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Abstract
Join Point Designation Diagrams (JPDDs) permit developers to
design aspect-oriented software on an abstract level.
Consequently, JPDDs permit developers to communicate their
software design independent of the programming language in use.
However, developer face two problems. First, they need to
understand the semantics of JPDDs in addition to their
programming language. Second, after designing aspects using
JPDDs, they need to decide how to map them into their
programming language. A tool-supported translation of JPDDs
into a known aspect-oriented language obviously would ease both
problems. However, in order to achieve this goal, it is necessary to
determine what a "good" JPDD translation looks like, i.e. it is
necessary to have a number of principles that determine the
characteristics of a "good" translation. This paper describes a tool-
supported translation of JPDDs to aspect-oriented languages.
Principles for translating JPDDs are described and a concrete
mapping to the aspect-oriented language AspectJ is explained.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.
K.6.3 [Management of Computing and Information Systems]:
Software Management – software development. D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement –
documentation.
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1. Introduction
«Join Point Designation Diagrams» (JPDDs [22, 23, 24]) are a
graphical means to represent join point selections in a
programming language-independent manner. They are intended to
help developers communicate the underlying conceptual ideas of
their join point selections to others (cf. [24]). However, in order to
use JPDDs in daily software development, developers have to
solve two problems: First of all, they need to learn and understand

the notation and the semantics of JPDDs. Otherwise, they
wouldn't be able to create "correct" JPDDs, or read the ones of
others. Furthermore, they need to have a well-defined mapping
between the symbols used in JPDDs and their programming
language constructs. Otherwise, it would be hard to map a given
join point selection, outlined by a JPDD, to program code and,
moreover, to exploit an existing pointcut design, expressed by a
JPDD, in a different software development project.

One way to tackle these problems would be to use a tool that is
capable to translate JPDDs into code. Such a tool would help
developers to solve both of the mentioned problems: It would help
them in mapping JPDDs to their "native" programming language,
i.e. it would help them in detecting and exploiting a given JPDD
in their own program code. Thereby, it would also help them to
learn and understand the notation and semantics of JPDDs since
the translation would codify/reproduce the semantics of a given
JPDD in terms of the semantics of an aspect-oriented
programming language that is known to the developer.

In particular to enable the latter, it is essential that the tool
generates pointcut code that is easy to understand and that is in-
line with the JPDD it was generated from. Therefore, the quality
of the mapping implemented in the tool is significant. In this
paper, we present a (non-exclusive) set of principles
operationalizing a set of requirements that "good" mappings
should obey in our opinion, i.e. mappings

• which are easy to comprehend,
• which meet the "spirit" of the target programming

language, and
• which are in-line with the respective JPDD.

Based on these principles, we furthermore present a concrete
mapping for the aspect-oriented programming language AspectJ
[11], and discuss how the mapping complies to the principles.

The remainder of this paper is structured as follows: In section 2,
we motivate the contributions of our work with help of an
example. In section 3, we introduce JPDDs as the graphical design
notation that should be transformed into program code. In section
4, we discuss alternative mappings of JPDDs to program code and
conclude principles that "good" mappings should obey. In section
5, we outline concrete mappings to the aspect-oriented
programming language AspectJ. In section 6, we relate our work
to existing work. Section 7 concludes the paper.

2. Problem Statement
The contributions of this work yielded to the development of
aspect-oriented software is best motivated with help of an
illustrative example: Imagine a JAsCo [26] programmer and that
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is interested in implementing a data mining application on top of
an existing online shop (as described in [28], for example). One of
the data to be mined is the response of customers to promotional
offers. In particular, the developer is interested in selecting low
promotion-prone customers, i.e. customers who seem to discover
promotional offers merely "by accident" (example adopted from
[28], with slight modifications).

The JAsCo programmer probably wants to exploit the stateful
aspect language constructs of JAsCo to realize the data mining
aspects. The following code snippet is adopted from [28] (with
slight modifications), and shows only those lines of code that are
responsible for the join point selection (we abstract from the rest
since all other lines of code are irrelevant for the subsequent
considerations).

//defining join point selection
hook LowPromotionProneCustomerHook {
  LowPromotionProneCustomerHook(
    browseProducts(Category category),
    accessPromotions(CustomerID customer)) {

    start > helperTrans;
    helperTrans : execute(browseProducts) >
                  helperTrans || browsePromotionTrans;
    browsePromotionTrans : execute(accessPromotions);
  }
  //classify customer as low promotion-prone
  after browsePromotionTrans () {...}
} [...]

//binding join point selection to concrete method calls
LowPromotionProneCustomerHook hook1 =
  new LowPromotionProneCustomerHook(
    * OnlineShop.browse*(*),
    * OnlineShop.getPromotions(CustomerID)
  ) [...]

After having implemented these lines of code, let's assume that
the occasion arises that the developer needs to communicate the
aspect (i.e. your join point selection, in this case) to an audience
that is not familiar with JAsCo – for example, to other developers
who are interested in the underlying pointcut design and who have
not studied JAsCo, yet. However, if the audience has not studied
JAsCo yet, it is impossible to communicate the pointcut design
using the source code – because this requires in-depth knowledge
about JAsCo.

With help of a JPDD, it is possible to explain the join point
selection to a non-JAsCo-aware audience. The JPDD in Figure 1,
for example, can be used to illustrate the join point selection
realized by the code snippet shown above. The JPDD outlines that
the join point selection LowPromotionProneCustomerHook
distinguishes between different states. The transitions between
these states outline a protocol that customers must perform in
order to be classified as a low promotion-prone customer. First,
customers have to browse the online shop (to any
location/product) at least once. Then, they may continue browsing
as long as they feel like. Ultimately, though, they must find (and
follow) the promotions link. This is the situation when the online
shop receives the message getPromotions. At this point, the
aspect intercepts, and performs the desired action. This
correspond to after browsePromotionTrans in the

JAsCo code. In the JPDD this point is indicated by identifier
<?jp>.

Having such a JPDD, a means to represent your join point
selection is provided which abstracts from the programming
language being used actually to implement the system. This
should permit others to comprehend a join point selection without
the need to understand the underlying aspect-oriented language. In
order to actually do so, of course, those others must be capable to
read and understand JPDDs. Imagine, for example, an AspectJ
developer who is not familiar with JAsCo, and with state-based
join point selections in general, and who is interested in the
selection semantics underlying the JPDD in Figure 1. Having
never seen, and heard of, stateful aspects, he/she might wonder
what the JPDD in Figure 1 is referring to and what join points it is
actually selecting. In this case, it helps to provide the AspectJ
developer with a plain AspectJ implementation of the join point
selection. Such a mapping of the JPDD to his/her "native"
programming language should help him/her to understand the
JPDD, as well as similar JPDDs he/she will look at in the future.
Furthermore, such a translation would help the AspectJ developer
to use the join point selection (designed by a JAsCo developer),
while at the same time the JAsCo developer (designing the join
point selection) does not have to be familiar with AspectJ.

Translating JPDDs into programming languages is not
unproblematic, though. Usually, there exists a large variety of
possible ways to translate a given JPDD into an aspect-oriented
programming language. Hence, it is more than likely that, all too
often, developers will be unsure about the best way to map a
given JPDD into program code. However, having each developer
realize his/her own mapping would make the detection of an
implementation of a JPDD in the program code difficult. More-
over, having such developer-dependent, and thus non-uniform,
translations of JPDDs would obstruct a "learning-by-example"
approach as it has been proposed above to acquire the join point
selection semantics of JPDDs. Indeed, there are mappings that can
be considered more suitable to this way of learning JPDDs than
others. For these reasons, it can be considered essential to have
carefully thought-out mappings that (a) describe a uniform way of
translating JPDDs into program code and (b) that generate
program code which is easy to trace back to the respective JPDDs
(thus, facilitating the learning of JPDDs).

