Expressing Different Conceptual Models of
Join Point Selections in Aspect-Oriented Design

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen, Germany
{ dominik.stein, stefan.hanenberg, rainer.unland }@icb.uni-due.de

ABSTRACT

When specifying pointcuts, i.e. join point selentipin Aspect-
Oriented Software Development, developers have ifferent

situations different conceptual models in mind. édporiented
programming languages are usually capable to suppdy a

small subset of them, but not all. In order to camivate aspect-
oriented design among developers, though, it igitalele that the
underlying conceptual model used in its join pog®ections
remains unchanged. As a solution to this dilemnegdetail three
different conceptual models in this paper thatfezquently used
in aspect-oriented applications. These modelsllatrated using
sample implementations from existing literature. eith we

introduce corresponding modeling notations basedain Point
Designation Diagrams (JPDDs) which are capablexpoess join
point selections complying to those models. Finalle discuss
the suitability of these notations to express aredsoin point

selection.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques.
K.6.3 [Management of Computing and Information Systems]:
Software Management software developmenD.2.7 [Software

Engineering]: Distribution, Maintenance, and Enhancement —

documentation

Keywords
Aspect-Oriented Software Development; Aspect-OgddriDesign;
Query Models

1. INTRODUCTION

In Aspect-Oriented Software Development (AOSD [#8lpsign of
join point selections is an essential task. Muckeaech is
accomplished in finding appropriate means that piestevelopers
to specify such selections succinctly and concigelgn easy-to-
understand and localized way (cf. e.g. [11, 6, .314n

investigation of that research indicates that ssvelifferent

conceptual models exist which underlie join poielestions. For
example, sometimes developers think of join poakdions as a

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa first page. To copy
otherwise, or republish, to post on servers oremistribute to lists,
requires prior specific permission and/or a fee.

AOSD’06 March 20-24, 2006, Bonn, Germany.

Copyright 2006 ACM 1-59593-300-X/06/03... $5.00.

guery on object interactions, while in other catiemy think of
join point selections as a query on object stalég. goal of the
aforementioned research is to give developers appte
abstraction means at hand that permit to refledthese different
conceptual models in the program code.

However, working with an aspect-oriented prograngrianguage
that supports conceptual model A does not meanjdiratpoint

selections of another conceptual model B cannatripéemented
in that language. Indeed, developers are frequémtted to do so
as they need to stick to a particular programmamglage. In
consequence, join point selections usually nedgktonplemented
by code abstractions that do not reflect on the etyithg

conceptual model — which makes it hard for maimesnor co-
developers to grasp the actual intent of (and theah conceptual
model behind) the join point selection.

Aspect-Oriented Modeling (AOM) can help to resolteis
dilemma. AOM can provide maintainers and co-develspwith
an abstract view of the code, helping them to gridep inter-
dependencies between multiple code abstractiongeingmting
one join point selection as well as the generakeptual model
behind it. Modeling — i.e. graphically visualizingarts of) a
complex system — has a long tradition in converigoftware
development. It has proven to help developers &sae about
problems without having to deal with solution distain this
paper, we aim to bring forth the benefits of thesyvof (problem-
oriented) modeling to the field AOSD.

Modeling approaches reflecting on aspect-orient@acepts are
around for quite a while (see [3, 38, 16]). Howevexisting
modeling approaches focus mainly on the way hoveaspadapt
the underlying application. Graphical visualizatiohjoin point
selections is only rarely considered.

In this paper, we introduce novel modeling mearsg germit to
visualize join point selections, and that help &flect on the
different underlying conceptual models. To do se, imvestigate
three different examples of join point selectioonfr scientific
literature, each based on a different conceptuatanoWe
investigate the appropriateness of existing modelmeans to
represent each of these selections. As we ideffigfirs, we
introduce new modeling means that overcome the tifckeh
insufficiencies. We exemplify how these new modglimeans
can be used to represent the join point selectioder inspection,
and discuss how they relate to their underlyingceptual models.
Furthermore, we explicate how join point selectiavisich are
based on different conceptual models can be combine

The remainder of this paper is structured as fatow section 2,
we outline the need for query models; that is, weidate the

reasons why and the circumstances under which rimgdef join

point selections is beneficial. In section 3, wérdduce «Join
Point Designation Diagrams» (JPDDs [35]), an exgstinodeling
approach to visualize join point selections basethe conceptual
model of message sending. This notation is used agrting
point for our considerations in this paper. In Egtt3.6, we
briefly outline why JPDDs (in their current stat@e not heeded
suitable to express each of the investigated saijgite point

selections. In section 4, 5, and 6, different jorint selections are
presented and possible ways of visualization axesiigated.
Each visualization is examined with respect to #edection’s
underlying conceptual model — that is, a controWfloriented, a
data flow-oriented, and a state-oriented conceptoadlel. If a
mismatch between the conceptual model of the examptl its
visualization is detected, novel modeling means ian@duced.
Section 7 elucidates how the visualizations of fwm point

selections based on different conceptual modeldbearombined.
Section 8 discusses related work. Section 9 coersltite paper.

2. THE NEED FOR QUERY MODELS

Join point selections are of pivotal importancéspect-Oriented
Programming (AOP). Join point selections desigredtethose
relevant points in a program (i.e. in its code, during its

execution) at which aspectual adaptations needake place.
Finding appropriate means to designate such sa@l@fant join
points (concisely and entirely in one place, sd tha benefits of
code reuse are at their maximum) is a highly acfie&d of

research in AOSD [11, 6, 31]. As an indication loEtsignificant
interest, different aspect-oriented systems camewitp most
various language constructs to specify such quegigs pointcuts
[21], traversal strategies [22], match or type grats [39, 21],
logic queries [11, 13, 31], applicability condit®[¥], etc.

Each of these designation means comes with its avticular

abstractions that permit to specify join point sét;ns based on
different selection constraints. For example, pnitg in AspectJ
[21] select method calls depending on (particulearacteristics
of) the control flow they occur in. Traversal segies in

Demeter/Java [22] select classes and objects bagsedheir

structural relationships. Match patterns in Hyp¢sd] designate
method specifications based on their names. Logierigs in

Sally [13] select classes based on particularbaties or methods
that they contain. Applicability conditions in JAsQ6] select

objects depending on the state they are in, etc.

In a perfect world, we would have one "master" aspeented
programming language, equipped with appropriatetradtton

means for all of the aforementioned join point e

constraints (maybe even more). The language wowdnip
developers to combine those selection constraimtsrbitrary
ways so they can express exactly what they wahi@afpen (i.e.
what join points they want to select). Furthermdhes language
would allow programmers to gather (all) relevanieston

constraints in one place so that maintainers cailyedetermine
and comprehend the intents of a selection.

In reality, though, developers often use one paldic aspect-
oriented programming language that does not proyadi¢ the
appropriate abstraction means needed to captureediedt the
developers' intention. In consequence, developersfaced to

come up with cumbersome workarounds — most commonly

consisting of a group of abstractions that only jaiotly
implement the developers' intentions. The impantthe resulting
program code are severe: Since the program's intene

disseminated across multiple abstractions, it ifficdlt for
maintainers to understand what the programmersinaiiyg
intended to do (i.e. what join points they wantedelect).

For example, a common workaround for state-based goint

selections [6] in AspectJ is to use one pointcwit pair to

monitor if the system has reached a particulaestahd to use
another pointcut/advice pair to actually realizee thspectual
functionality that should be performed (only) iratlstate (we are
going to further investigate such a solution laigj. In order to
fully understand under which circumstances the esaiéects the
system, a maintainer must read and
pointcut/advice pairs and, moreover, must recogttiegr inter-
dependencies.

The best solution to deal with such a problem wdaddo switch
to a programming language that provides suitablstrattion
means to capture the entire aspect applicabilitpditimns.
However, this is most oftenly prohibited by exténejuirements:
Maybe large parts of the systems have already eglemented
and their re-implementation would be too costly.a@ging the
used programming language might just shift the lermbto
another place, anyway — unless the new languagagable to
express the selection criteriaalf the join point selections which
need to be implemented in the system. Even if mplelti
programming languages can be used in the same ogeneht
project, the necessity to combine the join poirdgigieation means
of two different languages may arise in order tectehe right set
of join points. Then again, maintainers need tolaepthe entire
code so they won't miss an important hint to realighich join
points are actually affected by the aspects.

