From Aspect-Oriented Design To Aspect-Oriented
Programs: Tool-Supported Translation of JPDDs Into Code

Stefan Hanenberg, Dominik Stein, and Rainer Unland
Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen, Germany
{ stefan.hanenberg, dominik.stein, rainer.unland }@icb.uni-due.de

Abstract

Join Point Designation Diagrams (JPDDs) permit tpars to
design aspect-oriented software on an abstract | leve
Consequently, JPDDs permit developers to commumitaéir
software design independent of the programminguagg in use.
However, developer face two problems. First, thesed to
understand the semantics of JPDDs in addition teirth
programming language. Second, after designing &spesing
JPDDs, they need to decide how to map them intar the
programming language. A tool-supported translawénJPDDs
into a known aspect-oriented language obviouslyl&vease both
problems. However, in order to achieve this gda$ necessary to
determine what a "good" JPDD translation looks,like. it is
necessary to have a number of principles that mhter the
characteristics of a "good" translation. This pagescribes a tool-
supported translation of JPDDs to aspect-orientguages.
Principles for translating JPDDs are described andoncrete
mapping to the aspect-oriented language Aspeetdisined.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques.
K.6.3 [Management of Computing and I nformation Systems]:
Software Management software developmenD.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement —
documentation

Keywords
Aspect-Oriented Software Development; Aspect-OgddriDesign;
Query Models

1. Introduction

«Join Point Designation Diagrams» (JPDDs [22, 28) 2re a
graphical means to represent join point selectidns a
programming language-independent manner. Theyhéeaded to
help developers communicate the underlying cone¢ptieas of
their join point selections to others (cf. [24])owever, in order to
use JPDDs in daily software development, developenge to
solve two problems: First of all, they need to teand understand

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa first page. To copy
otherwise, to republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

AOSD 07, March 12-16, 2007, Vancouver, Canada

Copyright 2007 ACM 1-59593-615-7/07/03... $5.00

the notation and the semantics of JPDDs. Otherwikey

wouldn't be able to create "correct"” JPDDs, or réam ones of
others. Furthermore, they need to have a well-ddfimapping
between the symbols used in JPDDs and their pragmagn
language constructs. Otherwise, it would be harthap a given
join point selection, outlined by a JPDD, to prograode and,
moreover, to exploit an existing pointcut desigrpressed by a
JPDD, in a different software development project.

One way to tackle these problems would be to usmlathat is
capable to translate JPDDs into code. Such a taalldvhelp
developers to solve both of the mentioned problénvwgould help
them in mapping JPDDs to their "native" programmiggguage,
i.e. it would help them in detecting and exploitiaggiven JPDD

in their own program code. Thereby, it would alsdphthem to
learn and understand the notation and semantid®bDs since
the translation would codify/reproduce the semantt a given
JPDD in terms of the semantics of an aspect-orente
programming language that is known to the developer

In particular to enable the latter, it is essentl@ht the tool

generates pointcut code that is easy to understaddhat is in-

line with the JPDD it was generated from. Therefdne quality

of the mapping implemented in the tool is significaln this

paper, we present a (non-exclusive) set of priesipl
operationalizing a set of requirements that "gomddppings

should obey in our opinion, i.e. mappings

« which are easy to comprehend,

e which meet the "spirit" of the target programming
language, and

« which are in-line with the respective JPDD.

Based on these principles, we furthermore presecbrecrete
mapping for the aspect-oriented programming languagpectJ
[11], and discuss how the mapping complies to tieciples.

The remainder of this paper is structured as falow section 2,
we motivate the contributions of our work with hetg an
example. In section 3, we introduce JPDDs as taptgcal design
notation that should be transformed into prograghecdn section
4, we discuss alternative mappings of JPDDs tornaragode and
conclude principles that "good" mappings shouldyolre section
5, we outline concrete mappings to the aspect-taien
programming language AspectJ. In section 6, weeear work
to existing work. Section 7 concludes the paper.

2. Problem Statement

The contributions of this work yielded to the dewhent of
aspect-oriented software is best motivated withp hef an
illustrative example: Imagine a JAsCo [26] prograenmand that

is interested in implementing a data mining appilicaon top of
an existing online shop (as described in [28],ekample). One of
the data to be mined is the response of custoragrsomotional
offers. In particular, the developer is interestedselectinglow

promotion-prone customerse. customers who seem to discover

promotional offers merely "by accident" (exampleopigtd from
[28], with slight modifications).

The JAsCo programmer probably wants to exploit steteful
aspect language constructd JAsCo to realize the data mining
aspects. The following code snippet is adopted ffa8] (with
slight modifications), and shows only those linésade that are
responsible for the join point selection (we aligtfeom the rest
since all other lines of code are irrelevant foe tsubsequent
considerations).

//defining join point selection
hook LowPromotionProneCustomerHogk
LowPromotionProneCustomerHdok
browseProducts(Category category),
accessPromotions(Customerl|D custoirfer)

start > helperTrans;

helperTrans : execute(browseProducts) >
helperTrans || browsePromotion$yra

browsePromotionTrans : execute(accessPromgtions

/lclassify customer aslow promotion-prone
after browsePromotionTrans () {...}

YL

/Ibinding join point selection to concrete method calls
LowPromotionProneCustomerHook hook1 =
new LowPromotionProneCustomerHopok
* OnlineShop.browse*(*),
* OnlineShop.getPromotions(CustomerID)

)L

After having implemented these lines of code, lassume that
the occasion arises that the developer needs tonooinate the

aspect (i.e. your join point selection, in thiseja® an audience
that is not familiar with JAsCo — for example, tiher developers
who are interested in the underlying pointcut desigd who have
not studied JAsCo, yet. However, if the audience tat studied

JAsCo yet, it is impossible to communicate the fmih design

using the source code — because this requirespit-d@mowledge

about JAsCo.

With help of a JPDD, it is possible to explain tfoen point
selection to a non-JAsCo-aware audience. The JPDiEgure 1,
for example, can be used to illustrate the joinnpaelection
realized by the code snippet shown above. The JBRIhes that
the join point selection LowPromotionProneCustonaaid
distinguishes between different states. The triamsit between
these states outline a protocol that customers medbrm in
order to be classified as a low promotion-pronetamsr. First,
customers have to browse the online shop
location/product) at least once. Then, they maytinae browsing
as long as they feel like. Ultimately, though, theyst find (and
follow) the promotions link. This is the situatiovhen the online
shop receives the messaget Pr onot i ons. At this point, the
aspect intercepts, and performs the desired actibhis
correspond toafter browsePronotionTrans in the

JAsCo code. In the JPDD this point is indicated itbgntifier
<?j p>.

* : OnlineShop

browse*(..) browse*(..)

<?jp>: getPromotions
(<?cust>CustomerID)

Figure 1: Documenting Join Point Selections With JPDDs.

Having such a JPDD, a means to represent your pjoimt

selection is provided which abstracts from the paogning

language being used actually to implement the Byst€his

should permit others to comprehend a join poirgcain without

the need to understand the underlying aspect-eddahguage. In
order to actually do so, of course, those otherstina capable to
read and understand JPDDs. Imagine, for exampleAspect]

developer who is not familiar with JAsCo, and wittate-based
join point selections in general, and who is indezd in the
selection semantics underlying the JPDD in FigureHaving

never seen, and heard of, stateful aspects, heigjig wonder
what the JPDD in Figure 1 is referring to and wbat points it is

actually selecting. In this case, it helps to pdevihe AspectJ
developer with a plain AspectJ implementation @ jhin point

selection. Such a mapping of the JPDD to his/heativa"

programming language should help him/her to undedstthe
JPDD, as well as similar JPDDs he/she will looknathe future.

Furthermore, such a translation would help the &sbdeveloper
to use the join point selection (designed by a JAdéveloper),
while at the same time the JAsCo developer (desigttie join

point selection) does not have to be familiar witipectJ.

Translating JPDDs into programming languages is

unproblematic, though. Usually, there exists a davgriety of
possible ways to translate a given JPDD into arecspriented
programming language. Hence, it is more than likkkebt, all too
often, developers will be unsure about the best teaynap a
given JPDD into program code. However, having edeveloper
realize his/her own mapping would make the detactd an
implementation of a JPDD in the program code difficMore-
over, having such developer-dependent, and thusuniorm,

translations of JPDDs would obstruct a "learningelzgmple”
approach as it has been proposed above to acteineih point
selection semantics of JPDDs. Indeed, there ar@imggthat can
be considered more suitable to this way of leardR®Ds than
others. For these reasons, it can be considerehtegsto have
carefully thought-out mappings that (a) descrikmigorm way of
translating JPDDs into program code and (b) thategse
program code which is easy to trace back to theeative JPDDs

(to any (thus, facilitating the learning of JPDDs).

