcut traverses the current object graph in order to find paths that match a 
given path expression. A pointcut making use of a path pointcut picks out the join 
points where there exists at least one matching path. The general form is:  

path(PathExpressionPattern); 

For a detailed description of the syntax, please refer to section 3.1 in [1]. Within 
path expression patterns may specify certain objects as source objects, target objects 
and intermediate objects of the paths. Moreover, the associations between objects can 
be specified by names. The path pointcut applies pattern matching mechanism by 
using the wildcards “*” and “/” to specify associations between objects along the 
path. The path pointcut is used to expose both local and non-local context from the 
join points and it can be used along with other pointcut designators by means of op-
erators “&&”, “||” and “!”. For example, consider the following pointcut: 

pointcut pc(Company c, Person p, Object o):  
  path(c -*-> Employee p -/-> o) && set(* *) && target(o);  
This pointcut picks out every set join point whose target is the object o and where 

there is at least one path between the objects c and o via p. The wildcard “*” in the 
path expression indicates that there is a direct relationship between c and p, whereas 
“/” indicates that there may be many objects on the path between these objects.  

location 
com:Company 

divisionsheadquarter 

div:Division addr:Address  
 
 

  pointcut pc(Company c, Address a):  
    path(c -/-> a) && target(a) …;  

Fig. 2. A Company instance has two references to the same Address instance 

Like in AspectJ, the objects described in the path expression can be bound to the 
corresponding variables in the pointcut’s header. Then the bounded objects are ex-
posed from the join point context to the aspect context.  According to the semantics 
of the path pointcut, the result of a path expression is a set of distinct valid parameter 
bindings rather than a set of matched paths. 



For example, in Figure 2, the path expression in the pointcut matches two paths: 
(com –headquarter-> addr) and (com –divisions-> div -location-> addr), 
however, the valid parameter bindings is only: (c=com, a=addr). Notice that there 
are two occurrences of the variable name a, once as a destination in the path expres-
sion and then it is used in the target pointcut. The path pointcut allows multiple 
occurrences of the same variable name in one or more path expressions and unifies 
these occurrences to be bound to the same value. 

A consequence of multiple parameter bindings is that the advice execution mecha-
nism is modified to allow a single advice that is associated with the pointcut to be 
executed as many times as the size of the parameter bindings set. 

shipTocustomers 

div:Division 
c2:Customer 

balance=1000;

ad1:Address c1:Customer 
balance=750;

ad2:Address 
shipTo

 
 
 
 
  pointcut pc(Division d, Customer c, Address a):  
    path(d -/-> c -/-> a) …;  

Fig. 3. Two resulting paths between a division and an address are resolved to two bindings 

For example, according to the pointcut of Figure 3, the resulting bindings are: 
(d=div, c=c1, a=ad1) and (d=div, c=c2, a=ad2). Hence, each single advice that 
is associated with this pointcut must be executed two times for each single binding. 
An important question is in which order these executions should be performed. For 
example, assume that there are two concurrent transactions, each updates one of the 
objects ad1 and ad2 and that the developer wants to run these concurrent changes in a 
descending order by customers balances. Since the balance of c2 is greater than that 
of c1, the advice must be executed first with the binding: (d=div, c=c2, a=ad2). 

public boolean addrChg(Object[] o1, Object[] o2) {        
  Customer cust1 = (Customer) o1[1];  
  Customer cust2 = (Customer) o2[1];    
  return cust1.getBalance() > cust2.getBalance(); 
} 
pointcut pc(Div d, Customer c, Address a):  
  set(* *)&& target(a)&& path(d -/-> c -/-> a) orderBy(this.addrChg);  

Fig. 4. Possible ordering method specification 

As a solution, we provide an extra construct, namely orderBy that is added to the 
path pointcut. It takes a name of the method containing the ordering code specified by 
the developer. The method is similar to the compare method of the Comparable inter-
face in the Java API. For example, in the pointcut pc of Figure 4, the parameter of the 
orderBy is the name of the method addrChg whose signature has two array parame-
ters of type Object each representing a single binding. The method extracts the sec-
ond element from both arrays, casts them to type Customer and returns the compari-
son result between their balance fields. When no orderBy clause is specified, then 
the order would be undefined. 