Therefore, we advocate the need for query modets, the
visualizations of join point selections. Query misdean help to
provide developers with an abstract view on joiinpeelections.
Such visualizations are particularly useful whenjoa point
selection needs to be implemented by meansgrbap of code
abstractions. In that case, the abstract view efmrhaintainers to
recognize the purpose of each of the code absirectind can
provide them with a broader picture on how thewti fulfill a
particular objective.

Contemplating on the pivotal importance of joinmgojueries in
aspect-oriented software development and the hisradfkeeping
it separate from the adaptation specification [t#, 12]), we
consider it advisable to hawstinct design models that help to
understand and reason about the conditions andraoris under
which join points should be selected. With helpsoth query
models developers can strictly focus on the selrctionstraints
of their join point selections. Furthermore, havitigtinct query
models helps developers to reflect on the dichotofrjpin point
selection and join point adaptation (or "quantiiica’ and
"assertion" [10]) in aspect-oriented programmingnahy, it
permits to analyze the reusability of join pointlestions in
different application contexts — independently fribra adaptation
that is associated with those selections.

3. JOIN POINT DESIGNATION DIAGRAMS
Interaction diagram-basedJoin Point Designation Diagrams»
(JPDDs [35]) have been proposed as a modeling aphpro
especially dedicated to the graphical represemtafion point

Lin this chapter, whenever saying "JPDD", we rédeénteraction
diagram-based JPDDas they have been introduced in [35]

understand both

selections. In particular, the notation provideapirical means to
visualize join point queries based on tlegical properties[23,
26] of program elements as well as based ondgreamic and
structural context[26, 11] they occur in. In the following, all
relevant abstraction means that are necessary derstand the
considerations in the remainder of this paper ateduced. A
comprehensive introduction to JPDD is omitted tdkre to space
limitations. The interested reader is pointed t5, [36, 37] for
further details.

3.1 General Syntax

JPDDs make use of (and partially adapt) the grabrigmbols
from UML class and object diagrams as well as froilL

interaction diagrams, i.e. sequence diagrams (&thiflodeling
Language [30]). These graphical elements may banged in
JPDDs analogously to their equivalents in UML déamgs. Figure
1 shows a sample JPDD that outlines all graphigahbsls
relevant for this paper.

As shown in Figure 1, JPDDs are (most comminigndered as
dashed rectangles with rounded corners. They aengh name
which is shown in their top left cornea%anpl eJPDD), and they
are given a parameter box at their lower right eothat lists a set
of identifiers (cf. section 3.3) designating th@ements that are
exposed to aspectual adaptations (e.g. to somefioatidin or
enhancement realized by some introduction or advéate.).
JPDDs may specify behavioral selection constraints structural
selection constraints. For the former, they make afs(partially
adapted) interaction diagram symbols; and for dltted they make
use of (partially adapted) object or class diagsymbols. A
single JPDD may specify both behavioral and stmattselection
constraints at the same time. Consequently, symbblsither
diagram type may be combined in a single JPDD, hickvcase
they are separated by a dotted vertical line (3gar& 1 for an
example).

3.2 Name/Signature Patterns And Wildcards

By default, every string in a JPDD is considerecbéoa name
pattern for an element name. Name patterns mayaicoasterisk
wildcards ¢) to abstract from an arbitrary number of character
A bare asterisk*() is used as an all-quantifier, i.e. the precise
name of the respective element is considered uaetefor the
selection. Method and operation signatures aret@ned by
signature patterns (which consist of multiple ngratterns for the
method/operation name, their arguments, and thejuneent
types, etc.). Signature patterns may contain thdcatid " . " in
their parameter list, which is used to abstractfran arbitrary
number of arguments (in analogy to the semantics. of' in
AspectJ [21]).

Figure 1 illustrates how patterns and wildcards banused to
specify selection constraints on the lexical préperof a program
element [23, 26]. The signature pattern on thetrigide, for
example, is used to refer to all method cals?j(p>) on
operations whose names start withearch". The asterisk
wildcard ¢) is used here to denote that the operations' namgs
end arbitrarily. Furthermore, the selected openatialls €?j p>)
must take one argument of typent, they must return an
argument of typdi seaseType, and they must be invoked on
objects of typeDi seaseReposi t or yDBMS. In these cases, the

bare asterisk*() denotes that the precise names of the argument

2 there exist other possibilities (cf. [35])

signature pattern object name pattern

name of JPDD identifier identifier | class nameatteri
" asampleJPDD ‘ 1
/ ;] —e \
1| *:List *: Servlet <>k L * *ox *: Disease |
i Serviet Engine RepositoryDBM S i
1 T]
2 R
*]
i /I/ [0.7] & - <2l . i i
[search*(* :int) . ! !
| <t DiseaseTyp !
\ 1
\\ 1 '."'I"l
. P

existence of path existence of path
along inheritance treealong call graph

signature pattern
exposed element

Figure 1: A Sample JPDD (cf. [35])

being passed and the object being called are cemesidrrelevant
for the selection.

The wildcard ' . " used in the signature pattern in the middle of
Figure 1 determines that the number of argumeritgyhgassed to
the operation is irrelevant for selection. The @sits ™" in front

of and after that parameter list pattern outlinat tthe precise
name and the return type of the operations beirlpdcare
irrelevant, too.

3.3 Identifiers

Identifiers are enclosed in angled brackets) and always begin
with a question mark?) so that they can be distinguished from
ordinary name patterns. They are placed in fronthefname or
signature pattern of the element that they refetdentifiers may
refer to any element that is rendered in a JPDDg- @asses,
objects, messages, or stimulietc. In Figure 1, for example,
identifier<?j p> refers to a stimulus, while identifief?s> refers

to an object. Identifiers are used to designatenehts inside a
JPDD which are to be exposed for aspectual adaptgatJPDDs
provide a parameter box at their lower right cortiet lists all
identifiers of such exposed elements?j(p> in Figure 1, for
example). Apart from designating exposed elemedentifiers
may also be used to interrelate elements in diffesections of a
JPDD. Such (interrelated) elements are deemed tthéesame.
For example, identifiek?s> in Figure 1 is used to designate an
object (i.e. the same object) in the left and rightt of the JPDD.
The right part renders the behavioral selectiorstraints on that
object, while the left part outlines the structursélection
constraints.

3.4 Indirect Relationships

Figure 1 elucidates furthermore how selection gairgs can be
specified on the dynamic or structural contextaif jpoints [26,
11]. The indirect message symbef#) in the middle of Figure
1, denotes that all selected method cal?j (p>) need to occur in
the control flow of another method invocation — eéynin the
control flow of an arbitrary method call invoked an arbitrary
instance €?s>) by an (any) instance @&er vl et Engi ne. On
the left side of Figure 1, the receiver instance®s¢) of such
method calls are further confined to instancekicft Ser vl et ,
(or of one of its subtypes). This is accomplishgdn®ans of an

3 A stimulus is a runtime event that complies to atipular
message specification. In other words, a stimu@measents a
runtime instanc®f a message specification.

indirect inheritance relationship<{/#) which constraints that
there must exist a path from one class to anotlass @cross the
inheritance hierarchy. Both kinds of indirect redaships may be
adorned with a multiplicity that indicates how manolasses,
objects, or method calls, respectively, may resii¢he path from
one element to the other.