The contribution of this paper is to give principles for the
translation of JPDDs into aspect-oriented program code. They can
be seen as an evaluation framework for JPDD translations that are
considered to be "good" and "sustainable" with respect to the
goals (a+b) mentioned above. Furthermore, a concrete mapping is
given for the aspect-oriented programming language AspectJ
which aims to support the understanding of JPDDs when pursuing
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Figure 1: Documenting Join Point Selections With JPDDs.



a "learning-by-example" approach. It is discussed how far the
proposed mapping matches the postulated goals.

3. Join Point Designation Diagrams
«Join Point Designation Diagrams» (JPDDs [22, 23, 24]) are a
means to specify queries on software artifacts. As such, they are
particularly suited to express aspect-oriented join point selections,
such as pointcuts [11], traversal strategies [12], match or type
patterns [27, 11], or alike.

JPDDs outline a search pattern, which means that they specify a
set of selection constraints which is mapped against a given
software artifact (i.e. a program code or a running program).
Within that pattern, (a tuple of) identifiers (see Figure 2a) may be
assigned to particular elements in order to designate those parts of
the queried software artifact that should be actually selected by
the JPDD. JPDDs possess a export parameter box at their lower
right corner (see Figure 2b) which lists the identifiers of all
elements to select.

JPDDs come with a set of means to specify deviations in search
patterns. Examples are the asterisk wildcard (*) which abstracts
from an arbitrary number of characters in element names, or the
dot-dot-wildcard (..) which abstracts form an arbitrary number
of parameters in a parameter list (see Figure 2c). A vertical bar (|)
may separate alternative search patterns for element names (see
Figure 2c). Furthermore, JPDDs provide means to postulate the
existence of paths (of arbitrary length) along class/object
associations ( ), the inheritance hierarchy ( ), state
transitions ( ), or the call graph ( ) (see Figure 2c). Further
explanations on the effects of these deviation specification means
and examples of their usage will be given in the subsequent
subsections.

JPDDs are defined with help of a graphical notation. That notation
makes use of symbols from existing and well-established
graphical notations, such as message sequence charts, state charts,
flow charts1, and class/object diagrams. The precise notation used
in JPDDs is the one which can be found in the UML (the UML
terms the aforementioned notations differently, and talks about
interaction sequence diagrams, state diagrams, activity diagrams,
and class/object diagrams, respectively). JPDDs chose to use
symbols of various notations so that developers can choose those
symbols that suit their conceptual view on a join point selection
best (see [24] for further explications). The UML has been chosen
as the base notation for JPDDs since its symbols are considered to

                                                                
1 Program/data flow-model JPDDs will not be introduced in this

paper; the interested reader is pointed to [24] for further details.

be well-known to a broad range of developers. Nonetheless, it is
important to note that JPDDs alter the semantic of the original
UML symbols, and extend them with few new elements (see
Figure 2), in order to suit and attend the specific needs of a query
notation (see [23] for a more detailed discussion of the selection
semantics of JPDDs).

3.1 Structure JPDDs
JPDDs make use of symbols of different graphical notations in
order to provide the developer with appropriate means to express
the intention of their join point selection. Class and object
diagram symbols are used, for example, to express selections (i.e.
selection constraints) on the structure of programs and program
instances.

Figure 3 shows a JPDD demonstrating how this is accomplished
in detail: The example visualizes a join point selection that is
taken from [1] and which deals with the selection of state changes
of persisted objects. Its goal is to select also state changes that
occur to objects being affiliated with (owned by) the persisted
objects. In the example JPDD, all modifications2 of Address
objects affiliated with (owned by) a (persisted) Person object
are selected. Person objects are persisted by (contained in) a
PersistedList (which considers its contents to be of the
general type Object). The JPDD makes use of an indirect
association symbol ( ) in order to indicate that the Address
object does not need to be an immediate neighbor of the Person
object. Its association ends assert, however, that the (indirectly)
affiliated Address object must be reached via a composite
relationship, and that it must play the role addr. Furthermore, the
JPDD makes use of an indirect generalization symbol ( ) in
order to indicate that Person objects must be specializations
(subkinds) of Object objects – notwithstanding that there may
exist further specialization steps along the inheritance hierarchy.
Both (all) kinds of indirect relationships are adorned with a
multiplicity restricting the number of relationships (i.e.
(associations or generalizations, in this case) that need to be
traversed on the path from one object to the other. In its export

                                                                
2 I.e. any field assignment to fields of Address objects, indicated

in the JPDD (see Figure 3) as a stereotyped method invocation
of (pseudo) setter methods on Address objects (cf. [21]); for
further details on behavioral JPDDs, see subsequent sections.
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Figure 2: JPDD-Specific Symbols (cf. [23]).
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parameter box, the JPDD exposes the affiliated Person and
Address objects (<?obj> and <?addr>), as well as the
PersistedList (<?pl>) which is used to persist the Person
objects3.

Join point selection criteria on the program structure – which are
specified with the symbols described above – may be combined
with join point selection criteria on the program behavior – which
will be considered next. Figure 3 (right part) outlines how such
combinations could look like. Note how the identifier <?addr>
is used to concatenate the left part to the right part. Combining
JPDDs this way means that the selection constraints of both
JPDDs must be satisfied for the join points to be selected.

3.2 Message Invocation Model-JPDDs
One way of expressing join point selections on the behavior of
programs in JPDDs is by using symbols which are adopted from
UML interaction sequence diagrams (message sequence charts).
For example, the JPDD shown in Figure 4 uses lifelines ( ),
message symbols ( ), and activation bars () to render a join
point selection that selects all invocations of method search on
objects of type DiseaseRepositoryDBMS, having one
argument of type int and returning a value of type
DiseaseType, which come to pass within the control flow
( ) of any method (*(..):*) invoked on an object (<?s>) of
(sub)type ListServlet. The purpose of this join point
selection, which is adopted from [20], is to control access coming
from the Internet (i.e. via a ListServlet) to the Disease-
RepositoryDBMS. The JPDD returns the method invocation
(<?jp>) as a join point, together with the argument (<?arg>)
being passed as a parameter.

Message invocation model-JPDDs may be combined with other
JPDDs, e.g. structure JPDDs – as shown in Figure 4 (left part), –
meaning that the selection constraints of both JPDDs must be
satisfied for the join points to be selected. Note how the identifier
<?s> is used here to connect both kinds of JPDDs.

3.3 State Model-JPDDs
Another way to express join point selections on the behavior of
programs in JPDDs is by using symbols from UML state diagrams
(state charts). Figure 5 outlines an example how the symbols of
state model-JPDDs are used to represent a state-based join point
selection. The example is adopted from [19] and is used to prevent

                                                                
3 Apart from the modification join point <?jp>, itself; see

subsequent sections for further explanations on the specification
of join point selections on program behavior.

any access to deleted objects. Thereto, it selects any invocation on
messages beginning with set or get taking any number of
arguments, as well as any invocation on message toString
taking no argument, sent on any object (<?obj>) of (sub)type
PersistentRoot. Note how the join point selection makes use
of state symbols ( ) and state transition symbols ( ) in
order to emphasize that it is only interested in message invocation
events issued on objects that have received a delete message
before (taking no arguments) and are thus in state "deleted". The
join point selection returns the intercepted method call events
(<?jp>) together with the object (<?obj>) receiving such
events.