The contribution of this paper is to give principldor the
translation of JPDDs into aspect-oriented progradec They can
be seen as an evaluation framework for JPDD traostathat are
considered to be "good" and "sustainable" with eesgo the
goals (a+b) mentioned above. Furthermore, a canoneipping is
given for the aspect-oriented programming langudgpect]
which aims to support the understanding of JPDDsnwursuing

not

a "learning-by-example" approach. It is discussew Har the
proposed mapping matches the postulated goals.

3. Join Point Designation Diagrams

«Join Point Designation Diagrams» (JPDDs [22, 28) are a
means to specify queries on software artifactsséah, they are
particularly suited to express aspect-oriented jamimt selections,
such as pointcuts [11], traversal strategies [h2dfch or type
patterns [27, 11], or alike.

JPDDs outline a search pattern, which means ttest shecify a
set of selection constraints which is mapped agangiven
software artifact (i.e. a program code or a runnprggram).
Within that pattern, (a tuple of) identifiers (deigure 2a) may be
assigned to particular elements in order to desigtiese parts of
the queried software artifact that should be abtusglected by
the JPDD. JPDDs possess a export parameter bdreiatlawer
right corner (see Figure 2b) which lists the idies of all
elements to select.

JPDDs come with a set of means to specify deviatiansearch
patterns. Examples are the asterisk wildcardwhich abstracts
from an arbitrary number of characters in elememhes, or the

dot-dot-wildcard (.) which abstracts form an arbitrary number

of parameters in a parameter list (see FigureRugrtical bar [)
may separate alternative search patterns for elen@nes (see
Figure 2c). Furthermore, JPDDs provide means tdufaie the
existence of paths (of arbitrary length) along ®flalsject
associations /), the inheritance hierarchy</), state
transitions {74, or the call graph4?) (see Figure 2c). Further
explanations on the effects of these deviationifipatton means
and examples of their usage will be given in théssguent
subsections.

(a) Identifiers (c) Deviation Specification Means

‘ <?0bj> 2 p> J é
/I/ [0.4
identifiers J/
[0.74

(b) Export Parameter Box

7/(» * ok
e N .4 [
: Fomm———=d-o T
(R 1?jp E paths settget*) (;.) |
ony R e i
exposed elements or-operator wildcard:

Figure 2: JPDD-Specific Symbols (cf. [23]).

JPDDs are defined with help of a graphical notatiimat notation
makes use of symbols from existing and well-estalel
graphical notations, such as message sequencs,ctate charts,
flow chart$, and class/object diagrams. The precise notated u
in JPDDs is the one which can be found in the UNte (UML
terms the aforementioned notations differently, aaléts about
interaction sequence diagrams, state diagramsjtgatiiagrams,
and class/object diagrams, respectively). JPDDsseho use
symbols of various notations so that developersatmose those
symbols that suit their conceptual view on a jodinp selection
best (see [24] for further explications). The UMashbeen chosen
as the base notation for JPDDs since its symbels@msidered to

! Program/data flow-model JPDDs will not be introddidn this
paper; the interested reader is pointed to [24]uUdher details.

be well-known to a broad range of developers. Nuwgless, it is
important to note that JPDDs alter the semantithef original

UML symbols, and extend them with few new elemefsise

Figure 2), in order to suit and attend the speciéeds of a query
notation (see [23] for a more detailed discussibthe selection

semantics of JPDDs).

3.1 StructureJPDDs

JPDDs make use of symbols of different graphicdahatians in

order to provide the developer with appropriate mse@ express
the intention of their join point selection. Classid object
diagram symbols are used, for example, to expmrsstons (i.e.
selection constraints) on the structure of programd program
instances.

objectname pattern association (uni-directional composition)

class name pattern object
name of JPDD identifier
| | changePerson N
l, \\
. - Object : ’ <?pl>* : ok <?addr>* :
PersistedList Address

% [0.4

1
i
/]/ <?jp> <<set>i |
<20bj>* : <?addr>* ; 1 set*(.) :
\ Person ‘ 7 Address y
N A
B il et 1 ?addr 1
existence of path alol role name pattern E 20bp |
inheritance hierarct existence of path 2pl |
along object hierarchy exposed elements

Figure 3: A Structure JPDD (cf. [23]).

Figure 3 shows a JPDD demonstrating how this israptished

in detail: The example visualizes a join point egfn that is
taken from [1] and which deals with the selectidistate changes
of persisted objects. Its goal is to select alsdesthanges that
occur to objects being affiliated with (owned byetpersisted
objects. In the example JPDD, all modificatiord Addr ess
objects affiliated with (owned by) a (persistdedr son object
are selectedPer son objects are persisted by (contained in) a
Per si st edLi st (which considers its contents to be of the
general typeChj ect). The JPDD makes use of an indirect
association symbok~) in order to indicate that thaéddr ess
object does not need to be an immediate neighbtired?er son
object. Its association ends assert, however, ttreat(indirectly)
affiliated Addr ess object must be reached via a composite
relationship, and that it must play the ralédr . Furthermore, the
JPDD makes use of an indirect generalization syn&b#~) in
order to indicate thaPer son objects must be specializations
(subkinds) ofCbj ect objects — notwithstanding that there may
exist further specialization steps along the irthade hierarchy.
Both (all) kinds of indirect relationships are aded with a
multiplicity restricting the number of relationskip (i.e.
(associations or generalizations, in this case} tieed to be
traversed on the path from one object to the otlmeits export

2|.e. any field assignment to fields Addr ess objects, indicated
in the JPDD (see Figure 3) as a stereotyped mdthaatation
of (pseudo) setter methods Addr ess objects (cf. [21]); for
further details on behavioral JPDDs, see subsegetions.

parameter box, the JPDD exposes the affiliaked son and
Addr ess objects €?0bj > and <?addr >), as well as the
Per si st edLi st (<?pl >) which is used to persist tiRer son

objects.

Join point selection criteria on the program strtet— which are
specified with the symbols described above — maygdmbined
with join point selection criteria on the programhiavior — which
will be considered next. Figure 3 (right part) m#k how such
combinations could look like. Note how the idemtifc?addr >

is used to concatenate the left part to the rigit. gCombining
JPDDs this way means that the selection constraftboth
JPDDs must be satisfied for the join points todlected.

3.2 Message I nvocation M odel-JPDDs

One way of expressing join point selections on hiebavior of
programs in JPDDs is by using symbols which areptetbfrom
UML interaction sequence diagrams (message sequeTants).
For example, the JPDD shown in Figure 4 uses rigsli |),
message symbols—(»), and activation bar{]j to render a join
point selection that selects all invocations of metsear ch on
objects of type Di seaseRepositoryDBMS, having one
argument of typeint and returning a value of type
Di seaseType, which come to pass within the control flow
() of any method*((. .) : *) invoked on an objecks>) of
(sub)type Li st Servl et. The purpose of this join point
selection, which is adopted from [20], is to cohocess coming
from the Internet (i.e. via hi st Servl et) to theDi sease-
Reposi t or yDBMS. The JPDD returns the method invocation
(<?j p>) as a join point, together with the argumen®?4r g>)
being passed as a parameter.

7 diseaseTypeAccess ™
4 \
/ \
:’ *: List *ok <> L * *ok * . Disease \:
i Servlet RepositoryDBM S i
| % P
1 * | 1
! /‘ (0.7 <?jp>: i |
i et n search(<?arg>*: inQ ! !
,\ <P : : DiseaseTyp |
N v S L R R R 3
p
-- J?arg

lifeline messageexistence of path signature pattern
activation bar along call graph

Figure4: A Message Invocation M odel-JPDD (cf. also [23])

Message invocation model-JPDDs may be combined oittler
JPDDs, e.g. structure JPDDs — as shown in Figytefdpart), —
meaning that the selection constraints of both JPDiist be
satisfied for the join points to be selected. Nut& the identifier
<?s> is used here to connect both kinds of JPDDs.

3.3 State Model-JPDDs

Another way to express join point selections on liiebavior of

programs in JPDDs is by using symbols from UMLestdiagrams
(state charts). Figure 5 outlines an example havsymbols of
state model-JPDDs are used to represent a state-fizia point

selection. The example is adopted from [19] angsed to prevent

3 Apart from the modification join poink?j p>, itself; see
subsequent sections for further explanations orspleeification
of join point selections on program behavior.

any access to deleted objects. Thereto, it sedegtsnvocation on
messages beginning witbet or get taking any number of
arguments, as well as any invocation on messagét ri ng
taking no argument, sent on any objecPdbj >) of (sub)type
Per si st ent Root . Note how the join point selection makes use
of state symbolsC_) and state transition symbols—) in
order to emphasize that it is only interested issage invocation
events issued on objects that have receivdelaet e message
before (taking no arguments) and are thus in Steketed”. The
join point selection returns the intercepted mettoadl events
(<?j p>) together with the object<fobj >) receiving such
events.