3.5 Combination Relationships

Two JPDDs may be combined in a way that the selecti
constraints of one JPDD are relieved or restribiethe selection
constraints of the other. This may be accomplismgdneans of
special union({), confinement (), or exclusion (\) relationships
(cf. [37]). Figure 2 illustrates how these combioatrelationships
are established between two JPDD®DD D is connected to
JPDD_A by means of a union relationship)(— meaning that the
selection criteria of JPDD_A are included intoJPDD D as
alternativeselection criteria. Furthermor@PDD D is connected
to JPDD_B by means of a confinement relationship) & which
means that the selection criteria HPDD B are included into
JPDD_D as additional selection criteria. FinallyJPDD D is
connected td PDD_C by means of an exclusion relationship (\) —
denoting that the selection criteria &PDD_C are included into
JPDD_D as exclusion constraints. In all three cases, tipe
annotation defines how the elements of the inclydi*DD
(JPDD_D) relate to the elements of the included JPDDs
(JPDD_A, JPDD_B, andJPDD_C, respectively). This mapping is
particularly useful (and necessary), if the elermenf the
including JPDD are named differently than the eleisieof the
included JPDD (as with the exclusion relationshig-igure 2, for
example).

{ JPDD_A | { JPDD_B |
L Die L Pip
R : A :
\\ //
oz =10} [] N e2ip = %in}
‘\\\ ,/ I/ _________ \‘
\ / ' JPDD C !
PR AN -7 R
\ - 17 !
{ JPDDD |_.-- \ A LU
1 R S . . [P 1
L 2p 1 P{?ip="?nip}

Figure 2: Combination Relationships (cf. [37])

3.6 TheProblem With Current JPDDs

JPDDs have been originally developed for aspeetted
systems whose conceptual view on join point selastis based
on object interactions. Consequently, the notapoesented in
[35] has been based on class (and object) diagrachinteraction
(i.e. sequence) diagrams. The focus of these diegisi to render
constituent object-oriented concepts, such as itaimee as well
as message sending and reception. Hence, (intaradtagram-
based) JPDD - as introduce in [35] — should be cjpaily
capable to express any query on object-orientasvace artifacts.
However (as we will show), from a conceptual maatgli
perspective, restricting the join point selectionimly to object-
interactions is not always satisfactory. For exampif we
contemplate on different system states and thairsttions, or if
we reason on the necessary steps to fulfill a @dai task, the
information which objects are involved and whichsseges they
exchange is only of secondary interest.

In the subsequent three sections, we investigateruwhich
circumstances the existing means (based on ini@nagiagrams)
are sufficient to capture the conceptual idea hlairjoin point
selection — and under which circumstances thesasrtean out to
be insufficient. Based on this we propose new nindemeans
which are better suited to emphasize that concepiga.

4. CONTROL FLOW MODEL

At first, we deal with the specification of join ipb selections
whose conceptual model is based on control flows. We an
example taken from [27] that implements a unit testerify if a
newly registered user is actually stored into abase. To do so,
the testing aspect logs if the database servelyregécutes the
corresponding request.

In [27], the testing aspect is implemented using Aspect]
pointcut that designates the following join pointiscollects all
executions of methodddUser (taking two arguments of type
String, and returningvoi d) performed by instances of
DbSer ver . These executions are collected only, if they odau
the control flow ¢flow) of a method call to method
regi ster User (again taking two arguments of ty@eri ng,
and returning/oi d) on instances okut hSer ver .

poi ntcut renotePointcut():

cflow(call (void AuthServer.registerUser(String, String)))

&& execution(voi d DbServer.addUser(String, String));

The cfl ow pointcut designator expresses a chronological
dependency between two given join points in whicte anust
occur "between entry and exit" [2] of the other.tWelp of the
means presented in section 3, this dependencynidered as
follows (see Figure 3): The JPDD outlines a metirotcation
from an arbitrary object of arbitrary typ& (: *) on method
regi sterUser (taking two arguments of typ®t ri ng) of an
arbitrary object of typeAut hServer. That object of type
Aut hSer ver hands over the control — via an arbitrary numifer o
further objects (as indicated by the symbgh», with the
cardinality[0. . *]) — to an object which invokes the method
addUser (taking two arguments of tyf& r i ng) on an instance
of DbSer ver . In its parameter box at the bottom right cortiee,
JPDD lists the elemenrt?j p> that is returned, i.e. the execution
of methodaddUser in this case.

When evaluating the appropriateness of the pointcutalization
shown in Figure 3, we need to identify the key ehtaristics of
ther enot ePoi nt cut join point selection described before. As
such (i.e. as the key characteristic), we identify relationship
between the two method calls taddUser and to
regi st er User: According to thecf | ow selection criterion,
the former method call is required to occur whiile tatter method
call is still active (that is, while the latter rhed is still
executing).

* -k * - * -k *

AuthServer

registerUser <%jp>:
*: String)

: ﬁ/[o . addUser
" (*: String, [] «execution
) T *:String) L

(*: String,

Figure 3: Logging the Insertion of New UsersInto a Database

Looking at Figure 3, the query representation seenesnphasize
that relationship appropriately: The JPDD outlihesv control is
passed from one instance to another by means ohoahet
invocations. It renders the chronological dependsnbetween
method calls, and indicates how each method iskieddn the
dynamic context of another. The activation barshanlifelines of
each object indicate that each method remains eacatittil the
termination of the subsequent methods.

In conclusion to these observations, we consideririteraction
diagram-based modeling means of JPDDs to be saitédl
represent join point selections which reflect oe f{particular
characteristics of a program's) control flow. Mareg this

representation seems appropriate for any join psglection

which reflects on object interactions and their ocimlogical

dependencies. Hence, we deem interaction diagraedh3PDDs
to be an effectual help for developers who neaghtterstand join
point selections relying on a conceptual model thase control

flows — even if the implementation language in w&®s not
provide corresponding abstractions (which has menbthe case
here, since AspectJ provides ttfd ow pointcut).

5. DATA FLOW MODEL

In this section, we investigate join point seleetiowhose
conceptual model focuses on data flows. To do sadopt an
example taken from [25]. The example is part ofaaitizing
aspect that quotes strings received from an urilusarty before
sending them out to the HTTP stream. The goal &vtid "cross-
site scripting”, i.e. the execution of maliciousigts originating
from malintended thirds on the requesting machine.

In our adoption of the join point selection desedhbin [25], we
make use of three pointcuts: The first oméd i(ent Stri ng-
Oigin) selects all calls to methodet Par anet er of
Request objects, which both take one argument of type
String and return one value of typstring. The second
pointcut €l i ent StringhMdification) designates all
method calls to (arbitrary) methods of objectsypktSt ri ng (or

of one of its subtypes+{) that return aStri ng value; the
number of arguments being passed is considerddvamt (.).
The third pointcut {espondd i ent Stri ng), finally, selects

all invocation calls to print methods pr(i nt*) of
PrintWiters. These invocation calls need to be defined in
classSer vl et (or one of its subtypes)), and they need to pass
one argument of typeSt ri ng.

pointcut clientStringOrigin() :

cal | (String Request.getParaneter(String))

after() returning (String o) : clientStringOigin() {..}

pointcut clientStringMdifications() :
call (String String+.*(..))

after() returning (String o) : clientSringhdifications() {.}

poi ntcut respondCientString(String o) :
call (* PrintWiter.print*(String)) &% args(o) &&

Wi t hi n(Servl et+)
The three pointcuts are affiliated with three pgoé advice that
jointly realize the sanitizing aspect as follows re(@se
implementation not shown here): The first adviciil{@ed with
the first pointcut) keeps track of all objects tliginate from
"untrusted” sources. In this case, the sanitiziageat assumes
that all data coming in via an HTTRequest needs to be
considered "untrusted". The second advice (affilatvith the
second pointcut) keeps track of all changes appi€dintrusted”
objects, as well as of all objects that are newdpeyated from

"untrusted” objects. For our investigations, weuass that any
string modification and string reproduction in thase system is
accomplished using the corresponding string metipoolgded by
Java'sStri ng class (e.gconcat, substring, repl ace,
etc.). The third advice, finally, (affiliated witthe third pointcut)
realizes the actual sanitization, and quotes aitrlisted" strings
before they are being printed out Boi nt Wit ers — which
take care of streaming out an HTTP response tmtemet.

5.1 Conventional Representation

Considering this example from a modeling perspectivone-to-
one representation of the three distinct pointagiag the means
presented in section 3 is not appropriate. In paldr, the

representation wouldn't reveal the chronologicapetelencies
between these pointcuts — therefore, the lattentpai will not

have much effect unless the former two have ideaqitif
"untrusted" objects before, and have collected theelist. What

we would like to have is a visualization of alleehnt selection
criteria inonemodel.