State model-JPDDs may comprise a special symbol () in
order to denote a path along state transitions (i.e. a sequence of
arbitrary state transitions) – similar to the way in which the
special symbol  denotes a path along the control flow (i.e. a
sequence of arbitrary messages) in message invocation-model
JPDDs (cf. previous section 3.2). Furthermore, state model-
JPDDs may be combined with other JPDDs, e.g. structure JPDDs
– as shown in Figure 5 (left part), – meaning that the selection
constraints specified in both JPDDs must be satisfied so that the
join points will be selected. Note how the object identifier
<?obj> is used here to connect the JPDDs.

4. Principles Of JPDD Translation
There typically exists an infinite number of possible solutions for
translating a JPDD to an aspect-oriented language. Hence, in
order to come to a reasonable conclusion on what a translation
should look like and what language features of the target language
should be used, guidelines must be found that help to determine
under which circumstances one mapping is considered better than
another. Therefore, in the following, we discuss a couple of
sample JPDDs with corresponding – alternative – language
mappings, and we elucidate why we consider the one mapping
better than the other. Then, we conclude from these considerations
and formulate a number of principles of "good" mapping design.

In order to ease the understanding of our argumentation, we
neglect to use other notational means than message sequence
model-JPDDs and other programming languages than AspectJ.
This is because we estimate that these means are most-familiar to
most of the readers of this paper. This does not mean, though, that
the following principles only pertain to the translation of message
sequence model-JPDDs into AspectJ. Furthermore, it should be
noted that this work only deals with code generation such as it is
known from forward engineering approaches (from JPDDs to
pointcut code). No assertions are being made about (principles of)
reverse engineering approaches (from pointcut code to JPDDs).

signature patternexistence of path
along call graph

* (..) : *

* : * <?s>* : * * : *
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Figure 4: A Message Invocation Model-JPDD (cf. also [23])
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4.1 Use of Pointcut Language Constructs
Figure 6 illustrates a sample JPDD based on interaction diagrams.
It states that an object of type A sends a message m1. Later on, an
object of type B sends a message m2 to an object of type C. The
last message m2 represents the join point to be selected.

In case we want to translate this JPDD into the target language
AspectJ, there are different possibilities how a corresponding
pointcut could look like.

One option is to specify a pointcut that selects the first message
m1 sent from a, and to specify an advice that stores this
information (together with the current thread that is about to be
executed) into a suitable data structure. Then, it is possible to
specify another pointcut selecting the message m2 sent from b to
c, and let it check whether there has been previously a message
m1 (by searching for it in the data structure).

Figure 7 illustrates what a corresponding implementation in
AspectJ looks like. An advice that refers to the pointcut pc1
stores the current thread into a dictionary along with the join point
specific data a and retains that way that message m1 has been
sent. The pointcut sampleJPDD_1 refers to that dictionary and
determines whether the current thread is contained as a key (using
AspectJ's if pointcut). Only if this is the case, sampleJPDD_1
selects message m2 (for reasons of simplicity we did not specify
the complete code for storing the data to and reading from the
dictionary). Note, that it is also necessary to remove the current
thread from the dictionary at the right point in time (when there is
no longer any method m1 on the call stack) which is not discussed
here.

Although this translation is technically correct, it suffers from the
problem that the translation does not consider the pointcut
construct cflow in AspectJ, which permits to specify the desired
join point selection directly and without the need of maintaining a
special data structure. Figure 8 illustrates a translation of JPDD

(1) using a cflow pointcut. A comparison of Figure 7 and
Figure 8 reveals that the first translation is relatively hard to
understand (even for experienced AspectJ programmers), while
the second one is not. The reason is that in the second case a
dedicated language construct of AspectJ is used that AspectJ
developers are well-familiar with and that they would usually
exploit when they specify a join point selection like the one
considered here: AspectJ programmers are familiar with AspectJ’s
control flow abstraction and use it when it is necessary.

From these considerations we conclude the first principle for
translating JPDDs to program code, which is that whenever there
is a construct in the underlying aspect-oriented programming
language that is dedicated to a special join point selection, this
feature should be used.

Principle 1 (Use of Pointcut Language Constructs): A
JPDD translation should express a JPDD’s join point
selection semantics in terms of those language constructs of a
target language that are particularly designed for the given
selection task.

Although this principle seems to be somewhat intuitive, its
intention is to make developers of JPDD mappings aware of the
individual capabilities of the target language, and to choose that
particular mapping that outlines best the semantics of a join point
selection in terms of the available target language constructs.

4.2 Reduction of Aspect State
Although join point selection constructs of the target
programming language should be used whenever appropriate (i.e.
in those situations which the constructs were designed for),
sometimes a programming language may fail to provide suitable
join point selection means. In that case, defining additional state
within aspects (or using other data structures) is a frequent
technique for overcoming the restrictions of the respective
pointcut language.

A common case in which this is necessary, for example, is the
realization of a state-based join point selection [5] with an aspect-
oriented programming language that does not provide suitable
selection means to reference states and/or state transitions.

For example, let's consider the join point selection that is
visualized in Figure 9, and which selects a message p to an object
of type D as a join point – provided that previously an object of

m1()

a : A b : B c : C

 ?jp

sampleJPDD_1

<?jp>: m2()

* : *

Figure 6: Sample JPDD (1).

static Hashtable d = new Hashtable ();
pointcut pc1(A a):
  call(*.m1()) && this(a);
pointcut sampleJPDD_1():
  call(*.m2()) && this(B) && target(C) &&
  if(contained());
static boolean contained() {
  return d.containsKey(Thread.currentThread());}

before(A a): pc1(a) {
   ..storing thread with a to dictionary d…
}

Figure 7: Translation of JPDD (1) into AspectJ.

pointcut sampleJPDD_1():
  cflow(call(*.m1()) && this(A)) &&
  call(*.m2()) && this(B) && target(C);

Figure 8: Translation of JPDD (1) into AspectJ using cflow.

m()

* : * a : A b : B

 ?jp

sampleJPDD_2

c : C d: D

n()

o()

<?jp>: p()

Figure 9: Sample JPDD (2).



type A has received a message m, an object of type B has received
a message n, and an object of type C has received a message o (in
that order). A join point selection like this is commonly known as
an application of a state-based join point selection (cf. [28, 24])4.
Now, if the target aspect-oriented programming language happens
not to be able to refer to states and/or state transitions within its
pointcut language, it is usually necessary to add further state
information to the aspect as a workaround.

Figure 10 outlines a possible mapping of the JPDD shown in
Figure 9 to AspectJ. For each message in the message interaction
model-JPDD (except the last one), a Boolean field is specified
within the aspect. Furthermore, for each message (except the last
one), a pointcut is added to the aspect selecting the message and
verifying whether the predecessor of the message has already been
reached. If this is the case, a before advice sets the respective
Boolean field to true. While all of these pointcuts and advice
merely exist to maintain the aspect state, only the last pointcut
selects the actual join point of interest: The last pointcut refers to
the message p sent to an object of type D – and verifies that all the
other messages have been executed before by evaluating the state
variable reachedThird. Similar to the previous section, it is
also necessary to specify the right point in time when the states
are to be set to false which is not discussed here.

Although the semantics of the mapping presented in Figure 10 is
correct, we consider this mapping to be not satisfying. With a
mapping like this, the number of state variables in the aspect tends
to grow quite large very fast, and so is the number of pointcuts
and advice in the aspect. We consider this to be confusing for the
developer because, when looking at the generated program code,
the developer is faced with an immense number of states,
pointcuts, and advice – although only one pointcut of them is
actually concerned with the selection of the join point of interest.
Therefore, we consider this mapping to be problematic (with
respect to using the generated code in order to understand the
JPDD semantics) because it does not emphasize the actual join
point selection (sampleJPDD_2).