2   Motivation 

One of the important issues of object persistence is to ensure the isolation property of 
concurrently executing transactions by means of concurrency control approaches. The 
concept of locking data items is one of the main used techniques of the concurrency 
control. There are two main types of locks: Shared or exclusive, generally known as 
read and write lock respectively. In what follows, we will consider two locking poli-
cies in our motivating examples: The field-based locking policy and the cascading-
version locking policy. 

2.1   Example 1: Field-Based Locking 

In the locking-based concurrency control of transactions literature, there is a large 
number of researchers discussing locking granularities [11], proposing techniques for 
fine-granularity locking [24, 28] and discussing the benefits and the effects of multi-
ple locking granularities [30]. The granule of the data that can be locked is either the 
whole database, an extension of objects, an object or a field of an object [14]. Here, 
we focus on locking the fields of the object that are being changed so that multiple 
transactions can be executed on this object. 

pcc:PostCodeConverter
p:PersistedList 

c:Company 

pres:Employee 

addr:Address

pm:PersonalMgr 

setPhone()

residence 

Thread2  

setPostCode() 
Thread1 

president 

 

Fig. 5. Two separate concurrent transactions attempt to change the pres state 

In Figure 5, the Company instance c, which references the object pres, is added to 
the persistent list p. Hence, this company object and all objects in its closure are to be 
made persistent. Assume that we are interested in applying locking on the fields of 
the Employee object. Two separate concurrent threads attempt to update the state of 
the employee. Thread1 in pcc wants to change the postcode value of addr and 
Thread2 in pm attempts to change the phone field of the employee. In order to permit 
both threads to modify the employee object simultaneously, we should acquire sepa-
rate write locks for the fields residence and phone rather than for the object pres. 

In aspect-oriented terms, each update is a join point that should be selected since 
the employee object belongs to the persistent list p. The needed information is: the 
objects p and pres. The aspect then should acquire a write-lock for each field that is 
to be changed. Here, the needed information is the fields residence and phone.  

The local relevant context at the join point in Thread1 is the object addr, and the 
local relevant context for Thread2 is the object pres. In Thread1, the objects p and 



pres, in addition to the field name residence, are considered to be non-local in 
Thread1, while the non-local object to Thread2 is p. 

pointcut pc1(PersistedList pl, Employee e): 
set(* *) && target(e) && path(pl -/-> e); 

 

pointcut pc2(PersistedList pl, Employee e, Object o): 
set(* *) && target(o) && path(pl -/-> e -/-> o); 

 

before(PersistedList pl, Employee e): pc1(pl, e) { 
  String fname = thisJoinPointStaticPart.getSignature().getName(); 
  Field field = … // code to get the field by using its name and lock it 
} 
before(PersistedList pl, Employee e, Object o):  
  pc2(pl, e, o) { 
     // code for getting the field of e which is the beginning of the reference closure from e to o 
}  

Fig. 6. Using the path pointcut in the field locking example 

Consider the pointcut pc1 in Figure 6, it selects all set join points where the target 
object e of type Employee is reachable from the persistent list pl. According to Figure 
5, pc1 selects the employee object pres due to the matching path: (p -> c -> pres), 
and the resulting bindings is: (pl=p, e=pres), which is exposed to the before advice. 
The advice gets the changed field by means of the reflective facilities in AspectJ and 
Java. Finally, the advice acquires the write-lock to the field phone of the object pres. 

The pointcut pc2 selects all set operations targeted to any object o that is reachable 
from the persistent list pl via object e. From Figure 5, there is one matching path to 
the path expression pattern in pc2, i.e. (p -> c -> pres -> addr). Hence, this re-
sulting binding is (pl=p, e=pres, o=addr), which provides the advice with the 
access to the non-local objects p and e in addition to the local object addr. The advice 
must acquire a write-lock for the dirty field residence, however, this field is not 
available for the advice since this information is non-local to the join point. 

To get access to the non-local field information, developers implemnt workarounds 
since this information cannot be accessed by using the available pointcut construct. 
These solutions are complex, difficult to maintain and error-prone though. Moreover, 
their code does not reflect on the semantics of the join point selection and adaptation. 