/

* . Persistent
Root

%[0..*}

! |
\ RN,
S— [L
| ?0bj !

state name patterstate state transition constraint™ ™ """ """
Figure5: A State Model-JPDD (cf. [24]).

State model-JPDDs may comprise a special symb#h) in
order to denote a path along state transitions &i.eequence of
arbitrary state transitions) — similar to the way which the
special symbol/~ denotes a path along the control flow (i.e. a
sequence of arbitrary messages) in message invneaatdel
JPDDs (cf. previous section 3.2). Furthermore, estatodel-
JPDDs may be combined with other JPDDs, e.g. streictPDDs
— as shown in Figure 5 (left part), — meaning tie selection
constraints specified in both JPDDs must be satisio that the
join points will be selected. Note how the objederitifier
<?o0bj > is used here to connect the JPDDs.

4. Principles Of JPDD Translation

There typically exists an infinite number of possibolutions for
translating a JPDD to an aspect-oriented languétgnce, in

order to come to a reasonable conclusion on whaareslation

should look like and what language features ofténget language
should be used, guidelines must be found that teeletermine
under which circumstances one mapping is considee¢ter than
another. Therefore, in the following, we discusscauple of

sample JPDDs with corresponding — alternative —guage

mappings, and we elucidate why we consider the roapping

better than the other. Then, we conclude from tleessiderations
and formulate a number of principles of "good" mappesign.

In order to ease the understanding of our argurtientawe
neglect to use other notational means than messageence
model-JPDDs and other programming languages thagreds.
This is because we estimate that these means atefandiliar to
most of the readers of this paper. This does natnmigough, that
the following principles only pertain to the traatsbn of message
sequence model-JPDDs into Aspectd. Furthermorshatld be
noted that this work only deals with code generatiach as it is
known from forward engineering approaches (from DRDo
pointcut code). No assertions are being made gpoutciples of)
reverse engineering approaches (from pointcut twd®DDs).

4.1 Useof Pointcut Language Constructs
Figure 6 illustrates a sample JPDD based on irtieradiagrams.
It states that an object of typesends a messagd. Later on, an
object of typeB sends a messag® to an object of typ&€. The
last message® represents the join point to be selected.

/" sampleJPDD_1 N

1 \

a: A * ok b:B c:C

Figure 6: Sample JPDD (1).

In case we want to translate this JPDD into thgetatanguage
AspectJ, there are different possibilities how arexponding
pointcut could look like.

One option is to specify a pointcut that selects filst message

nl sent froma, and to specify an advice that stores this

information (together with the current thread thagbout to be
executed) into a suitable data structure. Thefs ipossible to
specify another pointcut selecting the mess&esent fromb to
c, and let it check whether there has been prewoaishessage
mL (by searching for it in the data structure).

static Hashtable d sew Hashtable ();
pointcut pc1(A a):
call(*m1()) && this(a);
pointcut sampleJPDD_1():
call(*.m2()) && this(B) && target(C) &&
if(contained());
static boolean contained() {
return d.containsKey(Thread.currentThread());}

before(A a): pcl(a) {
..storing thread with a to dictionary d...

}

Figure7: Trandlation of JPDD (1) into AspectJ.

Figure 7 illustrates what a corresponding implematon in
Aspect] looks like. An advice that refers to thentmut pcl
stores the current thread into a dictionary aloitf the join point
specific dataa and retains that way that messade has been
sent. The pointcidanpl eJPDD_1 refers to that dictionary and
determines whether the current thread is contaasea key (using
AspectJ's f pointcut). Only if this is the caseanpl eJPDD_1

selects messag®? (for reasons of simplicity we did not specify

the complete code for storing the data to and repdftiom the
dictionary). Note, that it is also necessary to aeenthe current
thread from the dictionary at the right point imé& (when there is

no longer any methoudil on the call stack) which is not discussed

here.

Although this translation is technically corredtsuffers from the
problem that the translation does not consider plntcut

constructcf I owin AspectJ, which permits to specify the desired

join point selection directly and without the negfdnaintaining a
special data structure. Figure 8 illustrates astetion of JPDD

(1) using acfl ow pointcut. A comparison of Figure 7 and
Figure 8 reveals that the first translation is tre&dy hard to
understand (even for experienced Aspect] prograg)methile
the second one is not. The reason is that in thensecase a
dedicated language construct of Aspect] is used Alpect]
developers are well-familiar with and that they \ebwsually
exploit when they specify a join point selectiokelithe one
considered here: AspectJ programmers are familidr AspectJ’s
control flow abstraction and use it when it is resaey.

pointcut sampleJPDD_1():
cflow(call(*m1()) && this(A)) &&
call(*m2()) && this(B) && target(C);

Figure 8: Trandation of JPDD (1) into AspectJ using cflow.

From these considerations we conclude the firsacipie for
translating JPDDs to program code, which is thag¢wever there
is a construct in the underlying aspect-orientedgmmming
language that is dedicated to a special join ps@éction, this
feature should be used.

Principle 1 (Use of Pointcut Language Constructs): A
JPDD translation should express a JPDD’s join point
selection semantics in terms of those languagetaats of a
target language that are particularly designed tbe given
selection task.

Although this principle seems to be somewhat ivaijt its

intention is to make developers of JPDD mappingaravef the
individual capabilities of the target language, aodchoose that
particular mapping that outlines best the semamiics join point

selection in terms of the available target languagestructs.

4.2 Reduction of Aspect State

Although join point selection constructs of the ger
programming language should be used whenever apai®(i.e.
in those situations which the constructs were desigfor),
sometimes a programming language may fail to pewditable
join point selection means. In that case, defiradgitional state
within aspects (or using other data structures) isrequent
technique for overcoming the restrictions of thespective
pointcut language.

A common case in which this is necessary, for exemp the
realization of a state-based join point selecti@nvith an aspect-
oriented programming language that does not proeideable
selection means to reference states and/or stasitions.

-

_~”"sampleIPDD_2
// \\
,/ *ox a:A b:B c:C d:D \\\
i |
! T T T T T !
Poim : | : P
1 1] 1 1
Y i i i !
: nQ) | o | = :
! T gl | i !
L Fo() i 7 i | !
1 Ll 1
' , | | 1 ool
\ <?jp>: p() | | | g /
\ e
o | | L D

Figure 9: Sample JPDD (2).

For example, let's consider the join point selectithat is
visualized in Figure 9, and which selects a mespatgean object
of type D as a join point — provided that previously an objef

type A has received a messagean object of typ® has received
a messaga, and an object of typ€ has received a messagé€in
that order). A join point selection like this ismamonly known as
an application of a state-based join point seleci. [28, 24]f.
Now, if the target aspect-oriented programming leagg happens
not to be able to refer to states and/or statesitians within its
pointcut language, it is usually necessary to addhér state
information to the aspect as a workaround.

Figure 10 outlines a possible mapping of the JPDDws in
Figure 9 to AspectJ. For each message in the megstgaction
model-JPDD (except the last one), a Boolean fisldpecified
within the aspect. Furthermore, for each messagmefe the last
one), a pointcut is added to the aspect selectiagrtessage and
verifying whether the predecessor of the messagalneady been
reached. If this is the casepaf or e advice sets the respective
Boolean field tot r ue. While all of these pointcuts and advice
merely exist to maintain the aspect state, onlyl#s¢ pointcut
selects the actual join point of interest: The [asihtcut refers to
the messagp sent to an object of tyd@— and verifies that all the
other messages have been executed before by éngltia state
variabler eachedThi rd. Similar to the previous section, it is
also necessary to specify the right point in tinteew the states
are to be set thal se which is not discussed here.

static boolean reachedFirst = false;

static boolean reachedSecond = false;
static boolean reachedThird = false;

pointcut pcl(): call(*.m()) && target(A);
pointcut pc2(): call(*.n()) && target(B) && if (reachedFirst);
pointcut pc3(): call(*.0()) && target(C) && if (reachedSecond);

before(): pcl() { reachedFirst = true;}
before(): pc2() { reachedSecond = true;}
before(): pc3() { reachedThird = true;}

pointcut sampleJPDD_2():
call(*.p()) && target(D) && if (reachedThird);

Figure 10: Trandation of JPDD (2) into AspectJ.

Although the semantics of the mapping presenteéidare 10 is
correct, we consider this mapping to be not satiglyWith a
mapping like this, the number of state variableghaaspect tends
to grow quite large very fast, and so is the nuntfepointcuts
and advice in the aspect. We consider this to Inéusong for the
developer because, when looking at the generategtan code,
the developer is faced with an immense number afest
pointcuts, and advice — although only one pointuthem is
actually concerned with the selection of the joainp of interest.
Therefore, we consider this mapping to be problemétith
respect to using the generated code in order t@rmstahd the
JPDD semantics) because it does not emphasizecthal goin
point selectionganpl eJPDD_2).