Using JPDDs the aforementioned pointcut can bealied as
shown in Figure 4: An arbitrary object (of arbiraype) sends a
message nameget Par anet er to an arbitrary object of type
Request . It is providing an arbitrary argument of tySer i ng,
and gets an object?obj > in return. At a later point in time,
control flow may be passed to the returned obj&abj > and a
modified version of that objeet?obj > may be returned. Finally,
the control flow reaches an object of (sub)tyer vl et which
uses the previously retrieved objet?obj > as an argument to
some invocation on operations starting wight i'nt " on objects
of typePrint Witer. Note how multiple indirection symbols
are used to indicate that control flow (a) couligioate either
from the object requesting?obj > or from any other arbitrary
object (indicated by the interrupted lifeline). Tlkentrol flow
could (b) traverse only one or multiple objects/an@nly one or
multiple links before it finally reaches an instanaf (sub)type
Servl et (indicated by the interrupted message). The agténi
front of a multiplicity tag of an interrupted megsadenotes that
the subsequent control flow may occur once, mudtines, or

.~~"" respondClientString ~

/ * -k * - \

\
! T T
| 1 \

getParameter(* : Strinqg
<?0bj>* : String

/
| \.
1 1
1 1
1 |
1 1
i i
i * ok <?0bj>* i
| = : String !
] |
| Servlet : i i
i *[0..4] /‘./ *(..) o i
| % i i< <?0bj>* : String | :
! | Tttt 1 !
! * | /// 1 !
' ,I/ [0..%] I : ! |
1 1 :
i <?2c>* /:/ * *: Print i
' z <2c> Writer | |
\ | T T !
\ 1 - i /
\ I (O 1 <?ip>print*(<?0bj>* : String) !
N\ > /
| T %

o | ! Ry S —— s
R 1 ?jp :
1 20bj !

Figure4: Intercepting the Printing of Strings
from Untrusted Origin (A)

not at all. And finally, the invocation of theri nt operation

could happen in (c) any activation of the ultimatetached

instance (indicated by the interrupted activati@m)bThe JPDD
returns the requesting objesPobj > as well as the stimulus
<?j p> that caused ther i nt method call (i.e. the join point).

Taking a critical look on the interaction diagramsbd JPDD

shown in Figure 4, we observe that — even thougé th

chronological dependency between the invocationmathod

get Par anmet er, the subsequent self-modification, and the

ultimate invocation of ari nt method is well visualized — the
actual selection criteria, i.e. the data flow ofemb <?0bj >, is
not sufficiently emphasized. One must carefullydgtthe diagram
to discover that the objeet?obj > being returned by method
get Par anet er and the objeck?obj > being passed to the
pri nt method must be the same.

From a modeling perspective, this is not satisfyctdvhat we
would like to have is an explicit visualization atbject<?obj >,
as well as of the different ways it is involvedeach method. It
should be easy to recognize that obj®bbj > is (both) output
from method get Paraneter and input to somepri nt
method. In interaction diagrams, however, input amdput
parameters are rendered as “"annotations” to messagly.
Hence, they are incapable to stress the fundamsigaificance
of input and output parameters to the selectionlres data flow-
based queries. The use of interaction diagram-bdsdaDs to
represent selection constraints relying on a deda-ériented
conceptual model must therefore be considered oapipte.

5.2 Improved Representation

In answer to our previous findings, we investigateew modeling
notation that is more suitable to express data-f\@sed join point
selections than the interaction-based JPDDs.

Figure 5 shows a JPDD which is based on UML agtidiagrams
[30]. It outlines three (call) activitieget Par anet er (hosted
by classifier Request), print* (hosted by classifier
PrintWiter), and an arbitrary *() activity (hosted by

classifier St ri ng). These activities are connected by indirect

transitions (of cardinalityf 0. . *]), which means that multiple
activities (i.e. none, one, or more) may take plbetveen the
former and the latter activity. Likewisget Par anmet er neither
needs to be the first activity in the workflow; ndoespri nt *
need to be the last activity (as indicated by titirect transition
symbols from the initial state and to the finaltstaespectively).
A self-transition from and to the arbitrary)(activity hosted by
theSt ri ng classifier indicates that this activity may be axted
multiple times, before the execution eventuallygeeds with the
print* activity. The activities are arranged in swimlgnekich
indicate who is responsible for performing the exdjve activity:
While we require thepri nt* activity to be conducted by a
Ser vl et
initiations of activity get Par anet er and the arbitrary *()
activity. The actual data flow is represented usifgect flow
symbols: Activity get Paranmeter produces one object

<?o0bj > of type St ri ng as output parameter, which eventually

is passed to activitypri nt* as an input parameter. In the
meanwhile, the object?obj > may be involved (and possibly
modified) by one or more arbitrary) activities. Similar to the
JPDD shown in Figure 4, the JPDD shown in Figuretbrns a
reference to the activity to crossce®j p>, as well as to the
object<?0bj > involved in that activity.

instance, we make no restrictions concerning the

/// respondClientString ™
// \\
* Servlet)

‘_7/ getParameter | |

(Request) i

!

1

[0.4] i

\Vi

<?0bj>String

*] * I/
[0-.]@ (String) F—-->

<?jp>print*
~1 (PrintWriter) >@
\\ [O*] //

Figure5: Intercepting the Printing of Strings
from Untrusted Origin (B)

When comparing the activity diagram-based JPDD shaomw
Figure 5 with the interaction diagram-based JPDDwsh in

Figure 4, we can observe that the focus of theviactiiagram-
based JPDD is on workflow and data flow — rathenticontrol
flow. That means, that the activity diagram-basélialization
neglects how program control is handled over frora activity to
another (e.g. fronget Paraneter to print*). Instead, it
concentrates on the order of activities as welloasthe data
involved. The diagram emphasizes the mutual depeiee
between different activities, as well as betwedivides and data.
In consequence, the different roles of objebbj > in either of
the activitiegyet Par anmet er andpri nt * is easy to conceive.

With help of activity diagram-based JPDDs, devetepare thus
capable to easily recognize the key selection caims$ of data
flow-based join point selections. The dedicatedu$oof activity

diagram-based JPDDs on the dependencies betweweitiextind

data — such as the engagement of the same objetdivénse

operations, for example — makes them an appropnegans to
represent join point selections which are basedata flow. Thus,
they can help developers to comprehend the seteotijectives
of such join point selections — even if these dijes are

disseminated across multiple code abstractiond (s been the
case in this example).

6. STATE MODEL

At last, we consider a persistency aspect whiclegagare of
synchronizing a set of business objects with thddtabase
representation. The example is used to exemplifigcBens
relying on a conceptual model of states and statesitions. It is
taken from [33], and deals with the sub-task oppiag accesses
to transient representations of deleted persistbjgcts that have
not yet been collected by Java's garbage collector.

In order to realize the previously described asp®@ai pointcuts
are defined in [33]: The first one selects all exems of method
del et e, being invoked on instances Bér si st ent Root (or
subtypes thereof+)). The second pointcut selects all relevant
kinds of accesses to those same instances. Theese particular,
the invocation of setter and getter methods (notemaif their
precise parameter list () and return type*() as well as the
invocation of the objectsoSt r i ng method.

poi ntcut trapDel et es(PersistentRoot obj):
this(obj) &&

execution(public void PersistentRoot+. delete());
bef ore(PersistentRoot obj) : trapDeletes(obj) {..}

poi ntcut det ect Del et edObj ect s(Persi st enRoot obj):

this(obj) &&

(execution(public * PersistentRoot+.get*(..)) ||
execution(public * PersistentRoot+.set*(..)) ||
execution(public String PersistentRoot+.toString()));

bef or e(Persi st ent Root obj) : detectDel etedObj ects(obj) {..}

The two pointcuts are used by two pieces of bedoidce which
implement the interception as follows (precise iempéntation not
shown here): The first advice hooks onto the fpsintcut and
marks the transient representation of the dele¢esigient object.
That mark is used by the second advice (which haoke the
second pointcut) in order to check if invocatiortsoldd be
intercepted. With other words, the first advicecgcerned with
identifying all relevant objects that the secondieel is supposed
to affect: It is collecting all objects that areedeed to be in state
"deleted". (In doing so, the first advice basicalgalizes some
(application-specific) selection semantic — rativan adapting (or
"advising") methods of the base program, which eslvivere
originally intended for.)