2.3   Example 2: Cascading Version Locking 

To solve the concurrency control problem, researchers also proposed a number of 
version-based locking policies [18, 22, 25]. In these policies, all transactions can 
grant shared read access to the object, and whenever a transaction attempts to update 
the state of the object, the application should check whether this update is performed 
on the right version of the object. 

Version locking mechanisms use a so-called version (or write-lock) field that is 
added to every object and compare this field every time an update operation on the 
object is committed with the current value in the datastore. If they are equal, then the 
change is committed to the datastore, otherwise the change is disallowed and this 
indicates that the object must have been updated by another transaction. In the cas-



cading version locking, the version field of all objects that reference the dirty object 
must be updated also.  

p:PersistedList 

com1:Company

com2:Company

addr:Address

headquarter

headquarter 
 
 
  

Fig. 7. A shared Address instance between two Company instances 

As an example, consider the object graph in Figure 7. Two Company instances, 
com1 and com2, both referencing the same object addr. The Company instances are 
stored in the persistent list p. According to the version locking policy, any change to 
the addr will update the version field of addr as well as the version fields of its owner 
objects, i.e., com1 end com2. In our aspect, we want to be sure that the changed object 
is reachable from a persistent list. If so, the aspect should perform the dedicated ver-
sion locking policy on the shared object. So, we use the following pointcut: 

pointcut pc(PersistedList pl, Object o): 
  set(* *) && target(o) && path(pl -/-> o); 

A corresponding advice gets access to the binding (pl=p, o=addr), despite the 
fact that there are two different paths from p to addr. The advice will consider the 
changes in the Address object and update its version field. However, the correspond-
ing version field of com1 and com2 are not modified yet. Such situations affect the 
data consistency. In order to overcome this problem, we must get access to all objects 
in each path from p to addr in order to modify their versions. 

As mentioned in the first example, the only way currently available for the devel-
oper in conventional aspect-oriented systems is to apply introspective facilities of the 
language to traverse the entire reference path to get the required accesses. These kind 
of solutions are not trivial, error-prone and mostly not reusable. 

In summary, both examples illustrate the need for more expressive path pointcuts. 
The first example motivates the need for exposing not only the non-local objects, but 
also the non-local field information. The second example motivates the need for ex-
posing all objects in the matching paths instead of the distinct parameter bindings. 

3   Extended Path Expression Pointcuts 

In this section, we present an extension to the path expression pointcuts that over-
comes the problems described above. We modified the syntax and the semantics of 
the pointcut construct so that the resulting paths are exposed to pointcuts and advice 
as a subgraph of the whole object graph. This subgraph is made local to the aspect 
and from its interface developers can extract the objects and their relationships. 



3.1   Syntax and Semantics of the Path Pointcut 

In order to get access to the resulting paths, we slightly modified the syntax of the 
path expression pointcut so that it has two parameters: The first parameter refers to an 
instance of type PEGraph (discussed in section 3.2). The second parameter is the path 
expression pattern. The new syntax is: 

path(PEGraph identifier, PathExpressionPattern). 

The new model maintains the syntax specifications of the PathExpressionPattern 
discussed in [1]. The path pointcut calculates the path expression pattern against the 
current heap and adds all matching paths to a generated PEGraph object. When the 
evaluation process ends, the resulting PEGraph object is bound to the variable name 
identifier. The pointcut header must include this variable name as a parameter of 
type PEGraph. This parameter will be added to resulting parameter bindings being 
exposed to the pointcut and the associated advice. 

(a) The object graph 
(b) The resulting PEGraph pg from
pointcut pc 

(c) The resulting bindings: pg, c=com, a=addr 

pr:Employee mg:Employee

addr:Address

div:Division com1:Company 

headquarter

divisions 

location

addr:Address

div:Division com1:Company

headquarter

divisions 

location 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

pointcut pc(PEGraph pg, Company c, Address a):  
  path(pg, c -/-> a) …; 

president manager 

 

Fig. 8.Two paths between a Company and an Address 

As an example, consider the object graph in part (a) of Figure 8. There are two 
matching paths to the given expression in the path pointcut: (com -divisions-> div 
-location-> addr) and (com -headquarter-> addr). The evaluation of this path 
expression creates an object of PEGraph that consists of the subgraph in Figure 8-(b). 
This object is bound to the variable pg. Finally, as shown in part c), the pointcut pc 
resolves the parameter bindings (pg, c=com, a=addr). 