Consequently, when working with (i.e. modifying or using) the
generated aspect code, the developer may easily happen to refer to

                                                                
4 Nevertheless, we have decided to visualize it by means of a

message interaction model-JPDD since we are going to
investigate its implementation using a "un-stateful" aspect-
oriented programming language. Furthermore, it could be
argued that this visualization represents the underlying
conceptual model of the developer (cf. [24] for a more detailed
discussion).

one of the generated "helper" pointcuts rather than the actual join
point selection – even though he/she did not intend to do so (and
should not do so).

Figure 11 illustrates another mapping of the JPDD above. In
contrast to the previous one, the code in Figure 11 provides only
one additional state member (currentState). That field is
intended to remember the current state of the aspect. Furthermore,
there is only one pointcut (innerSelectionState) that
monitors whether a new state has been reached, and only one
advice that increments the currentState member. In contrast
to the previous mapping, the interface of this aspect is less
overloaded with state-representing and state-maintaining
elements. Note, that Figure 11 does not denote when the current
state is set back to 0 (in correspondence to the previous
examples).

Following the discussion above, we consider this mapping
superior to the previous one, and conclude the following principle:

Principle 2 (Reduction of Aspect State): A mapping should
keep the number of elements to represent and maintain join
point selection-dependent aspect state as less as possible.

The term «elements» refers to any kind of program code that is
used to represent and maintain aspect state, here, such as field
definitions, methods, class definitions, pointcuts as well as advice.

4.3 Side Effect Free Pointcuts
Carrying on the considerations from the previous example, and
taking it to ultimate perfection, would lead to a mapping where
the maintenance of aspect state is included in the "real" pointcut
itself (i.e. the one concerned with the selection of the actual join
point of interest) – rather than having them separated into extra
pointcuts and advice.

Such a mapping is illustrated in Figure 12. Similar to the mapping
outlined in Figure 11, there is only one field (currentState)
that represents the current state of the aspect. In contrast to Figure
11, though, there is only one pointcut that subsumes the (entire)
join point selection outlined by the JPDD (see Figure 9). Apart
from that, there is a method setState which is invoked from
within the pointcut (see if pointcut designators), and which is
responsible for maintaining the aspect state. The method is
invoked with two integer parameters where the first one

static boolean reachedFirst = false; 
static boolean reachedSecond = false; 
static boolean reachedThird = false; 
 
pointcut pc1():  call(*.m()) && target(A); 
pointcut pc2():  call(*.n()) && target(B) && if (reachedFirst); 
pointcut pc3():  call(*.o()) && target(C) && if (reachedSecond); 
 
before(): pc1() { reachedFirst = true;} 
before(): pc2() { reachedSecond = true;} 
before(): pc3() { reachedThird = true;} 
 
pointcut sampleJPDD_2(): 
  call(*.p()) && target(D) && if (reachedThird); 

Figure 10: Translation of JPDD (2) into AspectJ.

static int currentState=0; 
pointcut innerSelectionState():   

(call(*.m()) && target(A) && if (currentState == 0)) | 
(call(*.n()) && target(B) && if (currentState == 1)) | 
(call(*.o()) && target(C) && if (currentState == 2))); 

before(): innerSelectionState() { currentState++;} 
pointcut sampleJPDD_2(): 
  call(*.p()) && target(D) && if (currentState == 3); 

Figure 11: Translation of JPDD (2) into AspectJ.

static int currentState=0; 
pointcut myPointcut():   
  (call(*.m()) && target(A) && if(setState(0,1))) | 
  (call(*.n()) && target(B) && if (setState(1,2))) | 
  (call(*.o()) && target(C) && if (setState(2,3))) | 
  (call(*.p()) && target(D) && if (setState(3,4)); 
public static boolean setState(int from, int to) { 
  if (currentState == from) currentState = to; 
  return currentState > 3; 
} 

Figure 12: Translation of JPDD (2) into AspectJ.



represents the number of the current state and the second one
represents the number of the next state. If the delivered current
state corresponds to the value of the variable currentState,
then the next state is assigned to this variable. The method returns
true if the current state is larger than 3. Hence, the pointcut
triggers the execution of a related advice only if the last state
(number 4) is reached.

A straightforward interpretation of principle 2 (see previous
section) would suggest that the mapping in Figure 12 is superior
to the mapping in Figure 11 because there is only one pointcut,
one field, and one method – as opposed to two pointcuts, one
field, and one advice as in Figure 11.

Nonetheless, we consider this mapping to be problematic because
the pointcut in Figure 12 does not only check whether certain
conditions hold (e.g. whether a particular state has been reached).
Rather, the pointcuts also takes care about updating the aspect
state: The evaluation of the setState method in the pointcut's
if clauses is not side-effect free. We feel that this breaks with the
expectations developers have when they study an AspectJ
pointcut. Moreover, a mapping to non side-effect free pointcuts
might confuse developers trying to understand the semantics of a
JPDD by studying the translated program code – because JPDDs,
being mere selection patterns, should not have any side effects by
default. Hence, we think that side-effects in the pointcut
evaluation reduce the understandability of the generated code.
Consequently, as a restriction to principle 2, we postulate:

Principle 3 (Side-Effect Free Join Point Selection): Join
point selections in a mapping should be side-effect free, i.e.
the evaluation of a pointcut must not change the state of the
system/the aspect.

Due to some characteristics of the underlying aspect-oriented
programming language, the situation may arise in which this
principle cannot be fully satisfied. For example, the use of the if
pointcut designator in AspectJ may change the state of the system
by referring to a method that triggers some state-changing aspect.
The main intention of the principle still holds despite this
possibility, though; i.e. developers should try to reduce any
(potential) side-effect within their join point selections.

4.4 Pointcut Headers
As already mentioned before, the occasion may arise where a
given JPDD cannot be directly transformed into a target language.
Such situations come to pass, for example, when a JPDD
developer makes use of a JPDD construct that does not have a
semantic counterpart in the target language. While in the previous
sections we dealt with workarounds for missing join point
selection means (which cause the creation of state within aspects),
in this section we are going to deal with workarounds for missing
means for join point context exposure.

Figure 13 illustrates a JPDD whose join point is a message
invocation of method m1 on an object of type Person.
Furthermore, in its structural selection constraints, the JPDD
requires that the Person object must be related to an Address
object via an association (in which the Address object is playing
the role address). As indicated in the export parameter box, the
JPDD exposes both the Person object (bound to the variable
?p) as well as the Address object (bound to the variable ?a).

If this JPDD has to be translated into AspectJ, the main problem is
that AspectJ only permits to expose particular objects to an

advice. This means that – with respect to the example given above
– only the Person object ?p can be exposed (using AspectJ's
target pointcut designator). The Address object ?a, on the
contrary, cannot be exposed with help of AspectJ's proper pointcut
language constructs. In consequence, a workaround
implementation must be found.

The first option would be to store the Address object ?a into a
variable of the aspect. That variable would be initialized properly
during the pointcut evaluation, and could be accessed by the
advice afterwards. Figure 14 illustrates a corresponding AspectJ
pointcut implementation. It makes use of an if pointcut
designator which refers to a method that (a) assigns the address
attribute5 of the Person object ?p (exposed by the target
pointcut designator) to the variable of the aspect, and (b) verifies
if the assigned object is an instance of type Address.
Afterwards, each advice affiliated with pc1 can access the
respective Address object ?a via the variable of the aspect. As
such, the same join point context is exposed as defined by the
corresponding JPDD.