Consequently, when working with (i.e. modifying vsing) the
generated aspect code, the developer may easipehdp refer to

4 Nevertheless, we have decided to visualize it lmams of a
message interaction model-JPDD since we are goimmg
investigate its implementation using a "un-statefabpect-
oriented programming language. Furthermore, it d¢obk
argued that this visualization represents the Uyider
conceptual model of the developer (cf. [24] for arendetailed
discussion).

one of the generated "helper" pointcuts rather thamactual join
point selection — even though he/she did not intendo so (and
should not do so).
gtatic int currentState=0;
pointcut innerSelectionState():
(call(*.m()) && target(A) && if (currentState == 0)) |
(call(*.n()) && target(B) && if (currentState == 1)) |
(call(*.0()) && target(C) && if (currentState == 2)));
before(): innerSelectionState() { currentState++;}
pointcut sampleJPDD_2():
call(*.p()) && target(D) && if (currentState == 3);

Figure 11: Translation of JPDD (2) into AspectJ.

Figure 11 illustrates another mapping of the JPOidve. In
contrast to the previous one, the code in Figur@rbVides only
one additional state membecuf r ent St at €). That field is
intended to remember the current state of the aspechermore,
there is only one pointcuti fner Sel ecti onSt at e) that
monitors whether a new state has been reachedpmlydone
advice that increments tloaur r ent St at e member. In contrast
to the previous mapping, the interface of this espe less
overloaded with state-representing and state-niainta
elements. Note, that Figure 11 does not denote \lnercurrent
state is set back t® (in correspondence to the previous
examples).

Following the discussion above, we consider thisppiegy
superior to the previous one, and conclude thewiatig principle:

Principle 2 (Reduction of Aspect State): A mapping should
keep the number of elements to represent and niraijtan
point selection-dependent aspect state as lesesshpe.

The term «elements» refers to any kind of prograakecthat is
used to represent and maintain aspect state, bech, as field
definitions, methods, class definitions, pointcagsvell as advice.

4.3 Side Effect Free Pointcuts

Carrying on the considerations from the previouangxe, and
taking it to ultimate perfection, would lead to apping where
the maintenance of aspect state is included if'rémd" pointcut
itself (i.e. the one concerned with the selectibhe actual join
point of interest) — rather than having them sepdrénto extra
pointcuts and advice.

static int currentState=0;

pointcut myPointcut():
(call(*m()) && target(A) && if(setState(0,1))) |
(call(*.n()) && target(B) && if (setState(1,2))) |
(call(*.0()) && target(C) && if (setState(2,3))) |
(call(*.p()) && target(D) && if (setState(3,4));

public static boolean setStateft from, int to) {
if (currentState == from) currentState = to;
return currentState > 3;

}

Figure 12: Translation of JPDD (2) into AspectJ.

Such a mapping is illustrated in Figure 12. Simitathe mapping
outlined in Figure 11, there is only one fielou¢ r ent St at e)
that represents the current state of the aspecbritrast to Figure
11, though, there is only one pointcut that subsuthe (entire)
join point selection outlined by the JPDD (see FégQ). Apart
from that, there is a methakt St at e which is invoked from
within the pointcut (seéf pointcut designators), and which is
responsible for maintaining the aspect state. Thathaod is
invoked with two integer parameters where the fimte

represents the number of the current state ands¢hend one
represents the number of the next state. If theveteld current
state corresponds to the value of the variahler ent St at e,
then the next state is assigned to this variaile. ethod returns
true if the current state is larger than 3. Hence, fgbatcut
triggers the execution of a related advice onlyhié last state
(number 4) is reached.

A straightforward interpretation of principl@ (see previous
section) would suggest that the mapping in Figwresisuperior
to the mapping in Figure 11 because there is onb pointcut,
one field, and one method — as opposed to two gt one
field, and one advice as in Figure 11.

Nonetheless, we consider this mapping to be pradtierhecause
the pointcut in Figure 12 does not only check whetbertain
conditions hold (e.g. whether a particular state been reached).
Rather, the pointcuts also takes care about upgakie aspect
state: The evaluation of theet St at e method in the pointcut's
i f clauses is not side-effect free. We feel that Ibihésaks with the
expectations developers have when they study aned$p
pointcut. Moreover, a mapping to non side-effeeefipointcuts
might confuse developers trying to understand dreastics of a
JPDD by studying the translated program code —usecdPDDs,
being mere selection patterns, should not havesateyeffects by
default. Hence, we think that side-effects in theintrut
evaluation reduce the understandability of the geed code.
Consequently, as a restriction to principleve postulate:

Principle 3 (Side-Effect Free Join Point Selection): Join
point selections in a mapping should be side-effies, i.e.
the evaluation of a pointcut must not change tladestf the
system/the aspect.

Due to some characteristics of the underlying aspeented
programming language, the situation may arise inchvtthis
principle cannot be fully satisfied. For examplee uise of thé f
pointcut designator in Aspect] may change the sfatiee system
by referring to a method that triggers some sth@sging aspect.
The main intention of the principle still holds g@#ée this
possibility, though; i.e. developers should try meduce any
(potential) side-effect within their join point setions.

4.4 Pointcut Headers

As already mentioned before, the occasion may asisere a
given JPDD cannot be directly transformed intorgetlanguage.
Such situations come to pass, for example, whenPRBDJ
developer makes use of a JPDD construct that doedave a
semantic counterpart in the target language. Whitbe previous
sections we dealt with workarounds for missing jginint

selection means (which cause the creation of siitién aspects),
in this section we are going to deal with workamdsifior missing
means for join point context exposure.

Figure 13 illustrates a JPDD whose join point ismassage
invocation of methodml on an object of typePerson.
Furthermore, in its structural selection constsinthe JPDD
requires that th®er son object must be related to &adr ess
object via an association (in which thddr ess object is playing
the roleaddr ess). As indicated in the export parameter box, the
JPDD exposes both theer son object (bound to the variable
?p) as well as thé&ddr ess object (bound to the variab®a).

If this JPDD has to be translated into AspectJ ntlaé problem is
that Aspect) only permits to expose particular abjeto an

advice. This means that — with respect to the elagipen above
— only thePer son object?p can be exposed (using AspectJ's
t ar get pointcut designator). ThAddr ess object?a, on the
contrary, cannot be exposed with help of Aspeptdiper pointcut

language constructs. In consequence, a workaround
implementation must be found.

" sampleJPDD_3 ™

l/ \\

:' <?p>~k : L <?p>* ‘:

! * Person | |

i ! T

i address <2ip> mi() . | i

i |

L] <2a> ET

\ | Address : Hop !

< | na i

Figure 13: Sample JPDD (3).

The first option would be to store teldr ess object?a into a
variable of the aspect. That variable would bdahited properly
during the pointcut evaluation, and could be acwksgy the
advice afterwards. Figure 14 illustrates a corradpay AspectJ
pointcut implementation. It makes use of arfi pointcut
designator which refers to a method that (a) asdigeaddr ess
attributé of the Per son object ?p (exposed by thé ar get
pointcut designator) to the variable of the aspawet (b) verifies
if the assigned object is an instance of typddress.
Afterwards, each advice affiliated witpbcl can access the
respectiveAddr ess object?a via the variable of the aspect. As
such, the same join point context is exposed ameatefby the
corresponding JPDD.

static Address a;
pointcut sampleJPDD_3(Person p):
call(*.m1()) && target(p) && if(hasAddress(p));
private static boolean hasAddress(Person p) {
return ((a=p.addresshstanceOf Address)

Figure 14: Translation of JPDD (3) into AspectJ.

Although this approach is feasible, we consides Hulution to be
not desirable because the exposure of Alldr ess object is
difficult to detect. As a consequence, the resgltjain point
selection is hard to understand. Most aspect-@iknt
programming languages (such as AspectJ, abc, JAs@o)
decided to make the exposure of join point conéicit in the
pointcut header — rather than “hiding” them in tepect state.
Consequently, most aspect-oriented developers expdtave a
complete list of all exposed join point parametershe pointcut
header — rather than having to search for them grtitom aspect’'s
variables. "Hiding" exposed join point context retaspect state
also imposes problems when it comes to pointcutposition. |f
some join point parameters can be accessed onlgrviaspect’s
variable, developers wishing to compose a pointemed to be
aware of these "implicit" join point parameters arder to
implement a proper composition — which is an addai source
of errors. Therefore, we consider it desirable tonstruct
pointcuts whose signatures (headers, including éxposed

5 Accessing theaddr ess attribute ofPer son object?p is not
unproblematic; see section 4.6 for further expiared.

variables) are closely related to the signatures tbhé
corresponding JPDDs (i.e. its export parameter £loxe

Figure 15 illustrates an AspectJ implementatiori W consider
more appropriate. The code contains a new aspethoohe
const ruct edJoi nPoi nt, which is going to be invoked
whenever @er son object receives a message. Thear ound
advice that is responsible for evaluating if #ddr ess attribute
of the Per son object ?p (exposed by the ar get pointcut
designator) is an instance of typddr ess. If this is the case, it
calls the newly generated aspect method and p#ss€gr son
object ?p, the Addr ess object ?a, as well as an anonymous

45 Restricting JPDD Trandlations

JPDDs are permitted to specify constraints onahepgoint which
either cannot be implemented in certain circumstanor even in
general (i.e. never). One example for such a JPDDIdvbe one
that refers tduture data(cf. [7, 16, 25]).