The created PEGraph at a given join point depends also on the resolved bindings. 
That means each distinct parameter binding has its own corresponding PEGraph ob-
ject, which ensures exposing only relevant information to the join point. The relevant 
information consists of the objects and their relationships that are included in the 
matching paths even if these paths contain cycles. Notice that in Figure 8-(b), the two 
Employee objects along with their referencing field information, i.e. president and 
manager, are excluded from the result of the path pointcut since this information is 
not relevant to the given path expression. 



c2:Customer 
balance=1000;

ad1:Address 

car:Vehicle 

div:Division 

ad2:Address 

 

c1:Customer 
balance=750;

com:Company 
pr:Employee

 
 
 
 
 
 
 
 
 
 
 
 
  

pointcut pc(PEGraph pg, Division d, Customer c, Address a):  
  path(pg, d -/-> c -/-> a) …; 

president

residence
familyMembers

ownedVehicles 

residence

customers 

 

Fig. 9. Infinite number of paths between objects div and ad2 

The presence of cycles in object graphs raises an important question regarding the 
termination of our pointcut construct. If a cycle appears in a matching path then it 
must be included in the resulting path graph. To guarantee the termination feature of 
the path pointcut, cycles should not be traversed more than once except when it is 
needed to traverse them again to fulfill the required set of bindings. Notice that we 
have to detect the cycles during the traversal of the object graph and have to add them 
to the resulting PEGraph if they occur in a matching path. 

ad1:Address div:Division c1:Customer 
balance=750;

c2:Customer 
balance=1000;

div:Division ad2:Address  

 

pr:Employee

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

residencecustomers 

(b) PEGraph t2 -  Bindings: pg=t2, d=div, c=c2, a=ad2 

(a) PEGraph t1 -  Bindings: pg=t1, d=div, c=c1, a=ad1

residence
familyMembers

customers 

 

Fig. 10. Two PEGraph objects, each for a different bindings 

Consider the collaboration diagram in Figure 9. According to the given path ex-
pression, there is one matching path from div to ad1 via c1, which constructs a tem-
porary PEGraph object t1 that is bound to the variable pg. The resolved binding is: 
(pg=t1, d=div, c=c1, a=ad1) as shown in Figure 10–(a). On the other hand, there 
is an infinite number of matching paths from div to ad2 via c2 due to the presence of 
the cycle between the objects pr and c2. Suppose that the traversal algorithm visits 
div then c2 and finally reaches pr, if it selects to go through the edge labeled family-
Members then it will visit c2 again, detect the cycle, save all information (objects and 
relations) and finally will return back to pr and follow the other edge to the object 
ad2. At this point the traversal algorithm finds a matching path as well as a valid 
distinct bindings for d, c and a. The whole path along with the cycle will be put in a 
temporary PEGraph object t2 as in Figure 10–(b), and then the pointcut resolves the 
second binding: (pg=t2, d=div, c=c2, a=ad2). The pointcut evaluation stops af-
terwards since there are no more matching paths. 

Last but not least, the new extension maintains the semantics of the advice execu-
tion in the first version of the path pointcut. Since the number of distinct resulting 
bindings is two in the last example, any advice associates with the pointcut pc exe-
cutes two times. The ordering schema discussed in section 1 also applies here. Hence, 



if the developer wants to run the advice first on the bindings that contains higher 
balance customers, then (s)he must define the same ordering method of Figure 4 
except that the index of the customer object in the binding is 2 instead of 1. 