Although this approach is feasible, we consider this solution to be
not desirable because the exposure of the Address object is
difficult to detect. As a consequence, the resulting join point
selection is hard to understand. Most aspect-oriented
programming languages (such as AspectJ, abc, JAsCo, etc.)
decided to make the exposure of join point context explicit in the
pointcut header – rather than “hiding” them in the aspect state.
Consequently, most aspect-oriented developers expect to have a
complete list of all exposed join point parameters in the pointcut
header – rather than having to search for them among the aspect’s
variables. "Hiding" exposed join point context in the aspect state
also imposes problems when it comes to pointcut composition. If
some join point parameters can be accessed only via an aspect’s
variable, developers wishing to compose a pointcut need to be
aware of these "implicit" join point parameters in order to
implement a proper composition – which is an additional source
of errors. Therefore, we consider it desirable to construct
pointcuts whose signatures (headers, including the exposed

                                                                
5 Accessing the address attribute of Person object ?p is not

unproblematic; see section 4.6 for further explications.

<?jp>: m1()

* : * <?p>* :
Person

 ?jp
 ?p
 ?a

sampleJPDD_3

<?p>* :
*

<?a> * :
Address

address

Figure 13: Sample JPDD (3).

static Address a; 
pointcut sampleJPDD_3(Person p):  
  call(*.m1()) && target(p) && if(hasAddress(p)); 
private static boolean hasAddress(Person p) { 
  return ((a=p.address) instanceOf Address) 
} 

Figure 14: Translation of JPDD (3) into AspectJ.



variables) are closely related to the signatures of the
corresponding JPDDs (i.e. its export parameter boxes).

Figure 15 illustrates an AspectJ implementation that we consider
more appropriate. The code contains a new aspect method
constructedJoinPoint, which is going to be invoked
whenever a Person object receives a message m1. The around
advice that is responsible for evaluating if the address attribute
of the Person object ?p (exposed by the target pointcut
designator) is an instance of type Address. If this is the case, it
calls the newly generated aspect method and passes the Person
object ?p, the Address object ?a, as well as an anonymous
ProceedObject as parameters (the sole purpose of the last
parameter is to be able to invoke the originally intercepted
message call, selected by pointcut pc1, from within the aspect
method constructedJoinPoint; cf. [8]). The invocation of
this newly generated aspect method can now be intercepted by
another pointcut sampleJPDD_3, which exposes the passed
arguments – in particular, the Person object ?p and the
Address object ?a – to a corresponding advice. As a result, the
same join point context is exposed as defined by the
corresponding JPDD.

Reflecting on these considerations, the principle underlying the
mapping presented in Figure 15 can be summarized as follows:

Principle 4 (Pointcut Headers): A JPDD translation should
generate pointcuts whose headers correspond to the exported
parameters as defined in the JPDD.

Having postulated that principle, a short note needs to be given to
aspect-oriented languages that do not provide dedicated
mechanisms for context exposure. One example for such a
language is AspectS [9], which basically exposes all parameters of
a method call to an advice. We think that even in those cases the
aforementioned principle should be obeyed. In case of AspectS,
this could mean to generate a new method (in analogy to the
previous AspectJ example) such that each of the export
parameters of the JPDD are parameters of the new method.

4.5 Restricting JPDD Translations
JPDDs are permitted to specify constraints on the join point which
either cannot be implemented in certain circumstances, or even in
general (i.e. never). One example for such a JPDD would be one
that refers to future data (cf. [7, 16, 25]).

For example, Figure 16 illustrates a JPDD which selects a
message m being sent to an object a of type A as the join point
(<?jp>). However, this join point is only selected if the target
object a receives another message n at a later point in time.
Furthermore, at an even later point in time, the object a is
required to sent a message o to an arbitrary object (which is
bound and exposed by the variable ?o). This last message also
represents a join point.

The problem with this JPDD is that it refers (for join point
<?jp>) to some future events in the system (i.e. messages n and
o). This leads to a twofold problem. First, it cannot be guaranteed
in general whether such a join point selection (<?jp>) is
computable at all. Second, most aspect-oriented languages (with
minor exceptions; cf. [16]) do not support the reference to future
events within their pointcut language. Nevertheless, there are
possible ways to still realize a translation of a JPDD like this.
First, in case the aspect-oriented target language does provide
suitable join point selection means to refer to future events, those
language features should be used. Second, if the aspect-oriented
target language does not provide those join point selection means,
a JPDD translation could at least “try” to determine whether such
events could happen (by means of static code analysis).

From our point of view, only the former solution seems justifiable
(because it would comply to principle 1; see section 4.1). The
latter solution is considered undesirable, though, because it would
go beyond the implementation of (reasonable) workarounds and
would mean to superimpose the "spirit" of the target programming
language with the "spirit" of JPDDs. With other words, we do not
consider it to be the goal of translations to extend a given target
programming language such that every selection pattern specified
by a JPDD can be performed in/executed with that target
language. Instead, we consider it sufficient that the mapping
translates “as much as possible” of the join point selection and
informs the developer which parts of a JPDD cannot be translated
correctly. We consider such approximation of the join point
selection to be still helpful because it permits developers to
understand at least some parts of the join point selection in terms
of the known target language and makes explicit what parts are
not translated in the correct way.

Concluding from these contemplations, we propose:

Principle 5 (Restrictions and Approximations of JPDD
Mappings): A description of a JPDD mapping needs to define
reasonable circumstances under which the mapping refuses to
translate a JPDD into a target language completely.

Object constructedJoinPoint(Person p, Address a, ProceedObject o)  
  { return o.doProceed(p); } 
 
abstract class ProceedObject {  
  abstract Object doProceed(Person p); } 
 
pointcut pc1(Person p):  
  call(*.m1()) && target(p); 
 
Object around(Person): pc1(p) { 
  Address a; 
  if ((a=p.address) instanceOf Address)  
   return constructedJoinPoint(p, a,  
     new ProceedObject { 
       Object doProceed(Person p) { return proceed(p); } 
     }); 
  else  
     return proceed (p); 
} 
 
pointcut sampleJPDD_3(Person p, Address a, ProceedObject po):  
   call(* *.constructedJoinPoint(Person, Address, ProceedObject))  
   && args(p, a, po); 

Figure 15: Translation of JPDD (3) into AspectJ using
generated aspect methods.

<?jp1>: m()

* : * a : A

?jp1
?jp2
 ?o

sampleJPDD_5

<?o>
* : *

n()

<?jp2>: o()

Figure 16: Sample JPDD (4).



Furthermore, reasonable approximations for a JPDD
translation should be specified (if possible).

In case a developer tries to translate a JPDD for which no
reasonable mapping exists, suitable error messages should be
thrown that point the developer to those elements in the JPDD that
need to be changed in order to gain a translatable JPDD.

4.6 Static Analysis of Program Code
Another – related – problem implementers of JPDD mappings
have to deal with is related to the different flavors in which
aspect-oriented languages perform static code analysis on the
generated pointcut code in order to verify if it is valid. An
example for such static analysis is type checking: While
languages like AspectJ are based on a typed programming
language (Java), languages like AspectS are not (Smalltalk).
Consequently, a translation of JPDDs into a typed programming
language would be expected to be conform to the underlying type
system.

However, the question is whether the JPDD translation itself is
responsible for guaranteeing such conformance, or whether the
resulting code should be simply handed over to the aspect-
oriented system so that the system can test it for conformity.

A suitable example to elucidate the problem has been given in
section 4.4 (see JPDD in Figure 13): The matter of interest is the
relationship between the Person object and the Address
object. According to the JPDD, it can be easily concluded that the
actual type of the variable ?o must be Person because it is a
Person object that receives message m1 (which is the actual join
point in the join point selection). However, it is not clear whether
the type Person has a field named address (as specified by
the role name at the association end pointing to the Address
object). Hence, from the (typed) perspective of AspectJ, it is not
clear whether this field can be simply addressed by using an
expression like p.address (where p is a variable of type
Person)– or if this would mean a type error.