For example, Figure 16 illustrates a JPDD whichedsl a
messagen being sent to an objeet of type A as the join point
(<?j p>). However, this join point is only selected if tkerget
object a receives another messageat a later point in time.
Furthermore, at an even later point in time, thgedba is
required to sent a messageto an arbitrary object (which is

ProceedObj ect as parameters (the sole purpose of the last hound and exposed by the variaBle). This last message also

parameter is to be able to invoke the originallyelioepted
message call, selected by pointpatl, from within the aspect
methodconst r uct edJoi nPoi nt ; cf. [8]). The invocation of
this newly generated aspect method can now becéeped by
another pointcutsanpl eJPDD_3, which exposes the passed
arguments — in particular, thBer son object ?p and the

Addr ess object?a — to a corresponding advice. As a result, the
is exposed as defined be th

same join point context
corresponding JPDD.

Object constructedJoinPoint(Person p, AddressoaegledObject 0)
{ return o.doProceed(p); }

abstract ¢l ass ProceedObject {
abstract Object doProceed(Person p); }

poi ntcut pcl(Person p):
cal(*.m1()) && target(p);

Object around(Person): pcl(p) {
Address a;
if ((a=p.addresshstanceOf Address)
retur n constructedJoinPoint(p, a,
new ProceedObject {
Object doProceed(Person pe{ur n proceed(p); }
B
dese
return proceed (p);
}

pointcut sampleJPDD_3(Person p, Address a, ProceedObject po
call(* *.constructedJoinPoint(Person, Address, Procégetd))
&& args(p, a, po);

Figure 15: Trandation of JPDD (3) into AspectJ using
gener ated aspect methods.

Reflecting on these considerations, the principideaulying the
mapping presented in Figure 15 can be summarizéallaws:

Principle 4 (Pointcut Headers): A JPDD translation should
generate pointcuts whose headers correspond texperted
parameters as defined in the JPDD.

Having postulated that principle, a short note sgecbe given to
aspect-oriented languages that do not provide dtmtic
mechanisms for context exposure. One example fah sal
language is AspectS [9], which basically exposkpahmeters of
a method call to an advice. We think that everhmsé cases the
aforementioned principle should be obeyed. In adsAspectS,
this could mean to generate a new method (in apalogthe
previous Aspect] example) such that each of theorexp
parameters of the JPDD are parameters of the nelaothe

represents a join point.

The problem with this JPDD is that it refers (fainj point
<?j p>) to some future events in the system (i.e. messagad
0). This leads to a twofold problem. First, it cahbe guaranteed
in general whether such a join point selectiot?j(p>) is
computable at all. Second, most aspect-orientegukeges (with
minor exceptions; cf. [16]) do not support the refeee to future
events within their pointcut language. Neverthelabere are
possible ways to still realize a translation of RDD like this.
First, in case the aspect-oriented target langudags provide
suitable join point selection means to refer tafatevents, those
language features should be used. Second, if {hecaeriented
target language does not provide those join p@ldction means,
a JPDD translation could at least “try” to deterenimhether such
eventscouldhappen (by means of static code analysis).

~~ sampleJPDD_5 ~
*ox a:A

/
’

\

|

1

I <?jpl>: m(Q, | i '

1

%_no_{ P

|
i <2ip2>: 00y b - o<k,
\ ! [:?J_pl

1
1

\ 2
N 1 1
N 1 2C

~

Figure 16: Sample JPDD (4).

From our point of view, only the former solutioreseas justifiable
(because it would comply to principle 1; see sectibl). The
latter solution is considered undesirable, tholmgitause it would
go beyond the implementation of (reasonable) waorkads and
would mean to superimpose the "spirit" of the tapgegramming
language with the "spirit* of JPDDs. With other wsy we do not
consider it to be the goal of translations to edtangiven target
programming language such that every selectiorefpatipecified
by a JPDD can be performed in/executed with thageta
language. Instead, we consider it sufficient the¢ tnapping
translates “as much as possible” of the join pasiglection and
informs the developer which parts of a JPDD catmotranslated
correctly. We consider such approximation of thé jpoint

selection to be still helpful because it permitsvalepers to
understand at least some parts of the join poietsgen in terms
of the known target language and makes explicittvgaats are
not translated in the correct way.

Concluding from these contemplations, we propose:

Principle 5 (Restrictions and Approximations of JPDD
M appings): A description of a JPDD mapping needs to define
reasonable circumstances under which the mappifgses to
translate a JPDD into a target language completely.

Furthermore, reasonable approximations for
translation should be specified (if possible).

In case a developer tries to translate a JPDD fbiclw no
reasonable mapping exists, suitable error messsagesld be
thrown that point the developer to those elementsé JPDD that
need to be changed in order to gain a translatiild.

4.6 Static Analysisof Program Code

Another — related — problem implementers of JPDDppiags
have to deal with is related to the different flessan which
aspect-oriented languages perform static code sisalyn the
generated pointcut code in order to verify if it valid. An
example for such static analysis is type checkivghile
languages like Aspect) are based on a typed progregn
language (Java), languages like AspectS are notal(aik).
Consequently, a translation of JPDDs into a typesb@amming
language would be expected to be conform to thenyidg type
system.

However, the question is whether the JPDD tramsiatiself is
responsible for guaranteeing such conformance, logthver the
resulting code should be simply handed over to @spect-
oriented system so that the system can test @dformity.

A suitable example to elucidate the problem hashbgieen in
section 4.4 (see JPDD in Figure 13): The matténtefest is the
relationship between th&er son object and theAddr ess
object. According to the JPDD, it can be easilyatoded that the
actual type of the variabl@o must bePer son because it is a
Per son object that receives messagke (which is the actual join
point in the join point selection). However, itrist clear whether
the typePer son has a field namedddr ess (as specified by
the role name at the association end pointing &Athdr ess
object). Hence, from the (typed) perspective of &g, it is not
clear whether this field can be simply addressedubiyng an
expression likep. addr ess (where p is a variable of type
Per son)- or if this would mean a type error.

One solution in AspectJ (respectively in Java) veroome this
problem is to use the Reflection API. Instead ofessing the
field directly, we would first access the classodiject ?0 (i.e.

Person) in order to compute whether this class (or any

superclass) provides the appropriate fialidr ess, and would
try to access it only if the computation has yielde positive
result. Figure 17 illustrates how such a checktlier existence of
a fieldaddr ess would look like.

static boolean checkAddress(Person p) {

try {
Field f = p.getClass.getField(“address”);
return (f.get(p)!=null);

} catch (Exception ex) {}

return false;

}

Figure 17: Trandlation of JPDD (3) into AspectJ.

However, although this translation certainly mets semantics
of the JPDD, we would not consider it to be usefith respect to
an easy comprehension of the generated pointcig. dodtead,
we think that a mapping may make positive assumptabout the
validity of a JPDD and therefore should transla®DDs into
straightforward implementations. With other words propose
to leave some necessary static checks of the irggubde to the
target language. Consequently, we accept thatefigting code

a JPDD possibly contains some errors that need to be fikgdthe

developer after the pointcut code generation bydharfor the
sake of an increased understandability the reguttiae.

Hence, we conclude:

Principle 6 (Static Constraints Checks Left to Aspect-
Oriented Language): A mapping of JPDDs should make
positive assumptions about the validity of a JPDDhw
respect to static analysis checks that need todrfopned by
the underlying aspect-oriented language. A mappiogs not
need to perform such checks itself, but needs twurdent
situations where the resulting code might fail gmavide
strategies how a defective translated code carxeé f

Principle 6 is closely related to principle 5. Bghinciples refer
to situations where the generated join point selestin a given
target language either do not match the semanticghe
underlying JPDD (principle 5) or are semanticafigamplete, i.e.
the generated code may contain errors that aréoldfe checked
by the target language (principle 6). Neverthelésshould be
noted that the focus of each principle is differeBtinciple 5
refers to situations where it is (maybe inherentlg} possible to
map a JPDD to code that matches the semantics 3PCD
completely. In contrast to that, principle 6 refésssituations in
which a semantically correct mapping of a JPDD dobk
possible, but where straightforward (though errars¢solutions
exist that still permit developers to understarel uhderlying join
point selection.

5. Aspectd Mapping

This section describes mappings from JPDDs to theed-
oriented language AspeftJThereto, we describe for Aspect]
how interaction-based join point selections, staeed join point
selections and structural JPDDs are translated theolanguage
and explain furthermore the mapping restrictiortse algorithms
underlying the mapping are explained informally athastrated
using a non-trivial example.