3.2   Path Expression Graph 

As stated above, the result from the path pointcut is a subgraph of the whole object 
graph that contains only the information relevant to the selected join point. We said 
that this resulting graph will be assigned to an object of type PEGraph. The public 
interface of this data structure is illustrated in Figure 11. 

class PEGraph<Current, Next> {
  private Current current; 
  private Next next; 
  public Current getCurrent(); 
  public Next getNext(); 
  public List<PENode> getNextNodes(); 
  public List<PEEdge> getNextEdges(); 
  public boolean setCurrentObject(Current current); 
} 
 

class PENode<T> { 
  public T getObject(); 
  public List<PEEdge> getOutEdges(); 
  public List<PEEdge> getInEdges(); 
} 
 

class PEEdge<T> { 
  public PENode<T> getRelatedNode(); 
  public String getRelField(); 
} 

 

Fig. 11. The public interface of the PEGraph 

Each node of the PEGraph is of type PENode and contains a reference to an object 
of a generic type, a list of outgoing edges and a list of incoming edges. The edge of 
the PEGraph is of type PEEdge, which has two methods: getRelatedNode to get the 
generic typed object that represents the related node to the owner node of this edge 
(i.e. the node at the other edge). The method getRelField returns the relation name. 
The graph object provides the ability to navigate from any given object either in a 
forward or in a backward manner. This is done by getting access to the current object 
of the PEGraph instance, and then accessing its related objects and referencing fields. 

The PEGraph interface cannot be mutated other than setting the current object field 
of the PEGraph class by using the method setCurrentObject. It is possible to set the 
current node by passing a reference to a specific object or a given PENode. The meth-
ods getNextNodes, getNextEdges and getNext are used to traverse through the PE-
Graph. It should be mentioned that the object and field information returned from 
these methods is obtained from the resulting path expression graph. Other object 
information from the whole object graph that is not related to the selected join point 
could be accessed from the object that is associated with the PENode. The method 
getCurrent of the PEGraph returns the current object as a PENode, which can be used 
by the developer to get the object being associated with this node directly with help of 
method getObject. 



This representation is making use of generic types, which allow developers to use 
the type information they know, either directly or from the PEGraph object, without 
casting. For example, consider the following pointcut specification: 

pointcut pc(PEGraph<PENode<Division>, PEGraph<PENode<Customer>>> pg, 
            Division d, Customer c): path(pg, d -*-> c) …; 

Here, the source of any matching path is specified to be of type PE-

Node<Division>. Hence the following is type-safe: 
Division myDiv = pg.getCurrent().getObject(); 

We try to make it as easy as possible for the developer to query over the dynamic 
object information that is relevant to the join point. Of course, there is a complexity 
overhead in our representation of the PEGraph, however, this is significant from the 
developer’s point of view since it needs less effort to reason about type information 
(as compared to performing reflective operations and casting operations). 

pointcut pc1( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg,  
   PersistedList pl, Employee e): 

set(* *) && target(e) && path(pg, pl -/-> e); 
 

pointcut pc2( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg,   
   PersistedList pl, Employee e, Object o): 

set(* *) && target(o) && path(pg, pl -/-> e -/-> o); 
 

before( 
   PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> pg, 
   PersistedList pl, Employee e, Object o): 
  pc2(pg, pl, e, o) { 
  pg.setCurrentObject(e); 
  List<String> dirtyFields = pg.getNextFields(); 
  for(String dfn: dirtyFields) { 
         // get the field from the object e and  acquire a write-lock for it … 
  } 
}  

Fig. 12. The PEGraph object is used in the path pointcut in pc1 and pc2 

3.3   Field-Based Locking Example Revisited 

We use the new path pointcut in the pointcuts pc1 and pc2 as shown in Figure 12. 
According to the object graph in Figure 5, the path expression in pointcut pc1 
matches the path: (p -items-> c -president-> pres). The PEGraph object pg will 
contain this path and it will be exposed to the advice along with the bindings (pl=p, 
e=pres). The associated advice would adapt the join point as shown in the motivating 
example since the pres object and the field phone is local information to the join 
point. It must be noted that the aspect maintains the PersistedList objects from 
which the traversing process begins. 

When applying the pointcut pc2 to the collaboration diagram in Figure 5, the only 
matching path is: (p -items-> c -president-> pres -residence-> addr) that 



represents the resulting PEGraph object pg. This object along with the objects p, pres 
and addr are exposed to the associated before advice in the figure. The first line of 
the advice sets the current object of the pg to e, which is the variable bound to the 
Employee object pres. The second line gets all fields of the current object pres that 
are available in the pg graph and puts the result in the array dirtyFields. The rest of 
the advice is the code responsible for iterating through the list elements and acquiring 
a write-lock for each. The only available field according to the resulting path graph in 
pg is the field residence of the object pres. 