One solution in AspectJ (respectively in Java) to overcome this
problem is to use the Reflection API. Instead of accessing the
field directly, we would first access the class of object ?o (i.e.
Person) in order to compute whether this class (or any
superclass) provides the appropriate field address, and would
try to access it only if the computation has yielded a positive
result. Figure 17 illustrates how such a check for the existence of
a field address would look like.

However, although this translation certainly meets the semantics
of the JPDD, we would not consider it to be useful with respect to
an easy comprehension of the generated pointcut code. Instead,
we think that a mapping may make positive assumptions about the
validity of a JPDD and therefore should translate JPDDs into
straightforward implementations. With other words, we propose
to leave some necessary static checks of the resulting code to the
target language. Consequently, we accept that the resulting code

possibly contains some errors that need to be fixed by the
developer after the pointcut code generation by hand – for the
sake of an increased understandability the resulting code.

Hence, we conclude:

Principle 6 (Static Constraints Checks Left to Aspect-
Oriented Language): A mapping of JPDDs should make
positive assumptions about the validity of a JPDD with
respect to static analysis checks that need to be performed by
the underlying aspect-oriented language. A mapping does not
need to perform such checks itself, but needs to document
situations where the resulting code might fail and provide
strategies how a defective translated code can be fixed.

Principle 6 is closely related to principle 5. Both principles refer
to situations where the generated join point selections in a given
target language either do not match the semantics of the
underlying JPDD (principle 5) or are semantically incomplete, i.e.
the generated code may contain errors that are left to be checked
by the target language (principle 6). Nevertheless, it should be
noted that the focus of each principle is different. Principle 5
refers to situations where it is (maybe inherently) not possible to
map a JPDD to code that matches the semantics of a JPDD
completely. In contrast to that, principle 6 refers to situations in
which a semantically correct mapping of a JPDD would be
possible, but where straightforward (though erroneous) solutions
exist that still permit developers to understand the underlying join
point selection.

5. AspectJ Mapping
This section describes mappings from JPDDs to the aspect-
oriented language AspectJ6. Thereto, we describe for AspectJ
how interaction-based join point selections, state-based join point
selections and structural JPDDs are translated into the language
and explain furthermore the mapping restrictions. The algorithms
underlying the mapping are explained informally and illustrated
using a non-trivial example.

Note, that we intentionally focus on message invocation models
and structure JPDDs here since they have been mainly used for
motivating the principles (cf. section 4).

5.1 Interaction JPDDs
As already explained in some examples in section 4, it is not
possible to translate interaction diagrams into pointcuts straight
forward, since it is possible that some state information need to be
generated.

In order to consider principle 1 (Use of Pointcut Language
Constructs) we need to determine what AspectJ language features
need to be considered for translating interaction diagrams.

First, the pointcuts call and execution can be directly used
for the translation, since they directly refer to single elements in
the JPDD (e.g. [23]). Second, AspectJ provides with the cflow
language construct means to specify indirect messages directly on

                                                                
6 We have also implemented already some preliminary tool-

supported translation to AspectS (http://dawis.icb.uni-
due.de/research/ aosd/join_point_designation_diagrams_jpdds/),
but since we assume that readers are rather familiar with
AspectJ, we do not discuss the AspectS mapping here in detail
and just give some insights about this mapping in the
conclusion.

static boolean checkAddress(Person p) { 
  try { 
    Field f = p.getClass.getField(“address”); 
    return (f.get(p)!=null); 
  } catch (Exception ex) {} 
  return false; 
} 

Figure 17: Translation of JPDD (3) into AspectJ.



the programming language level. Third, actual types that can be
specified within the object description of an interaction diagram
can be described using target, this and args under some
circumstances. The mapping has to consider that if pointcuts
cannot be used freely within cflow pointcuts [11]. Hence,
whenever there is a situation where it is desirable to use a cflow
pointcut but where additional constraints on objects, types or
messages are required, we need to construct a work-around.

  

m1() 

<?o> 
a : A 

 

b : B 
 
 

c : C 
 
 

?jp 
 ?o 
 

complexProtocol 

d: D 
 

* : * 

<?jp>: m4() 

e : E 

m2()  

m3() 

Figure 18. Example for Interaction-Based Selection.

Once we have a JPDD such as defined in Figure 18 we start from
the first message (which is message m1) and analyse whether this
message (and all messages caused by m1) can be described by a
cflow. In such a case, we would simply generate the cflow
pointcut. In the other case, we need to construct pointcuts and
advice which construct and maintain the state information
required for the join point selection.

We use the following rules to determine whether a message
sequence can be specified using the cflow construct:

1. each object participating in a message sequence (as a
sender or receiver) does not send or receive more than
one message (since this requires the construction of
additional state information)

2. all messages in the sequence are separated by the
indirection symbol (otherwise this means that one
message has to follow the previous message directly
which does not correspond to the semantics of cflow)

3. structural constraints on objects participating in the
message (sender, target, parameters) can be expressed in
terms of the pointcuts this, target and args (i.e.
no if pointcuts are necessary, which cannot be used
within cflow, cf. [11])

4. only the elements of the last message in the sequence
are exposed (or described identifiers that are used by
further elements in the join point selection).

Applying these rules to the interaction model in Figure 18, we see
that the complete interaction cannot be translated at once using the
cflow pointcut. Although rules number 3. and 4. are valid for all
elements in the interaction diagram, the straight forward
translation is not possible for the following reasons:

1. object a sends more than one message (m1 and m4,
which contradicts 1.)

2. object b sends more than one message (indirect
messages to c and to an unnamed object, which
contradicts 1.)

3. message m2 is the first message of a method in c (which
contradicts 2.)

However, we see that parts of the interaction can be represented
using cflow: Message m3 should occur within the control flow
of an object b (while there are further constraints on this object b)

In order to reduce the number of state variables (principle 2), we
use the proceed object idiom (as explained in section 4.4)
whenever there is a message at a later point in time that explicitly
needs to refer to an object of a previous message. Since the
message m4 needs to be sent from the object a (i.e. the same
instance that sends message m1), such a situation exists. We
construct an abstract class Proceed01 that is instantiated when
an object of A is executed (_state01_). At the same time, the
aspect’s state variable is set to state 1. When message m1 is sent
we refer to the previous object a via a cflow construct that refers
to the method _state01_. The cflow exposes the parameter of
that method. In that way it is not necessary to store object a itself
in an aspect’s variable. A message m1 is part of the interaction if
states has the value 1 and if the sender of the message equates
to the parameter exposed by the cflow.

Following the same approach as for _state01_, we construct a
new method _state02_ that sets the variable states to 2.

Figure 19 illustrates the resulting code, whereby the state with the
value 1 represents the state "object a is currently executing" and
the one with value 2 states "object a sends object b message m1".

static int states = 0; 
 
abstract class _Proceed01 {  abstract Object doProceed(A a);} 
pointcut _state01_(A a):  
    execution(* *.*(..)) && this(a) && if(states == 0); 
 
Object around(A a):_state01_(a) { 
    return _state01_(a, new _Proceed01() {  
      Object doProceed(A a) {return proceed(a); }});} 
 
// method that permits to expose object a 
Object _state01_(A a, _Proceed01 p) {  
    states = 1; return p.doProceed(a);} 
 
// Step 1: message m1 from a to b 
abstract class  
  _Proceed02 {  abstract Object doProceed(A a, A a2, B b);} 
pointcut _state02_(A a, A a2, B b):  
    cflow(execution(* *._state01_(A, ..)) && args(a, ..)) && 
    call(* *.m1()) && this(a2) && target(b) && if(a == a2)  
    && if(states==1); 
 
Object around(A a, A2 a2, B b):_state02_(a, a2, b) { 
    return _state02_(a, b, new _Proceed02() {  
      Object doProceed(A a, B b) {return proceed(a, a2, b); }});} 
 
Object _state02_(A a, B b, _Proceed02 p) {  
    states = 2; return p.doProceed(a, b); 
} 

Figure 19. AspectJ Translation of Figure 18 (step 1):
Translating message m1 from a to b.