6.1 Conventional Representation

As with the example presented in section 5, a orene

representation of the two distinct pointcuts canmetconsidered
appropriate. Such a representation would not revisd

chronological dependencies between these pointeuts that a

join point designated by the first pointcut musté&een selected
before a join point designated by the second pointdll be

adapted. Therefore we make use asfe model, again, which
comprises all of the relevant selection constraints

With help of the means presented in section 3, ghmtcuts
described above can be visualized as follows (shavwigure 6):
First, the JPDD renders a method invocation fromasbitrary
object (of arbitrary type) to some methdel et e on an arbitrary
object <?0bj > of (sub)typePer si st ent Root . After that,
there are two alternativg{ Xor }) method invocations shown:
One invocation to methods beginning withet " or with "get "
(taking an arbitrary number of parameters), andiowecation to

" trapDeletes n_detectDeletedObjects N
’ A}
1 \
I | *: Persistent * o <?0bj>* : * |
i Root i
i T <o H |
| ?[C 4 —<?pl>delete() > | «execution |
1 ” = i « " 1
:] <?ip2>(setlget’) (..) | | «execution |
i <?0bj>* : * {xor} 1 !
1 9 H . H 1
\\ <?{p2>toString() : String ! »| | «execution /,

AN T roo-smf-my

%P2

1 ?0bj '

Figure 6: Trapping Attemptsto Access Deleted Objects (A)

From a modeling perspective, this must be consitlere
inappropriate since the selection criteria in thigional problem
was to select objects that have reached statetédéle rather
than to select objects that have received a messagking their
methoddel et e. We would like to have an explicit visualization
of that state change: a visualization that empkeasthe pivotal
importance of this criterion to the join point sglen (and
furthermore, to the aspectual adaptation that fed)o Since the
interaction diagram-based JPDD does not provide nme®m
effectively indicate such a change in an objedides it does not
help developers to reflect on a join point selettivat is based on
a conceptual model that relies on object-states.

6.2 Improved Representation

Looking for modeling means that may overcome th@edlems,
we identified UML state charts [30] as a promisisglution.
Figure 7 demonstrates how such a state chart-b#3B®s may
look like for our sample join point selection: #rders an object
<?0bj > of typePer si st ent Root (or one of its subtypes) and
constraints its behavior using a state chart. Ttate charts
consists of one arbitrary state) (which has a transition to some
other arbitrary state*], named<?del et ed>. The transition
connecting these states is triggered by a methedcation on
methoddel et e. Once being in state?del et ed>, all method
invocations to setter and getter method, as weltoasnethod
toString, are intercepted — and returned by the JPDD
(<?j p>)". The selected method invocations have no effedhen
object's state, i.e. they are required to triggelf-tsansitions.

Apart from the method invocatior®?j p>, the JPDD returns the
object<?obj > receiving those method invocations (similar to the
JPDD shown in Figure 6). Note that in the considezgrample,
state<?del et ed> is characterized solely by the transitions it is
connected to. No further restrictions are made eomog its
name, or its entry, exit, and do action, etc.

methodt oSt ri ng (taking no parameter at all, yet returning a
value of typeSt ri ng). The methods need to be invoked on the
same objeck?obj > that already received tlael et e method
(indicated by the interrupted activation lane). Hoer, they do
not need to be invoked by the same object that alrsady the
del et e method (indicated by the interrupted lifeline).€T$PDD
returns the receiver object?obj > as well as the stimulus
<?j p2> that caused either of the latter (alternative)hods to
execute (i.e. the join points).

Considering Figure 7, we observe that it emphadtzeselevance
of state changes to the join point selection apatgy. In
contrast to the interaction diagram-based JPDD shiowFigure
6, it abstracts from the general system behavia asquence of
actions and focuses on the effects of such actidtisrespect to
the system state. Consequently, the JPDD in Figueveals the
semanticsof the operatiorlel et e as being a trigger to the state
transition from any (arbitrary, or unknown) state) o state
<?del et ed>. Provided with this extra piece of informationisit

Investigating the appropriateness of the JPDD shiowfigure 6,
we can attest once more that an interaction diadrased
visualization of join point selections may be walited to point
out to the chronological dependency between olieetactions,
i.e. the invocations of the setter and getter n@thanethod
toString, and the (previously calleddel ete method.
However, it fails to visualize the effects that Isuisteractions may
have on the system or object state. In this caseexample, the
diagram does not outline the significant effect the invocation
of methoddel et e on object<?0bj > has on the object's future
behavior (i.e. it is not supposed to answer to angre
invocations).

* From a modeling perspective, it probably wouldabgisable to
select every) method invocation on the "deleted" object
<?o0bj >.

5 as it is seen from the perspective of the persistaspect

" trapDeletes n_detectDeletedObjects ™~
7’ \
: Persistent <?0bj> : *
Root
delete

) K) <P (seriger) ()
é [0..4] | xon) I

\\ /l

Figure 7: Trapping Attemptsto Access Deleted Objects (B)

a lot easier for developers to comprehend the iioterand the
effects of this join point selection.

In conclusion, with help of these new state chadedad modeling
means, developers are able to address the selesti@vents

depending on the state of the system, or of aquéati object,

more appropriately. As such, state chart-based 3RiaD be seen
as an appropriate visualization means for join pa@lections

relying on system state, object state, and tharsitions.

7. COMBINATION OF MODELS

Having discussed the various different conceptuadiets of join

point selections and how such conceptions may kealized

appropriately, we now discuss how several concéptuzdels

may be used jointly in one single join point satatiand how that
combination of conceptions can be represented Nysda do so,

we revisit the example given in section 5: The t&ing aspect
considered there has to be extended in a wayttdates not quote
strings that already have been quoted (this examgain taken
from [25] and slightly modified). Hence, we needstgpplement
the selection constraints concerning the data {itnat have been
presented in section 5) with an additional constraglating to the
state of that data.

To implement this, we define an extra pointcat i(ent -
StringQuot ati on) that selects all calls to guot e method
executed on any (arbitrary) object)(taking and returning a
String value. The pointcut is affiliated with an advideat
removes all "untrusted" objects from the collectairfuntrusted"
objects once they have been sanitized (i.e. quo(Bdxall from
section 5 that the collection of "untrusted" obgeist maintained
by the pointcutsclientStringOrigin and client-
StringModi ficati on).

pointcut clientStringQuotation() :

call (String *.quote(String))

after() returning (String o) : clientStringQuotation() {.}
Taking a closer look at the extended join pointesibn
(implemented by the (four) pointcuts from this gattand from
section 5), we realize that we now need to repteselection
constraints based on data flow (i.e. the engagewofehintrusted"
objects in both operationget Par anet er and pri nt*, for
example) as well as on object state (i.e. all seteobjects must
be (still) "untrusted"”, i.e. not quoted). We aregtfaced with the
problem how to visualize that combination of setetitonstraints
in a feasible manner.

As we have seen in the previous sections, selechased on data
flow and based on object state are significanttfedint in nature.
Accordingly, we are using different ways to reprashem, each
unveiling the individual essence of the respeckivel of query:
Data flow-based selection criteria are represengd using

activity-diagram based JPDDs, while state-baseetteh criteria
are represented with help of state chart-based 3PDD

From a modeling perspective, it is now desirableisvalize the
different selection constraints of the aforemergbquery in their
most appropriate ways — that is, using distinctgiies
(disregarding that the query is being specified dysingle
expression on implementation level). Doing so hdgsdesigner
to focus on the different selection constraintshef query one by
one. Furthermore, it helps him/her to identify #etual intention
of each selection constraints.