3.4   Version-Based Locking Example Revisited 

As in the last section, the extended path pointcut provides us with access to the re-
quired non-local information in the example: First, the persistent list object that con-
tains the changed object, second, all objects in all reference paths from the persistent 
list to its contained changed object. 

The following pointcut is making use of the path pointcut construct: 
pointcut pc(PEGraph<PENode<PersistedList>, PEGraph<Object, Object>> 
pg, PersistedList pl, Object o): 
  set(* *) && target(o) && path(pg, pl -/-> o); 

With respect to Figure 7, the resulting paths from this pointcut are: (p -items-> 
com1 -headquarter-> addr) and (p -items-> com2 -headquarter-> addr). 
These paths construct the part of the object graph that will be exposed to the advice as 
illustrated in Figure 13. This subgraph contains the information relevant to the set 
join point on the address object, that is, all objects that are referencing the changed 
object addr. The pointcut pc resolves one parameter binding: (pl=p, o=addr), which 
is exposed to the advice,  which will be executed just once.  

p:PersistedList 

com1:Company

com2:Company

addr:Address 

headquarter

headquarter 
 
 

 

Fig. 13. The relevant PEGraph from the object graph in Figure 7 

Since the whole reference paths are exposed to the advice, performing the cascad-
ing version locking would be trivial. The only thing developers have to do inside the 
advice is backward traversing the nodes of the pg object after setting the current ob-
ject of the pg to point to addr. They can easily update the version fields of all trav-
ersed objects in order to apply the cascading version locking. Note that although the 
paths in this example are of length 2, this algorithm is useful for any length of the 
reference path where there is a guarantee to get access to all owner objects of the 
current object. 



4   Related Work 

Path expressions, first introduced in [5] to synchronize the operations on data objects, 
then became central ingredient of object-oriented query languages such as [10, 17, 
34]. The W3 Consortium introduced the XPath language [6] in order to address parts 
of an XML document [4]. In our work, we study the benefit of the application of path 
expressions in increasing the expressiveness of pointcut languages in addressing 
object relationships at runtime and providing aspects with access to this information. 

Adaptive programming (AP) [20, 21] and strategic programming (SP) [19] provide 
interesting notions similar to the path expressions. They provide the developer with 
traversal control by the help of so-called traversal strategies and traversal schemes, 
respectively. The idea behind the aspect versions of AP and SP is that the advice is 
executed whenever the visitor component visits an object that belongs to a path that 
matches the given traversal. This is in contrast to the path pointcut that participates in 
the selection of the join point and exposes the matching object paths as well. 

A lot of research effort is done to provide access to the non-local join point proper-
ties. Some works cover the importance of selecting and adapting the join points based 
on execution trace matching. Stateful aspects [8, 35] define conditions based on finite 
state transitions to trigger advice executions on a protocol sequence of join points. 
Other trace-based solutions have been discussed in [2, 9, 36]. Data flow pointcuts 
[23] solve the problem of non-locality of data flow information at the join point. The 
context-aware aspects [33] provide means to access information that is associated 
with certain contexts that are currently available or occur in the past. Another well-
known example of accessing the non-local call stack at the join point is the cflow 
pointcut in AspectJ. However, all these proposals neither point to nor solve the prob-
lem of non-local join point properties that are based on object information. 

Some works already discussed the need for expressive join point models that re-
flect the mental model of the developer [32]. Moreover, expressive pointcuts increase 
the modularity [27] and are robust to absorb any changes to the application features 
and compositions. The authors in [27] followed their previous remark about pointcuts 
that access dynamic properties of the program [3] by implementing the Alpha lan-
guage whose pointcuts are Prolog queries over a database consisting of different 
semantic models of the program execution. In our proposal we have to keep small 
parts of the current heap at a given join point. In contrast to logic-based pointcuts, the 
path pointcut relies on traversing the heap to get relevant object information in a form 
of paths. Alpha predicates can be used to compose pointcuts that represent the notion 
of path pointcuts, however, these compositions may result in complex pointcut defini-
tions that can be avoided by using the path pointcut. Moreover, one of the main goals 
of our proposal is to apply the path expressions technique to AOP as an explicit con-
struct and to discuss the effects of this integration and how to resolve them. 