Note, that we intentionally focus on message intionamodels
and structure JPDDs here since they have beenymaéeld for
motivating the principles (cf. section 4).

5.1 Interaction JPDDs

As already explained in some examples in sectioit 4 not

possible to translate interaction diagrams intonfmoits straight
forward, since it is possible that some state mfation need to be
generated.

In order to consider principle 1 (Use of Pointcuanguage
Constructs) we need to determine what Aspect] kEggdeatures
need to be considered for translating interactiagréms.

First, the pointcuteal | andexecuti on can be directly used
for the translation, since they directly refer togée elements in
the JPDD (e.g. [23]). Second, Aspect] provides withcf | ow

language construct means to specify indirect messdgectly on

5 We have also implemented already some prelimirtanj-
supported translation to AspectS (http://dawisliob.
due.de/research/ aosd/join_point_designation_diagrgpdds/),
but since we assume that readers are rather fanvilith
Aspect], we do not discuss the AspectS mapping ihedetail
and just give some insights about this mapping fe t
conclusion.

the programming language level. Third, actual tyfies can be
specified within the object description of an iatgion diagram
can be described usirtgar get, t hi s andar gs under some
circumstances. The mapping has to consider itfiatpointcuts

cannot be used freely withief| ow pointcuts [11]. Hence,
whenever there is a situation where it is desirablese af | ow

pointcut but where additional constraints on olgjedypes or
messages are required, we need to construct aavouiad.

""" complexProtocol .

y \

/ \
/ <?0> b:B c:C d: D *ox e E \\
Il arA |
: T T T :
[0 | i
| i 1
I ; 1 1
’ “ﬂ;,[| |
1 1
!] | ;
! L% m3 :
i 1 |
‘\\ <?jp>: m4(r ol I/

\ 1 oo

ST ! ki ap

o~ 1?0 .

Figure 18. Examplefor Interaction-Based Selection.

Once we have a JPDD such as defined in Figure 18tavefrom
the first message (which is messadg and analyse whether this
message (and all messages causedfh)ycan be described by a
cfl ow. In such a case, we would simply generate aheow
pointcut. In the other case, we need to constroattputs and
advice which construct and maintain the state médion
required for the join point selection.

We use the following rules to determine whether assage
sequence can be specified usingahé ow construct:

1. each object participating in a message sequencea (as
sender or receiver) does not send or receive nhame t

3. message® is the first message of a method in ¢ (which
contradicts 2.)

However, we see that parts of the interaction camepresented
usingcf | ow. Messagen8 should occur within the control flow
of an objecb (while there are further constraints on this objgc

In order to reduce the number of state variablescjple 2), we
use the proceed object idiom (as explained in @ecd.4)
whenever there is a message at a later point i tiirat explicitly
needs to refer to an object of a previous mess8gee the
messagam needs to be sent from the object(i.e. the same
instance that sends messagk), such a situation exists. We
construct an abstract claBsoceed01 that is instantiated when
an object ofA is executed (st at e01_). At the same time, the
aspect’s state variable is set to sthtdVhen messageill is sent
we refer to the previous objegtvia acf | ow construct that refers
to the method st at e01_. Thecf | owexposes the parameter of
that method. In that way it is not necessary toestjecta itself

in an aspect’s variable. A messagk is part of the interaction if
st at es has the valuéd and if the sender of the message equates
to the parameter exposed by tifd ow.

Following the same approach as fat at e01_, we construct a
new method st at e02_ that sets the variabt at es to 2.

Figure 19 illustrates the resulting code, wherdigydtate with the
value 1 represents the state "objaeds currently executing” and
the one with value 2 states "objectends objedd messagenl".

static int states = 0;
abstract class_Proceed01 { abstract Object doProceed(A a);}

pointcut _state01_(A a):
execution(* *.*(..)) && this(a) && if(states == 0);

one message (since this requires the constructfion o Objectaround(A a):_state01 (a) {

additional state information)

2. all messages in the sequence are separated by the
indirection symbol (otherwise this means that one
message has to follow the previous message directly

which does not correspond to the semantiasf dfow)

3. structural constraints on objects participating the
message (sender, target, parameters) can be egbinss
terms of the pointcutshi s, t ar get andargs (i.e.

noif pointcuts are necessary, which cannot be used

within cf | ow, cf. [11])

4. only the elements of the last message in the seguen
are exposed (or described identifiers that are used
further elements in the join point selection).

Applying these rules to the interaction model igufe 18, we see
that the complete interaction cannot be translateshce using the
cf | ow pointcut. Although rules number 3. and 4. aredvédr all
elements in the interaction diagram, the straigbtwérd
translation is not possible for the following reaso

1. objecta sends more than one messagg @nd 4,
which contradicts 1.)

2. object b sends more than one message (indirect

return _state01_(anew _Proceed01() {
Object doProceed(A ay §turn proceed(a); 1)}

/I method that permits to expose object a
Object _state01_(A a, _Proceed01 p) {
states = Ireturn p.doProceed(a);}

/I Step 1: message m1l from a
abstract class
_Proceed02 { abstract Object doProceed(A a, /Bd®d;}
pointcut _state02_(A a, A a2, B b):
cflow(execution(* *._state01_(A, ..)) &&args(a, ..)) &&
call(* *.m1()) && this(a2) && target(b) && if(a == a2)
&& if(states==1);

Objectaround(A a, A2 a2, B b):_state02_(a, a2, b) {
return _state02_(a, mew _Proceed02() {
Object doProceed(A a, B bjdturn proceed(a, a2, b); }}}

Object _state02_(A a, B b, _Proceed02 p) {
states = 2;eturn p.doProceed(a, b);
}

Figure 19. Aspectd Trandation of Figure 18 (step 1):
Tranglating messagemlfromatob.

messages to ¢ and to an unnamed object, which pjease note, that according the examples througthisitpaper

contradicts 1.)

Figure 19 does illustrate how the state variabketsback to some
previous values. However, this turns out to be nioat

complicated. For example, the statés abandoned, if the there is
no executing objec on the call stack, i.e. right after the
execution of an objed (that does not appear below thel ow
of an object of typd\) the variablest at es is set ta.

Applying each of the previous steps to all messagmds to the
additional code as illustrated in Figure 20. Altgbuwve did not
illustrate for the previous examples how to abandorertain
state, we illustrate it here for the message The special thing
aboutn?® is that it needs to be the first message in a odeihc.
Hence, abandoning the state is an essential chasdics of the
selection here.

pointcut _state03_():
cflow(execution(* *._state02_(A, B, ..))) &&
execution(* *.*(..)) && this(C) && if(states==2);
before(): _state03_() { states = 3; }

/I Checking that m2 is the first message
pointcut _state04_():
cflow(execution(* *._state02_(A, B, ..))) &&
cal(* *m2()) && this(C) && target(D) && if(states==3);

Objectaround():_state04_() { states = Aeturn proceed();}

pointcut _stateO4Abandoned_():
cflow(execution(* *._state02_(A, B, ..))) &&call(* *.*(..)) &&
Icall(* *.m2()) && this(C) && target(D) && if(states==3));
before():_state04Abandoned_ () { states = 2; }

pointcut _state05_():
cflow(execution(* *._state02_(A, B, ..))) &&
call(* *.m3()) && target(E)
&& if(states==4);

Objectaround():_state05_() { states = beturn proceed();}

/l Mapping the parameters to match JPDD param
abstract class
_Proceed03 { abstract Object doProceed(A a,)} a2

pointcut _complexProtocol_(A a, A a2):
cflow(execution(* *._state00_(A, ..)) &&args(a2, ..))
&& call(* *.m4()) && this(a) && if(states == 5) && if(a==a2);

Objectaround(A a, A a2): _complexProtocol_ (a, a2) {
return complexProtocol (a, alew _Proceed03() {
Object doProceed(A a, A a2)dturn proceed(a, a2); }}}

Object complexProtocol (A a, A a2, Proceed03 p) {
return p.doProceed(a, a2);}

/I Checking that m2 is the first message
pointcut complexProtocol(A a):
execution(* *.complexProtocol(A)) &&args(a,..);

Figure 20. Aspectd Trandation of Figure 18 (continued).

The problem with stating “it is the first messageimethod irc”

is that it also requires an additional state tresicdbes that object
¢ has been entered. Since we also have the congtraic needs
to be executed in the control flow of methodt at e02_ we
construct a corresponding pointcut that makes fisd bow (see
pointcut st at e03_). A corresponding advice that refers to
state03 sets the variablst at es to value3. Furthermore,

we generate a pointcutst at e04_ that determines whether
st at es has the valu8 and message® is currently sent. In
order to guarantee that the messageis the first message, we
generate an advice that setsat es back to value2. The
corresponding pointcut _st at e04Abandoned_ checks,
whether st at es has already he valud and a messages is
currently sent that is not the desired messdtje

The implementation of the pointcutst at e05_ is rather
straightforward: we already determined in the beigig of this
section that messageB can be selected using thef | ow
construct. Hence, we only need to determine theesponding
start of the control flow (which is the methodt at e02_).