Representing different selection criteria of a guer different

diagrams calls for a mechanism to relate thoseralag to each
other. Therefore, we make use of a confinementioalship that
we introduced in [37] to concatenate two JPDDsacheother. In
Figure 8, we demonstrate how the different selactidteria of

the query mentioned above are specified by meandistihct

JPDDs, and how they are subsequently combined.

// unquotedObj ects N

/ \

<?0bj>* : String

\

E

1

quote !

1

<?unquoted> <?quoted>) i
* * !

!

e M

mmmmmmmn
E
1
| \ L
: i 20bj |
N p{?0bj=20bj, ' 2unquoted !
| ?unquoted = ?unquoted} ~ TTTTTTTTTTT
...........
7 respondClientString \‘\\
// \\
B * Servlet \\
] 1
i i
! /| getParameter | | i
i ‘_7/ (Request) | i
1
i | |
i [0.4] | !
| v |
]
[0 *] * <r--- <?0b‘>String i
: (String) -4==> " !
T 1
! 1
Sx[0.7] |
/ i
1
<?20bj>String i
[<?unquoted>] !
! i
v |
. . H
| P <?jp>print* H
! /[O " 2l (Printwriter) >@ i
\ .. 1
\ ¥

Figure 8: Avoiding Double-Quoting

The bottom JPDD in Figure 8 is quite similar to tHRDD shown

in section 5. However, supplementary assertions raggde

concerning the state of objec?obj > (a) after being returned by
activity get Par anet er and (b) before being passed to activity
print*: In the former case (a), the state is considameteivant
([*1; could be omitted). In the latter case (b), ttegests required
to be <?unquot ed>. Both object states are connected by an
interrupted data flow symbol, emphasiZirtat the object state

& A non-interrupted data flow symbol (used in a JPRDUId
have the same meaning, yet is less illustrative.

could have changed arbitrary times in arbitrary neaig. As we
can see<?unquot ed> is an identifier which is further specified
in the upper JPDD in Figure 8. That JPDD outlinestede chart
for objects<?obj > of type St ri ng. According to that state
chart,<?unquot ed> refers to an arbitrary staté)(that has a
state transition, triggered by an invocation of metquot e, to
some other arbitrary stat&)(named<?quot ed>. The JPDD
exposes the objeet?obj > as well as its stat?unquot ed> in
its parameter box. These exposed elements areedetat the
elements in the lower JPDD of Figure 8 by means aof
confinement relationship. The mapping of the camfient is
specified in the annotation of the relationship.

It should be noted that it may be sufficient tod@at the including
JPDD only. In Figure 8, for example, it can be veddkerved from
the bottom JPDD that objest?obj > must be in some state
<?unquot ed> in order to comply to the selection criteria. At
this point, it may be neglected what the charasties of state

<?unquot ed> are exactly. Only if this becomes essential for

one or the other reason, we need to have a lothle atetails in the
upper JPDD in Figure 8.

All of the previously presented JPDD diagram typeay be
combined similar to the mechanism shown in Figurétat way,
combined selection may be represented in their @pgtopriate
way — even if they are based on different concéphaalels.

8. RELATED WORK
8.1 Visualizing Queries

The idea of visualizing queries is present in cotapscience for
quite a while. The visualization means for join rgogelections
presented in this paper relate to these existingnsén various
ways. For example, the principle idea of JPDDstesl#o the idea
of Query-By-Example (QBE) [40] as it is known frothe
database domain. In QBE, developers specify a guedefining
sample entities which are then compared to exigtimities in a
database in order to find matches. Operators maydesl to
define permissible degrees of deviation in whiclected entities
may vary from those sample entities in order tcstile selected.
In JPDDs, too, sample patterns are defined thatererthe
particular characteristics of those elements thaukl be selected.
Possible deviations may be specified with help @kerator
symbols (such as wildcards or double-crossed Bmests, etc.).

Model-Driven Development (MDD), such as the Modeiven

Architecture (MDA [28]) of the Object Management oBp

(OMG), is another computer science domain thatsdedth the

visualization of queries: In MDD, model transforinat involve

a query specification that designates all thosmetds in a model
which have to be adapted. In currently proposedsfaamation
techniques for MDD (such as MOLA [17] or the QVT-ide

submission [32]), query specifications are tighttyupled to their
corresponding adaptations and cannot be considereblation

(although the OMG explicitly calls for dedicatedeqy support
"to select and filter elements from models" in"MOF 2.0 Query
/ Views / Transformation (QVT)" Request For Progo&FP)

[29]). JPDDs improve this situation and considedeiajueries as
first-class entities (i.e. entities that can exist their own).
Consequently, they permit to reuse existing qu@mectications
in different application areas and permit to refinem in order to
cope with new requirements or incremental softvesaution.

8.2 Visualizing Join Point Selections

Most aspect-oriented modeling approaches are oapatdxpress
join point selections in one or the other way. leme/UML [3],
for example, join point selections are represeriigdneans of
binding relationships. Such binding relationships tagged with
an annotation that minutely designates all joimg{to which an
aspectual adaptations should be applied) eithemaémye, by
enumeration, or by meta-query (see Figure 9; adofstam [5]).
In contrast to JPDDs, join point designation iscewplished in a
pure textual manner. As a result, the (structuralationships
between the individual join points being selecteel Classes and
its methods) are not visualized. Moreover, no meaasrovided
to express join point selection criteria with redp® the (earlier)
behavior of a system. In consequence, neither efptieviously
described conceptual models of join point selectman be
visualized in Theme/UML. Join point selections iheme/UML
can only refer to static properties of a system.

«subject»
Observer

T o e .

< Subject, _aStateChange(..) >, !
i< Observer, update(), _start(.., Subject, ..), p(stoSubject, ..) »

bind[<BookCopy, {meta: isQuery = false}>,
<BookM anager, updateStatus(), addView(), {removeView(), deleteView()}>]

\

\\

«subject» \
|

Library v

Figure 9: Representing Join Point Selectionsin Theme/UML

The Aspect-Oriented Design Model (AODM) [38] makese of
AspectJ's core pointcut language to representgoint selections
(see Figure 10). In doing so, the approach suffers the same
problems as the programming language when it comees
implementing join point selections of unsupportesheeptual
models. Moreover, by not providing a graphical esgntation,
the approach does not facilitate or improve thentifieation of
the (supported) conceptual models of a join pagfection. Other
solutions following the same idea, i.e. adopting ghointcut
language of an existing aspect-oriented programniamguage
(e.g. [16], [18], etc.), suffer from similar probfs.

«aspect»
Timing

I Attributes

I Operatior

«pointcut» pointcut endTiming(Connection c)
{base =target(c) && call(void Connection.drop()) }

«advice» advice_id03 after(Connection c)
{base =target(c) & & call(void Connection.complete() }

«advice» advice_id04 after(Connection c)
{base =endTiming(c) }

Figure 10: Representing Join Point Selectionsin AODM [38]

Concern models in the superimposition approach [i8jalize
both the join point selection as well as the joninp adaptation in
the same diagram. To distinguish between one amattter, join
point selections are gray-shaded, while join peitptations are
solid black (see Figure 11). The approach allowsgrinciple to

use any type of UML diagram to represent a joimpselection,
and thus can reflect on each of the previously ritesd
conceptual models. However, the problem of this@ggh is that
join point selections are being intermingled witteit affiliated
adaptations. Hence, join point selections cannoteosed in or
refined for another application context, and depels cannot
design their join point selections in isolationrfréhe adaptation.

«aspect»
Record&Alarm

AudioController statechart |

/" Record-on

playAlarm
Alarmin
Record-o

Figure 11: Representing Join Point Selections
in Concern Diagrams[19]

With help of the Aspect-Oriented Statechart Frambw@dOSF)
[24], two (or more) independent state charts carwbeen into
one composite state chart, where each of the aligitate charts
resides in its own orthogonal region. The crosstyitexecution
of the composite state chart is then realized byenev
reinterpretation, meaning that an event in onehef arthogonal
regions is reinterpreted as an event with a differaeaning in
another orthogonal region. This event reinterpi@tat is
visualized as shown in Figure 12. The bold lined aflipses
designate and relate the join points, i.e. thetegimeted events, in
each state chart, and thus can be seen as a joirsptection.