Please note, that according the examples throughout this paper
Figure 19 does illustrate how the state variable is set back to some
previous values. However, this turns out to be not that



complicated. For example, the state 1 is abandoned, if the there is
no executing object a on the call stack, i.e. right after the
execution of an object a (that does not appear below the cflow
of an object of type A) the variable states is set to 0.

Applying each of the previous steps to all messages leads to the
additional code as illustrated in Figure 20. Although we did not
illustrate for the previous examples how to abandon a certain
state, we illustrate it here for the message m2: The special thing
about m2 is that it needs to be the first message in a method in c.
Hence, abandoning the state is an essential characteristics of the
selection here.

pointcut _state03_():  
    cflow(execution(* *._state02_(A, B, ..))) && 
    execution(* *.*(..)) && this(C) && if(states==2); 
before(): _state03_() { states = 3; } 
 
// Checking that m2 is the first message in c 
pointcut _state04_():  
    cflow(execution(* *._state02_(A, B, ..))) && 
    call(* *.m2()) && this(C) &&  target(D) && if(states==3); 
 
Object around():_state04_() { states = 4; return proceed();} 
 
pointcut _state04Abandoned_():  
    cflow(execution(* *._state02_(A, B, ..))) && call(* *.*(..)) &&  
    !(call(* *.m2()) && this(C) &&  target(D) && if(states==3)); 
before():_state04Abandoned_ () { states = 2; } 
 
pointcut _state05_():  
    cflow(execution(* *._state02_(A, B, ..))) &&   
    call(* *.m3()) && target(E)  
    && if(states==4); 
 
Object around():_state05_() { states = 5; return proceed();} 
 
// Mapping  the parameters to match JPDD param box 
abstract class  
  _Proceed03 {  abstract Object doProceed(A a, A a2);} 
 
pointcut _complexProtocol_(A a, A a2): 
    cflow(execution(* *._state00_(A, ..)) && args(a2, ..))  
    && call(* *.m4()) && this(a) && if(states == 5) && if(a==a2); 
 
Object around(A a, A a2): _complexProtocol_ (a, a2) { 
    return complexProtocol (a, a2, new _Proceed03() {  
      Object doProceed(A a, A a2) {return proceed(a, a2); }});} 
 
Object complexProtocol (A a, A a2, _Proceed03 p) {  
    return p.doProceed(a, a2);} 
 
// Checking that m2 is the first message in c 
pointcut complexProtocol(A a): 
   execution(* *.complexProtocol(A)) && args(a,..);  

Figure 20. AspectJ Translation of Figure 18 (continued).

The problem with stating “it is the first message in a method in c”
is that it also requires an additional state that describes that object
c has been entered. Since we also have the constraint that c needs
to be executed in the control flow of method _state02_ we
construct a corresponding pointcut that makes use of cflow (see
pointcut_state03_). A corresponding advice that refers to
_state03_ sets the variable states to value 3. Furthermore,

we generate a pointcut _state04_ that determines whether
states has the value 3 and message m2 is currently sent. In
order to guarantee that the message m2 is the first message, we
generate an advice that sets states back to value 2. The
corresponding pointcut _state04Abandoned_ checks,
whether states has already he value 3 and a messages is
currently sent that is not the desired message m2.

The implementation of the pointcut _state05_ is rather
straightforward: we already determined in the beginning of this
section that message m3 can be selected using the cflow
construct. Hence, we only need to determine the corresponding
start of the control flow (which is the method _state02_).

Finally, we need to create a pointcut that matches the parameter
box of the JPDD (principle 4, Pointcut Headers). The pointcut that
determines whether the last message is reached
(_complexProcotol_) requires 2 parameters in order to
check whether the sender of the message corresponds to the object
a. The original JPDD just requires one parameter (in addition to
the join point). Hence, we create a method complexProcotol
that also contains the objects a and a2 (in addition to the proceed
object) and create finally the pointcut complexProtocol
which refers to the method execution and exposes its first
argument.

5.2 Structural JPDDs
Structural JPDDs differ from interaction JPDDs in the way that
they do not define join points but structural constraints on those
join points. Consequently, a translation of a structural JPDD does
not necessarily lead to the definition of a pointcut, but rather to
the definition of a new method that needs to be invoked from
within a pointcut or an application of a primitive pointcut.

Since AspectJ already provides with the operator + as well as with
the pointcuts this, target and args the ability to specify
some structural constraints (on the actual type) it is desirable to
use them when they are needed (according to principle 1).
Whenever from within a join point a structural constraint is
required we check whether this structural constraint can be
directly mapped to these constructs.

In all other cases (which means that object relationships need to
be evaluated and potentially collected) we check,

1. whether all object information necessary to evaluate the
relationships are accessible from the join point itself
(which we call local accessibility).

2. whether related objects are being addressed from within
or exposed from the JPDD.

We consider a (directed) relationship to be locally accessible if the
source object of the relationship is bound to a variable that is used
in a join point selection within an interaction- or state-JPDD. If all
necessary information are locally accessible we construct a
method that has the necessary local information as input
parameters (the structural check-method).

If this is not the case, we generate pointcuts and corresponding
advice that collect all necessary information. From within the
structural check method such data structures need to be accessed.

In case object relationships are named, we construct directly field
accesses according to the principle 6 (Static Constraints Checks
Left to Aspect-Oriented Language). In case there are object
relationships that are not named, we generate reflective accesses



to an object’s fields. In case indirect object relationships are used,
we generate traversal methods that run over the object graph.

If objects are not being addressed from within the JPDD and if
they are not exposed, the structural check method is simply a
boolean method that checks whether the constraints of the
structural JPDD hold.

m1(<?o>p : P)

a : A b : B

 ?o
 ?ref

sampleSelection

<?o>* : P

<?ref>* : * x : X

a

Figure 21. Example for Structural JPDD.

If objects are addressed or exposed, it is necessary to bind them to
a variable (or a collection). Furthermore, because of the principle
4 (Pointcut Headers), we generate a method that (also) has this
variable (or collection) as parameter. This method is used by other
pointcuts in order have an explicit representation of the bounded
objects.

Figure 21 illustrates a structural JPDD that should be translated.
There are two relationships between the object bound to the
variable o and related objects. All relationships are local, because
the object o is bounded to the parameter of type P that is passed at
the join point. Furthermore, related objects are exposed by the
JPDD (the objects ref) while the related object a is not directly
exposed.

 
abstract class _Proceed01 {  abstract Object doProceed(P p);} 
pointcut _state01_ (P p):  
  call(*.m(P)) && this(A) && target(B) && args(p) &&  
  if(checkA(p)); 
 
static boolean checkA (P p) {return (p.a instanceOf X);} 
 
Object around(P p): _state01_ (p) { 
  Collection ref = bindRef(p); 
  return _state01_(p, ref,  
     new _Proceed01 { 
       Object doProceed(P p) { return proceed(p); } 
     }); 
} 
 
Collection bindRef(P p) { 
  Collection c = …a depth first search on p…;  return c ;} 
 
Object _state01_(P p, Collection c, _Proceed01 p1) { 
  return p.doProceed(p);} 
 
pointcut sampleSelection(P p, Collection c): 
  call(* *._state01_(P, Collection, ..)) && args(p, c); 

Figure 22. AspectJ Translation of Figure 21.