Finally, we need to create a pointcut that matchesparameter
box of the JPDD (principle 4, Pointcut Headers)e Plointcut that
determines whether the last message is reached
(_compl exProcot ol _) requires 2 parameters in order to
check whether the sender of the message correspotius object
a. The original JPDD just requires one parameteragdition to
the join point). Hence, we create a methaxdrpl exPr ocot ol
that also contains the objeetsanda?2 (in addition to the proceed
object) and create finally the pointcatonpl exPr ot ocol
which refers to the method execution and exposgsfiist
argument.

5.2 Structural JPDDs

Structural JPDDs differ from interaction JPDDs Ie tway that
they do not define join points but structural coaists on those
join points. Consequently, a translation of a strred JPDD does
not necessarily lead to the definition of a poihtdwut rather to
the definition of a new method that needs to beoled from
within a pointcut or an application of a primitipeintcut.

Since AspectJ already provides with the operatas well as with
the pointcutst hi s, target andargs the ability to specify
some structural constraints (on the actual typéd desirable to
use them when they are needed (according to plncly.
Whenever from within a join point a structural coamt is
required we check whether this structural constraian be
directly mapped to these constructs.

In all other cases (which means that object refatiqps need to
be evaluated and potentially collected) we check,

1. whether all object information necessary to evauhe
relationships are accessible from the join poiselit
(which we call local accessibility).

2. whether related objects are being addressed frahinwi
or exposed from the JPDD.

We consider a (directed) relationship to be locatigessible if the
source object of the relationship is bound to dabde that is used
in a join point selection within an interaction-siate-JPDD. If all
necessary information are locally accessible westtoot a
method that has the necessary local information irgsit
parameters (the structural check-method).

If this is not the case, we generate pointcuts esrdesponding
advice that collect all necessary information. Fraithin the
structural check method such data structures reebd aiccessed.

In case object relationships are named, we condtitectly field
accesses according to the principle 6 (Static Caimé$ Checks
Left to Aspect-Oriented Language). In case there abject
relationships that are not named, we generatect®ffeaccesses

to an object’s fields. In case indirect object tielaships are used,
we generate traversal methods that run over threxbbjaph.

If objects are not being addressed from within IR®D and if
they are not exposed, the structural check metsogimply a
boolean method that checks whether the constraifitdhe
structural JPDD hold.

-

7 sampleSelection ~
I/ \\\
! <?0>* : P a:A b:B ‘:
i
]
| |
I T T]
| 1 | !
| ' Lo
i ml(<?0>p:P) !
| ARV |
} 1
! <Pref>* : * x: X 7 I i
\ 1 1 .---L---I
\ ! 11?0 I
N | I |
_arret]

Figure 21. Examplefor Structural JPDD.

If objects are addressed or exposed, it is negetsdnind them to
a variable (or a collection). Furthermore, becaafsthe principle
4 (Pointcut Headers), we generate a method thab)(das this
variable (or collection) as parameter. This metisoased by other
pointcuts in order have an explicit representatibthe bounded
objects.

Figure 21 illustrates a structural JPDD that shdddtranslated.
There are two relationships between the object @hotm the

variableo and related objects. All relationships are lobalcause
the objecb is bounded to the parameter of typéhat is passed at
the join point. Furthermore, related objects arposed by the
JPDD (the objectsef) while the related object is not directly

exposed.

abstract class _Proceed01 {abstract Object doProceed(P p);}
pointcut _state01_ (P p):
call(*.m(P)) && this(A) && target(B) && args(p) &&
if(checkA(p));

static boolean checkA (P p) feturn (p.ainstanceOf X);}

Objectaround(P p): _state01_ (p) {
Collection ref = bindRef(p);
return _state01_(p, ref,
new _Proceed01 {
Object doProceed(P py¢turn proceed(p); }
i
}

Collection bindRef(P p) {
Collection ¢ =...a depth first search on p..return c ;}

Object _state01_(P p, Collection ¢, _Proceed01 p1) {
return p.doProceed(p);}

pointcut sampleSelection(P p, Collection c):
call(* *._state01_(P, Collection, ..)) &&rgs(p, c);

Figure 22. AspectJ Trandation of Figure 21.

First, we construct for the non-exposed constramtfield a a
boolean method that accesse§rom p and checks, whether the
actual type matches (typ€). This boolean method is invoked
from a first pointcut (st at e0O1_, see Figure 22).

Second, for the variableef we construct a methobi ndRef
that traverses the object hierarchy using the atifle API, stores

all reachable objects in a collection and retuhas tollection. For
exposing this method, we generate a method thaalhasposed
objects p as well asref) as a parameter and which proceeds
with the original join point. This method is beimyoked when
the original join point is reached via an advicatthefers to the
pointcut _st at e01_. This advice creates the proceed object
passed as an additional parameter to the method.

The pointcut usable by the developer which refleats the
complete JPDD is the pointcetanpl eSel ecti on which has
the desired interface.

5.3 Stateful JPDDs

Our translation of state JPDDs is very closely teglato the
translation of interaction JPDDs. To be more pedgjsthe

algorithm for translating state JPDDs is a sub$ehe one used
for translating interaction JPDDs: while the altjom for

interaction JPDDs needs to determine how manysstaded to be
constructed, this information is already explicidgntained in a
state JPDD. Consequently, we just give a very staetview of
the mapping of stateful JPDDs.

The translation enumerates all states (to be stdreda
corresponding state field) and generates for afisitions between
two states a pointcut that checks the current ¢tettech needs to
match the number of the source state of the tiangit the
constraints in the join point (which correspondghte translation
of constraints as discussed in section 5.1 and 5.2)

For each constructed pointcut a corresponding adsigenerated
that updates the state (according to the numbénefollowing

state). In case further elements need to be expotes
translations as explained in 5.2 have to be peddrm

Although the principle 2 says that the number afest should be
minimized, this is not valid for the explicitly daced states in the
JPDD: Since the intention of such state is to hameexplicit
representation, a reduction of the states woulsuith a situation
decrease the comprehensibility of the translat&DIP

5.4 Restrictionsof Translations

The here proposed translation does not translat®ecurrence of
future data of join points. l.e. it is not possilblanslate a JPDD
which requires to evaluate information from theufet of the

system. Instead, the translation approximates thia point

selection by leaving out all future data (whichresponds to the
explanation given in section 4.4).

// sampleSelection N\
’// \\
! A |
! i
| |
! % ...some interaction i
! ”I/[O"*] JPDD... .
| |
: 1
! <?ref>* E
[[e
\\ :_.__ :

Figure 23. Restriction of Structural JPDD trandation.

However, there is another restriction of the tratish that is
closely related to the background of the problerfuafre events.
The translation does not permit to translate stira¢tJPDDs that
relate to subtype relationships where only the uppyee is
known.

Figure 23 illustrates a structural JPDD were theiabde ref
should be bound to all subtypes of A. The problerthw
translating such a JPDD to Aspect] is that Java doe directly
permit to access any information about subtypesigughe
reflection API. The reasons lies mainly in the #&edture of Java
that permits to load classes later on via the dizsger, i.e. not all
classes need to be known at a certain point in. i©oasequently,
at a certain point in time (i.e. when the corregpiog join point is
reached) the number of all subtypes cannot be ctadpin order
to achieve this, it would be necessary to accessltss loader in
order to perform some modifications to it whichfrism our point
of view not the task of a JPDD translation.

6. Related Work

The generation of program code from graphical maasuch as
JPDDs has been supported by a vast variety of A8E since a
long time, and much research has been focused @n tho
generate that program code best (cf. [3]). Howewertool to our
knowledge has been tackling the generation of potrtode from
visual representations of join point selectionssas JPDDs).

The principles introduced in section 3 can be jikebmpared

with the effort do reduce so-calletde-smellsvhich have been
articulated for object-oriented software constretin the context
of refactorings (cf. [6]) as well as recently iretbontext of aspect-
oriented software development (cf. e.g. [13]): ihiention is to

give some guidelines which prevent the resultindecto be not
readable or understandable. Furthermore, the gnédelcan be
compared with coding guidelines as they exist foanyn

programming languages(cf. e.g. [18] for prograngrgoidelines

on C++).

Other tool support exists in the domain of aspenbed
software development, such as ActiveAspects [4]Asivro [17],
etc. The focus of these tools is to visualize tfieces an aspect
has on a given target system. They are usuallgorterned with
the generation of aspect code.

For the Theme/UML approach [2], a tool has beenlémented
based on KerMeta [14] which enables the compositaom
execution of themes (cf. [10]). Theme/UML does patvide a
means for specifying join point selections in i@, though.
Consequently, no code generation has been nece¢esiwyso.