In association aspects [31], a new pointcut designator is introduced to AspectJ, 
namely associate, which is used to associate extended per-object aspect instances to 
a group of objects. The authors point to the need for multiple executions of the advice 
in the associated aspect instances. This multiple advice execution corresponds to our 
approach, however, they do not give a clear specification of the order in which these 
executions run such as what we have proposed in this paper. 



5   Discussion 

Objects graphs are directed and may contain cycles, which is a source of complexity 
since there is a infinite number of matching paths to a given path expression in such 
structure. We can minimize this complexity by considering some restrictions, e.g., 
finding paths in the object graph that contain a cover to the needed bindings. This can 
be achieved using any of the efficient algorithms to detect cycles in directed object 
graphs and stop traversing through these cycles. For example, the time complexity of 
Floyd's cycle-finding algorithm [7] is O(V), where V is the number of nodes in the 
graph. Moreover, this guarantees the termination of the path evaluation process. 

Depending on the path expression, there are different situations of complexity. If 
the source and the target objects of the path expression are specified, then the prob-
lem is minimized to the single-pair shortest path, which is faster than the cases where 
one or both objects are not know. The running time is ranging from O(V lg V + E) to 
O(V2 lg V + VE) or even to O(V3) in the worst case for finding all paths between any 
two objects [7], where V and E are the number of nodes and edges of the object graph 
respectively. In fact this complexity also depends on the algorithm being used and the 
type of the object graph. For example, in sparse graphs, where E is much less than V2, 
Johnson’s algorithm runs faster than the Floyd-Warshall algorithm. 

The here proposed extension for the path pointcut maintains the same ordering 
schema of the multiple advice executions at a given join point. I.e., the developers are 
asked to define their own ordering rules in a separate method. Following our argu-
ment about the rationale behind this design choice in [1], we still believe that it is not 
difficult to define reasonable ordering methods that ensure the termination. 

One important issue when dealing with the object graphs in persistence systems is 
how these systems manipulate the collection objects. Most persistence systems con-
sider these objects as second-class objects, e.g., [13]. When two objects are sharing a 
second class object then each will have its own copy of this shared object so the 
changes in one copy will not be observed by the other owner object. Consequently, 
there must be a clear definition of how to represent these objects in the resulting PE-
Graph from a path pointcut. For simplicity purposes, we ignore this issue in this paper 
and treat items of the collection individually. 

6   Conclusion 

In this paper, we continue our argumentation about the need for abstractions in as-
pect-oriented systems that provide access to the non-local join point context. The 
motivating examples show the need to access non-local join point context that is not 
only based on objects but also on the relationships between these objects. Our exam-
ples cover some recurrent situations that occur when applying well-known locking 
policies in object persistence systems in an aspect-oriented manner. We have consid-
ered two such policies, field-based locking and cascading version locking mecha-
nisms. For the first policy, we illustrate the need for accessing the non-local field 
information to apply the desired locking. In the second case, we show the need for 
getting the whole resulting paths instead of getting access to some objects in the path. 



Then we describe our solution to such problems as an extension for the path ex-
pression pointcut [1]. The new extension provides access to the whole part of the 
object graph that is related to the join point and that is constructed from the matching 
paths. This subgraph is exposed then by the path pointcut to the aspect. Then we 
discuss some issues related to the extension. These include the public interface of the 
constructed subgraph that the developers can use to reason about objects and their 
relationships inside their aspects. We give our arguments about this representation. 
Then we discuss various aspect-oriented programming concepts and how the path 
pointcuts influence them with the help of some illustrative examples. 

In the last section we present a general discussion about our proposal and some of 
its weaknesses. We suggest some possible ideas how to minimize the effects of these 
problems. These points are the focus of our future work.  

Our experience with the path expression pointcuts shows a reasonable number of 
cases that require access to non-local object relationship information in persistence 
systems. However, we expect that path pointcuts have a large impact on increasing 
the expressiveness of pointcut languages. The reason for this is the flexibility of the 
path pointcut to express the mental model of the developers upon the role of object 
relationships in join point selection. 
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