[ip == local]

Figure 12: Representing Join Point
Selectionsin AOSF [24]

The problem with visualizing join point selectiobg relating the
join points in the base artifacts directly, is thlaéy need to be
specified ad-hoc and for a particular applicationlyo No
abstraction means are provided that allow to usexisting join
point selection in another context. As with theviwas approach,
this does not promote the reuse and refinementoiof point
selections in another problem domain.

8.3 Join Point Selections In AOP Languages
The different conceptual models discussed in thevipus
chapters are realized in various different aspéented
programming languages. In the following, we giveminent
examples of such programming languages for eacltepbnal
model. As stated before, using a particular prognarg language
realizing a particular conceptual model does nonhdéi
application developers from specifying join poietextions being
based on another conceptual model. To demonshitdalct, we
give examples of such mismatches from scientiferditure.

8.3.1 Control Flow Model

The pointcut mechanism in AspectJ allows to salestinct points
in the dynamic execution of a program — which aterpreted as
points in the dynamic call graph [20, 15]. TherefoAspectJ can
be considered to realize a control flow-orientedaaptual model
of join point selection (and it provides dedicassdection means
to reflect on this conceptual model, such asahkow pointcut
designator, for example). Similarlyracematcheq1] follow a
control flow-oriented conceptual model: They pertoitspecify a
sequence of object (inter)actions that must comedass in a
particular (partial) order during the dynamic exgému of a
program. Composition Filters [4] are another apphoahat
implements a (somewhat restricted) control flowentéed
conceptual model: Its join point selections reflect messages
being sent to or by a given object.

8.3.2 Data Flow Model
The data flow-oriented conceptual model of joinrpaelection
has been recognized in [25]. That work extends éSpwith a
newdf | ow pointcut designator that allows developers toerfl
on that conceptual model in a succinct and coneiaaner. The
following pointcut demonstrates how that pointcesignator is
used to express a similar join point selectionhasane presented
in section 5. As can be seen, the three pointcois §ection 5 are
condensed to just one single pointcut, which — amtipular —
abstracts from the modifications that may be appli®
"untrusted" objects before they are printed to H¥ETP output
stream. With help of the new pointcut designatevedopers are
able to express their actual join point selectibjectives directly
in the code.
poi ntcut respondCientString(String o) :
call (* PrintWiter.print*(String)) &% args(o) &&

Wi t hi n(Servl et+)

&8 dflowfo,i](call (String Request.getParanmeter(String))
&& returns(i));

8.3.3 State Model

The need and presence of a state-based conceptdal of join
point selections has been identified in [7], whictroduces a
formal approach to reflect on such state-based jpaint
selections in aspect-oriented programming. Based tloese
findings, a Java-based implementation approachtate-based
join point selections has been presented in [6¢ fBflowing code
fragment demonstrates (by revisiting the examplenfsection 6)
how that implementation approach enables develoferdefine
distinct transitionst(r apDel et es, andi nval i dTr ans) that
must occur in a particular order (1.rapDeletes > 2.

i nval i dTrans). As can be seen, with help of these means

developers can express the relevance of (a sequefhcstate
changes to a join point selection directly in thde.

//defining a state/transition-based join point selection
hook Det ect Del et edObj ects {
Det ect Del et edObj ect s(del ete(..args), anything(..args)){
trapDel etes: execute(delete) > invalidTrans;
invalidTrans: execute(anything) > invalidTrans;

after invalidTrans() {...}

POl

/1binding join point selection to concrete nethod calls
Det ect Del et edObj ects ddo = new Det ect Del et edObj ect s(
voi d Persi st ent Root +. del ete(),
{ * PersistentRoot+. get*(*),
* Persi stent Root +. set*(*),
String PersistentRoot+.toString() }
) [

8.3.4 Mismatches in Design and Implementation
Implementing join point selections in one of thegramming
languages mentioned above does not necessarily thatthese
join point selections make use of the same conetéphodel as
the underlying programming languages. There areyraaamples
of join point selections whose conceptual modelsnmaitch the
ones supported by their implementation languaged34], for
instance, an updating aspect is specified whickuigposed to
update objects to a database only if they have bemtified (i.e.
made "dirty"). The corresponding join point selenti is
implemented by using a method call pointcut dedignan
Aspect] — although the key selection criteria agkbe a change in
object state.

Another interesting example is given in [25], whiclroduces a
bypassi ng supplement to thedf| ow pointcut designator
discussed previously. With help of that supplemelayelopers
are able to exclude particular data flows from thim point
selection. In [25], théoypassi ng clause is used to avoid that
"untrusted” objects which already have been quateddouble-)
quoted a second time. However, as we have seeciios 7, the
conceptual model of that selection constraint iatesbased.
Hence, in this case, the data flow-oriented extensi AspectJ is
used to realize a state-based join point selection.

The last example is taken from the motivating exaspof
tracematches [1]. Tracematches permit to bind bbegaacross
multiple object interactions, which makes it eagyuse them to
reflect on object state transitions (rather tharssage sendings).
In [1], for example, tracematches are used to motiie state of a
database connection ("open", "closed") whenevetabdise query
is issued (via that connection). Thus, in this cése control flow-
oriented join point selection means of tracematébexploited to
realize a state-dependent join point query.

9. CONCLUSION AND DISCUSSION

In this paper, we discussed the relevance and ripadt of
different conceptual models on the design of jaimpselections.
We pointed out that different aspect-oriented paogning

languages support different conceptual models df jooint

selections, and consequently provide appropriatens¢o select
join points in correspondence to those conceptualdeis.

However, as soon as developers wish to specify jmomt

selections relying on a conceptual model other thansupported
one, they usually need to implement cumbersome avorkids
which do no longer reflect on the conceptual mantelerlying the
corresponding join point selection.

In this paper, we proposed a modeling approaclvéncome this
dilemma. We identified three different conceptualdals for join
point selections — namely control flow-based, ditav-based,

and state-based join point selections. We preseritede

idiomatic implementations for each kind of join posgelection in
Aspect], the presently most popular productive aspéented

programming language. We used an existing modefiegns (i.e.
interaction diagram-based JPDDs [35]) to visualizese join

point selections, and investigated its approprizéento capture
the key selection criteria of each join point sgéet While we

identified interaction diagram-based JPDDs to rerthat key
selection criteria for control flow-based join pbiselections
appropriately, we identified them as being insigint to visualize
the key elements for data flow- and state-based jodint

selections. Based on our findings, we introduceivigcdiagram-

based JPDDs to represent data flow-based join psalgctions
and state chart-based JPDDs to represent statd-f@eepoint

selections. Our subsequent evaluations have shbwan these
means are suitable to capture the key charactsrisif the
respective join point selections.

With help of the notation described in this papgiyelopers are
able to reflect on the conceptual models of thein jpoint

selections — even if their programming languagepkap not to
support it. This means on one hand developers reaigu join

point selections independently of their (any) matar

programming language. On the other hand, it hetpeldpers to
comprehend the objectives of existing join pointesions —

especially when there is a conceptual mismatch detwa join
point selection and its implementation.

The conceptual models of join point selection dised in this
paper have already been recognized by other réwrarin the
field of AOSD. As a solution, these researchersehdsveloped
new programming languages, or extended existing,os@ that
developers may specify different join point seleatifollowing
different conceptual models in a succinct and cchanner in
the code. In contrast to that, our approach preseint this paper
is to use aspect-oriented modeling means to helelaoleers to
understand and to communicate a particular joimtpsélection
and its underlying conceptual model — even, angaiticular, if
this join point selection is written in a progranmgilanguage that
does not support the respective conceptual magdebmhsequence,
we relieve the developers from being forced to geatheir
productive programming languages just to enablentaimiers to
identify the precise intention of their join posglections.

The notations we used to develop our new visuaizameans
have been around in conventional software developfioe quite
a while, and have been used there to reflect ondifferent
conceptual models being discussed here. Howevenseth
notations did not address the design (and implegtien) of join
point selections as it is used in AOSD. In thisgrapve therefore
extended those modeling means so that they canwdésalsuch
selections. In doing so, we improve the currentasion in aspect-
oriented modeling as there is no or only limiteddelang support
given for the design of join point selections.