First, we construct for the non-exposed constraint on field a a
boolean method that accesses a from p and checks, whether the
actual type matches (type X). This boolean method is invoked
from a first pointcut (_state01_, see Figure 22).

Second, for the variable ref we construct a method bindRef
that traverses the object hierarchy using the reflective API, stores

all reachable objects in a collection and returns that collection. For
exposing this method, we generate a method that has all exposed
objects (p as well as ref) as a parameter and which proceeds
with the original join point. This method is being invoked when
the original join point is reached via an advice that refers to the
pointcut _state01_. This advice creates the proceed object
passed as an additional parameter to the method.

The pointcut usable by the developer which reflects on the
complete JPDD is the pointcut sampleSelection which has
the desired interface.

5.3 Stateful JPDDs
Our translation of state JPDDs is very closely related to the
translation of interaction JPDDs. To be more precisely, the
algorithm for translating state JPDDs is a subset of the one used
for translating interaction JPDDs: while the algorithm for
interaction JPDDs needs to determine how many states need to be
constructed, this information is already explicitly contained in a
state JPDD. Consequently, we just give a very short overview of
the mapping of stateful JPDDs.

The translation enumerates all states (to be stored in a
corresponding state field) and generates for all transitions between
two states a pointcut that checks the current state (which needs to
match the number of the source state of the transition), the
constraints in the join point (which corresponds to the translation
of constraints as discussed in section 5.1 and 5.2).

For each constructed pointcut a corresponding advice is generated
that updates the state (according to the number of the following
state). In case further elements need to be exposed, the
translations as explained in 5.2 have to be performed.

Although the principle 2 says that the number of states should be
minimized, this is not valid for the explicitly declared states in the
JPDD: Since the intention of such state is to have an explicit
representation, a reduction of the states would in such a situation
decrease the comprehensibility of the translated JPDD.

5.4 Restrictions of Translations
The here proposed translation does not translate any occurrence of
future data of join points. I.e. it is not possible translate a JPDD
which requires to evaluate information from the future of the
system. Instead, the translation approximates the join point
selection by leaving out all future data (which corresponds to the
explanation given in section 4.4).

 ...

sampleSelection

A

<?ref>*

[0..*]
...some interaction

JPDD...

Figure 23. Restriction of Structural JPDD translation.

However, there is another restriction of the translation that is
closely related to the background of the problem of future events.
The translation does not permit to translate structural JPDDs that
relate to subtype relationships where only the upper type is
known.



Figure 23 illustrates a structural JPDD were the variable ref
should be bound to all subtypes of A. The problem with
translating such a JPDD to AspectJ is that Java does not directly
permit to access any information about subtypes using the
reflection API. The reasons lies mainly in the architecture of Java
that permits to load classes later on via the class loader, i.e. not all
classes need to be known at a certain point in time. Consequently,
at a certain point in time (i.e. when the corresponding join point is
reached) the number of all subtypes cannot be computed. In order
to achieve this, it would be necessary to access the class loader in
order to perform some modifications to it which is from our point
of view not the task of a JPDD translation.

6. Related Work
The generation of program code from graphical notation such as
JPDDs has been supported by a vast variety of CASE tools since a
long time, and much research has been focused on how to
generate that program code best (cf. [3]). However, no tool to our
knowledge has been tackling the generation of pointcut code from
visual representations of join point selections (such as JPDDs).

The principles introduced in section 3 can be likely compared
with the effort do reduce so-called code-smells which have been
articulated for object-oriented software construction in the context
of refactorings (cf. [6]) as well as recently in the context of aspect-
oriented software development (cf. e.g. [13]): the intention is to
give some guidelines which prevent the resulting code to be not
readable or understandable. Furthermore, the guidelines can be
compared with coding guidelines as they exist for many
programming languages( cf. e.g. [18] for programming guidelines
on C++).

Other tool support exists in the domain of aspect-oriented
software development, such as ActiveAspects [4], or Asbro [17],
etc. The focus of these tools is to visualize the effects an aspect
has on a given target system. They are usually not concerned with
the generation of aspect code.

For the Theme/UML approach [2], a tool has been implemented
based on KerMeta [14] which enables the composition and
execution of themes (cf. [10]). Theme/UML does not provide a
means for specifying join point selections in isolation, though.
Consequently, no code generation has been necessary to do so.

7. Conclusions
In this paper, we have discussed the need for suitable mappings
for JPDDs to aspect-oriented programming languages. We have
come up with a (non-exclusive) list of principles according to
which these mappings have to be specified. We furthermore have
outlined a concrete mapping for the aspect-oriented programming
language AspectJ which comply to these principles.

Apart from the translations, which can be used in a forward
engineering approach to generate pointcut code from JPDDs, one
of the major contributions of this work has been the detailed
deduction of principles for that code generation. Some of these
principles are focused on an appropriate alignment of the
generated pointcut code with the structure of the JPDD (e.g.
principle 4); other specify what to do if the target programming
language does not provide sufficient join point selection means to
realize the JPDD appropriately (principles 5 and 6). While these
kinds of principles are very closely related to the translation of
JPDDs to pointcut code, other principles (such as the principles 1-
3) turn out to be even applicable as general design principles for
"good" pointcut design in the general case.

We also think that further principles are necessary to have a good
translation of JPDDs into code. For examples, we consider the use
of an appropriate naming convention to be necessary for states
that need to be constructed. However, the intention of this paper
was not to discuss such principles only, but the application of
these principles in a concrete mapping, too. Therefore, we did not
describe further principles here.

In section 5 we only described the mapping from JPDDs to
AspectJ. Nevertheless, we already have some preliminary tool-
supported translation of JPDDs into AspectS. An interesting
observation is that the resulting code largely differs from the
corresponding translation into AspectJ due to the different
philosophy of AspectS to consider aspects as ordinary classes
which need to be instantiated and explicitly woven. Furthermore,
since the pointcut language of AspectS widely differs from
AspectJ, it is the usual case that even simple join point selections
end up with the generation of pure Smalltalk code, where the
connection to the underlying aspect-oriented system is hard to
follow. For other target language (e.g. JAsCo) we expect that the
existence of stateful pointcuts widely eases the construction of
states (in comparison to the state constructions that were
necessary in section 5.1). However, we are currently not able to
provide a complete mapping from JPDDs to JAsCo and consider
this to be future work.

One goal of providing translations for JPDDs into program code
was to help developers learn and understand the semantics of
JPDDs by enabling them to study equivalent pointcuts in a
programming language they are familiar with. The idea was that
this would help them also to read and understand similar JPDDs
in other situations – in which they cannot resort to a
corresponding pointcut implementation. However, as the
examples given in section 5 have shown, this is not always the
case. As it turned out, a complex join point selection specified in a
JPDD is very likely to result into a likewise complex pointcut
specification in a given programming language. Hence, we can
conclude that – even if all mapping principles outlined in section
4 haven been obeyed – translations of JPDDs into program code
facilitate the comprehension of the selection semantics of JPDDs
only up to a certain complexity. Nevertheless, a translated JPDD
still gives the developer the chance to understand a JPDD
semantics by “playing around” with the join point selection in the
sense that the developer can try out how the join point selection
behaves in a given application.

It remains to mention that the principles specified in this paper are
not meant to be complete. Indeed, the authors already apply
further principles in their JPDD mappings (specifying how to deal
with combinations of JPDDs, for example, or how to use (i.e. use
to which extent) the reflection capabilities of the target language)
which haven't been presented here due to space limitations. It is
considered essential to maintain and complement this list of
principles as part of future work/research. Likewise the concrete
mappings should be extended with further mappings to other
programming languages.
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