7. Conclusions

In this paper, we have discussed the need forkdeitaappings
for JPDDs to aspect-oriented programming languagés.have
come up with a (non-exclusive) list of principlescarding to
which these mappings have to be specified. We dumtbre have
outlined a concrete mapping for the aspect-orieptegramming
language AspectJ which comply to these principles.

Apart from the translations, which can be used ifiomvard

engineering approach to generate pointcut code #®BDs, one
of the major contributions of this work has beewe thetailed
deduction of principles for that code generatioom8 of these
principles are focused on an appropriate alignmehtthe

generated pointcut code with the structure of tR®D (e.g.

principle 4); other specify what to do if the targgogramming
language does not provide sufficient join poinesgbn means to
realize the JPDD appropriately (principles 5 and\Bhile these
kinds of principles are very closely related to thenslation of
JPDDs to pointcut code, other principles (sucthasprinciples 1-
3) turn out to be even applicable as general desigiples for
"good" pointcut design in the general case.

We also think that further principles are necessaryave a good
translation of JPDDs into code. For examples, wesiter the use
of an appropriate naming convention to be neceskargtates
that need to be constructed. However, the interdiothis paper
was not to discuss such principles only, but thpliegtion of

these principles in a concrete mapping, too. Tloeeefwe did not
describe further principles here.

In section 5 we only described the mapping from DBDo
Aspect]. Nevertheless, we already have some pramnitool-
supported translation of JPDDs into AspectS. Arerigdting
observation is that the resulting code largely edgf from the
corresponding translation into Aspect] due to th#erdnt
philosophy of AspectS to consider aspects as ongickasses
which need to be instantiated and explicitly wovEarthermore,
since the pointcut language of AspectS widely diffédrom
Aspect], it is the usual case that even simplegoint selections
end up with the generation of pure Smalltalk codbere the
connection to the underlying aspect-oriented sysierhard to
follow. For other target language (e.g. JAsCo) wpeet that the
existence of stateful pointcuts widely eases thesiraction of
states (in comparison to the state constructiorst tvere
necessary in section 5.1). However, we are cugrerdt able to
provide a complete mapping from JPDDs to JAsCo amsider
this to be future work.

One goal of providing translations for JPDDs intogram code
was to help developers learn and understand thergams of
JPDDs by enabling them to study equivalent poistcut a
programming language they are familiar with. Theaidvas that
this would help them also to read and understamilasi JPDDs
in other situations — in which they cannot resodt &

corresponding pointcut implementation. However, #se

examples given in section 5 have shown, this isathvays the
case. As it turned out, a complex join point sébecspecified in a
JPDD is very likely to result into a likewise coreplpointcut
specification in a given programming language. Henge can
conclude that — even if all mapping principles imettl in section
4 haven been obeyed — translations of JPDDs irdgram code
facilitate the comprehension of the selection seimamf JPDDs
only up to a certain complexity. Nevertheless,amstated JPDD
still gives the developer the chance to understandPDD
semantics by “playing around” with the join poimiexction in the
sense that the developer can try out how the jointselection
behaves in a given application.

It remains to mention that the principles specifiethis paper are
not meant to be complete. Indeed, the authors diresply

further principles in their JPDD mappings (specifyhow to deal
with combinations of JPDDs, for example, or howse (i.e. use
to which extent) the reflection capabilities of tiaeget language)
which haven't been presented here due to spacetionis. It is

considered essential to maintain and complemertt list of

principles as part of future work/research. Likewthe concrete
mappings should be extended with further mappirgother

programming languages.

References

[1] Al-Mansari, M., Hanenberg, SPath Expression Pointcuts:
Abstracting over Non-Local Object Relationshipé\spect-
Oriented Languagesn Proc. of NODe'06, Erfurt, Germany,
LNI, 2006, pp. 81-96

[2] Baniassad, E., Clarke, SAspect-Oriented Analysis and
Design - The Theme Approadkddison-Wesley, 2005

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Bunse, C., Atkinson, CThe Normal Object Form:
Bridging the Gap from Models to Cade Proc. of UML'99,
Fort Collins, CO, October 28-30, 1999, LNCS 17233, p
675-690

Coelho, W., Murphy, G.Presenting crosscutting Structure
with Active Modelsin Proc. of AOSD'06, Bonn, Germany,
March 20-24, ACM, pp. 158-168

Douence, R., Fradet, P., Studholt, @gmposition, Reuse
and Interaction Analysis of Stateful Aspedats Proc. of
AOSD 2004, Lancaster, UK, March 2004, ACM, pp. 141-
150.

Fowler, M., Beck, K., Brant, J., Opdyke, W.F., RabgeD.
Refactoring: Improving the Design of Existing Cpde
Addison-Wesley, 1999

Hanenberg, S.,Design Dimensions of Aspect-Orier
SystemsDissertation, Institute for Computer Science
Business Information Systems, University of Duigh
Essen, 2006.

Hanenberg, S., Schmidmeier, AspectJ Idioms for Aspe
Oriented Software Constructipm: Proc. of EuroPLoP'C
June, 25-29, 2003, Irsee, Germany, pp. 617-644
Hirschfeld, R.,AspectS - Aspect-Oriented Programming
with Squeakin Proc. of NODe'02, Erfurt, Germany,
October 2002, LNCS 2591, pp. 216-232

Jackson, A., Klein, J., Baudry, B., Clarke, Besting
Executable Themg®/orkshop on Models and Aspects, at
ECOOP'06, Nantes, France, July 3, 2006

Laddad, R.AspectJ in Action: Practical Aspect-Oriented
Programming Manning Publications, Greenwich, 2003
Lieberherr, K., Adaptive Object-Oriented Software: -
Demeter Method with Propagation PatternsPWe
Publishing Company, Boston, 1996

Monteiro, M., Fernandes, J.MDbject-to-Aspect
Refactorings for Feature Extractipim Proc. of AOSD'04
(industry track), Lancaster, UK, March 22-24, 208€M
Muller, PA., Fleurey, F., Jézéquel, JM/gaving
executability into object-oriented meta-languagasProc.
of MODELS'05, Montego Bay, Jamaica, October 2005,
LNCS 3713, pp. 264-278

OMG, Unified Modeling Language Specificatioviersion
1.5, 2003 (OMG Document formal/03-03-01)
Ostermann, K., Mezini, M., Bockisch, ChExpressive

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

Pointcuts for Increased Modularityn: Proc. of ECOOP'05,
Glasgow, UK, July 2005, ACM

Pfeiffer, JH., Gurd, JVisualization-Based Tool Support for
the Development of Aspect-Oriented Program#$roc. of
AOSD'06, Bonn, Germany, March 20-24, 2006, ACM, pp.
146-157

Plum, T., Saks, TC++ Programming GuidelinesPlum
Hall, 1991

Rashid, A., Chitchyan, RRersistence as an Aspeirt:

Proc. of AOSD 2003, Boston, MA, March 2003, ACM, pp
120-129

Soares, S., Laureano, E., Borba/plementing Distribution
and Persistence Aspects with AspgeittJProc. of OOPSLA
'02 (Seattle, WA, Nov. 2002), ACM, pp. 174-190

Stein, D., Hanenberg, St., Unland, R.UML-based Aspect-
Oriented Design Notation For AspecBroc. of AOSD '02;
Enschede, Netherlands, April 2002, ACM, pp. 106-112
Stein, D., Hanenberg, S., Unland, R.Graphical Notation
to Specify Model Queries for MDA Transformations on
UML Models in: Proc. of MDA-FA '04, Linkdping,
Sweden, June 2004, Springer, LNCS 3599, pp. 77-92
Stein, D., Hanenberg, S., Unland, Query Modelsin

Proc. of UML '04, Lisbon, Portugal, October 2004,
Springer, LNCS 3273, pp. 98-112

Stein, D., Hanenberg, S., Unland, Rxpressing Different
Conceptual Models of Join Point Selections in Aspec
Oriented Designin Proc. of AOSD'06, Bonn, Germany,
March 2006, ACM, pp. 15-26

Storzer, M., Hanenberg, $lassification of Pointcut
Language Construct®Vorkshop on Software-engineering
Properties of Languages and Aspect TechnologielsATP
held in conjunction with AOSD 2005, Chicago, llliap
USA, March 15, 2005.

Suvee, D., Vanderperren, W., Jonckers, MsCo: An
Aspect-Oriented Approach Tailored for ComponenteBas
Software Developmenih Proc. of AOSD'03, Boston, USA,
March 2003, ACM, pp. 21-29

Tarr, P., Ossher, HHyper/J User and Installation Manual
IBM Corp., 2000

Vanderperren, W., Suvee, D., Cibran, M., DeitgaB.,
Stateful Aspects in JasCo: Proc. of SC 2005, LNCS,
April 2005