Furthermore, we recognize in this paper that nofiethe

conceptual models described here comprises andiegrice, we
expect developers to call for suitable selectiommsereflecting on
all three of them — even in the same developmeojepr. The
precise conceptual model that underlies a joinnhtpgelection
depends ultimately on the application context @bfgm domain.
The modeling notation presented in this paper heép®lopers to
reflect on that conceptual model in their join gadelections and
permits to communicate join point selections amdagelopers —
independent of the implementation techniques begegl.

ACKNOWLEDGEMENTS

We thank the participants and the reviewers of Eueopean
Interactive Workshop on Aspects in Software (EIWABD5 [8]
for their valuable remarks that have been a grelg for writing
this paper. We also thank the anonymous reviewersttfeir
useful comments and suggestions.

REFERENCES

(1]

(2]
(3]
(4]
(5]

(6]

(7]

(8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]
(18]
(19]

(20]

Allan, C., Avgustinov, P., Christensen, A.S.,rdieen, L.,
Kuzins, S., Lhotak, O., de Moor, O., Sereni, D.,
Sittampalam, G., Tibble, JAdding Trace Matching with
Free Variables to Aspectih: Proc. of OOPSLA'05, San
Diego, CA, October 2005, ACM, pp. 345-364

Aspect] TeamThe Aspectd Programming Gujdel.2.1,
http://eclipse.org/aspectj/

Baniassad, E., Clarke, S\spect-Oriented Analysis and
Design - The Theme Approadkddison-Wesley, 2005
Bergmans, L.The Composition Filters Object Mod&ept.
of Computer Science, University of Twente, 1994
Clarke, S., Walker, R.Zomposition Patterns: An
Approach to Designhing Reusable Aspeitsroc. of ICSE
'01, Toronto, Canada, May 2001, ACM, pp. 5-14

De Fraine, B., Vanderperren, W., Suvée, D., Baic, J.,
Jumping Aspects RevisitddAW Workshop, at: AOSD
2005, Chicago, IL, March 2005

Douence, R., Fradet, P., Studholt, @gmposition, Reuse
and Interaction Analysis of Stateful Aspedats Proc. of
AOSD 2004, Lancaster, UK, March 2004, ACM, pp. 14D
European Interactive Workshop on Aspects in\Baife
(EIWAS), Brussels, Belgium, September 2005,
http://prog.vub.ac.be/events/eiwas2005/

Filman, R., Elrad, T., Clarke, S., Aksit, MAspect-Oriented
Software DevelopmenAddison-Wesley, 2004

Filman, R., Friedman, DAspect-Oriented Programming
Quantification and Obliviousnesm: [9], pp. 21-35
Gybels, K., Brichau, J.Arranging language features 1
more robust pattern-based crosscuis: Proc. of AOSI
2003, Boston, MA, March 2003, ACM, pp. 60-69
Hanenberg, S., Schmidmeier, Aspect] Idioms for Aspe
Oriented Software Constructipm: Proc. of EuroPLoP'C
June, 25-29, 2003, Irsee, Germany, pp. 617-644
Hanenberg, S., Unland, RRarametric Introductionsin:
Proc. of AOSD 2003, Boston, MA, March 2003, ACppb
80-89

Hannemann, J., Kiczales, ®esign Pattern
Implementation in Java and Aspedtit Proc. of
OOPSLA'02, November 2002, Seattle, WA, ACM
SIGPLAN Notices 37(11), pp. 161-173

Hilsdale, E., Hugunin, JAdvice Weaving in Aspeci:
Proc. of AOSD 2004, Lancaster, UK, March 2004, ACM,
pp. 26-35

Jacobson, I., Ng, P.WAspect-Oriented Software
Development with Use Casesldison-Wesley, 2005
Kalnins, A., Barzdins, J., Celms, Blpdel Transformation
Language MOLAIn: Proc. of MDA-FA '04, Linkdping,
Sweden, June 2004, Springer, LNCS 3599, pp. 62-76
Kandé, M.M., PhD Thesis, EPFL, Lausanne, SWif63
Katara, M., Katz, SArchitectural Views of Aspectis: Proc.
of AOSD 2003, Boston, MA, March 2003, ACM, pp. 1-10
Kiczales, G., Hilsdale, E., Hugunin, J., Kerst#l., Palm,
J., Griswold, W.An Overview to Aspectih: Proc. of
ECOOP '01, Budapest, Hungary, June 2001, LNCS 2072,

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]
(29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

pp. 327-353

Laddad, R.AspectJ in Action: Practical Aspect-Oriented
Programming Manning Publications, Greenwich, 2003
Lieberherr, K., Adaptive Object-Oriented Software: ~
Demeter Method with Propagation PatternsPWs
Publishing Company, Boston, 1996

Lieberherr, K., Lorenz, D., Mezini, MBrogramming with
Aspectual Component§R NU-CCS-99-01, Northeastern
University, 1999

Mahoney, M., Bader, A., Aldawud, O., Elrad, Using
Aspects to Abstract and Modularize Statechants
Workshop on Aspect-Oriented Modeling, UML '04, Lash
Portugal, October 2004

Masuhara, H., Kawauchi, KDataflow Pointcut in Aspect-
Oriented Programmingin Proc. of APLAS '03, Beijing,
China, November 2003, Springer, LNCS 2895, pp.125-1
Masuhara, H., Kiczales, G., Dutchyn, Cir.Compilation
and Optimization Model for Aspect-Oriented Prograims
Proc. of CC 2003, Warsaw, Poland, Apr. 2003, LNG32
pp. 46-60

Nishizawa, M., Chiba, S., Tatsubori, NRemote Pointcut —
A Language Construct for Distributed AQR: Proc. of
AOSD 2004, Lancaster, UK, March 2004, ACM, pp. 7-15
OMG, MDA Guide Version 1,003 (OMG Document
omg/2003-05-01)

OMG, Request for Proposal: MOF 2.0 Query / Views /
Transformations RFF2002 (OMG Document ad/2002-04-10)
OMG, Unified Modeling Language Specificatioviersion
1.5, 2003 (OMG Document formal/03-03-01)
Ostermann, K., Mezini, M., Bockisch, ChExpressive
Pointcuts for Increased Modularityn: Proc. of ECOOP'05,
Glasgow, UK, July 2005, ACM

QVT-Merge GroupRevised submission for MOF 2.0 Query
/ Views / Transformations RFR. March 2005 (OMG
Document ad/2005-03-02)

Rashid, A., Chitchyan, RRersistence as an Aspett:

Proc. of AOSD 2003, Boston, MA, March 2003, ACM, pp
120-129

Soares, S., Laureano, E., Borba/plementing Distribution
and Persistence Aspects with AspgertJProc. of OOPSLA
'02 (Seattle, WA, Nov. 2002), ACM, pp. 174-190

Stein, D., Hanenberg, S., Unland, Query Modelsin

Proc. of UML '04, Lisbon, Portugal, October 2004,
Springer, LNCS 3273, pp. 98-112

Stein, D., Hanenberg, S., Unland, R.Graphical Notation
to Specify Model Queries for MDA Transformations on
UML Models in: Proc. of MDA-FA '04, Linkdping,
Sweden, June 2004, Springer, LNCS 3599, pp. 77-92
Stein, D., Hanenberg, S., Unland, &n Relationships
between Query Models: Proc. of ECMDA-FA 2005,
Nuremberg, Germany, November 2005, Springer, LNCS
3748, pp. 254-268

Stein, D., Hanenberg, St., Unland, R.UML-based Aspect-
Oriented Design Notation For AspecBroc. of AOSD '02;
Enschede, Netherlands, April 2002, ACM, pp. 106-112
Tarr, P., Ossher, HHyper/J User and Installation Manual
IBM Corp., 2000

Zloof, M., Query-by-Example: A Data Base LanguatigM
Systems Journal, Vol. 16(4), 1977, pp. 324-343

