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ABSTRACT
When specifying pointcuts, i.e. join point selections, in Aspect-
Oriented Software Development, developers have in different
situations different conceptual models in mind. Aspect-oriented
programming languages are usually capable to support only a
small subset of them, but not all. In order to communicate aspect-
oriented design among developers, though, it is inevitable that the
underlying conceptual model used in its join point selections
remains unchanged. As a solution to this dilemma, we detail three
different conceptual models in this paper that are frequently used
in aspect-oriented applications. These models are illustrated using
sample implementations from existing literature. Then, we
introduce corresponding modeling notations based on Join Point
Designation Diagrams (JPDDs) which are capable to express join
point selections complying to those models. Finally, we discuss
the suitability of these notations to express a desired join point
selection.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.
K.6.3 [Management of Computing and Information Systems]:
Software Management – software development. D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement –
documentation.

Keywords
Aspect-Oriented Software Development; Aspect-Oriented Design;
Query Models

1. INTRODUCTION
In Aspect-Oriented Software Development (AOSD [9]), design of
join point selections is an essential task. Much research is
accomplished in finding appropriate means that permit developers
to specify such selections succinctly and concisely in an easy-to-
understand and localized way (cf. e.g. [11, 6, 31]). An
investigation of that research indicates that several different
conceptual models exist which underlie join point selections. For
example, sometimes developers think of join point selections as a

query on object interactions, while in other cases they think of
join point selections as a query on object states. The goal of the
aforementioned research is to give developers appropriate
abstraction means at hand that permit to reflect on these different
conceptual models in the program code.

However, working with an aspect-oriented programming language
that supports conceptual model A does not mean that join point
selections of another conceptual model B cannot be implemented
in that language. Indeed, developers are frequently forced to do so
as they need to stick to a particular programming language. In
consequence, join point selections usually need to be implemented
by code abstractions that do not reflect on the underlying
conceptual model – which makes it hard for maintainers or co-
developers to grasp the actual intent of (and the actual conceptual
model behind) the join point selection.

Aspect-Oriented Modeling (AOM) can help to resolve this
dilemma. AOM can provide maintainers and co-developers with
an abstract view of the code, helping them to grasp the inter-
dependencies between multiple code abstractions implementing
one join point selection as well as the general conceptual model
behind it. Modeling – i.e. graphically visualizing (parts of) a
complex system – has a long tradition in conventional software
development. It has proven to help developers to reason about
problems without having to deal with solution details. In this
paper, we aim to bring forth the benefits of this way of (problem-
oriented) modeling to the field AOSD.

Modeling approaches reflecting on aspect-oriented concepts are
around for quite a while (see [3, 38, 16]). However, existing
modeling approaches focus mainly on the way how aspects adapt
the underlying application. Graphical visualization of join point
selections is only rarely considered.

In this paper, we introduce novel modeling means that permit to
visualize join point selections, and that help to reflect on the
different underlying conceptual models. To do so, we investigate
three different examples of join point selection from scientific
literature, each based on a different conceptual model. We
investigate the appropriateness of existing modeling means to
represent each of these selections. As we identify flaws, we
introduce new modeling means that overcome the identified
insufficiencies. We exemplify how these new modeling means
can be used to represent the join point selections under inspection,
and discuss how they relate to their underlying conceptual models.
Furthermore, we explicate how join point selections which are
based on different conceptual models can be combined.

The remainder of this paper is structured as follows: In section 2,
we outline the need for query models; that is, we elucidate the
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reasons why and the circumstances under which modeling of join
point selections is beneficial. In section 3, we introduce «Join
Point Designation Diagrams» (JPDDs [35]), an existing modeling
approach to visualize join point selections based on the conceptual
model of message sending. This notation is used as a starting
point for our considerations in this paper. In section 3.6, we
briefly outline why JPDDs (in their current state) are not heeded
suitable to express each of the investigated sample join point
selections. In section 4, 5, and 6, different join point selections are
presented and possible ways of visualization are investigated.
Each visualization is examined with respect to the selection’s
underlying conceptual model – that is, a control flow-oriented, a
data flow-oriented, and a state-oriented conceptual model. If a
mismatch between the conceptual model of the example and its
visualization is detected, novel modeling means are introduced.
Section 7 elucidates how the visualizations of two join point
selections based on different conceptual models can be combined.
Section 8 discusses related work. Section 9 concludes the paper.

2. THE NEED FOR QUERY MODELS
Join point selections are of pivotal importance to Aspect-Oriented
Programming (AOP). Join point selections designate all those
relevant points in a program (i.e. in its code, or during its
execution) at which aspectual adaptations need to take place.
Finding appropriate means to designate such sets of relevant join
points (concisely and entirely in one place, so that the benefits of
code reuse are at their maximum) is a highly active field of
research in AOSD [11, 6, 31]. As an indication of this significant
interest, different aspect-oriented systems came up with most
various language constructs to specify such queries, e.g. pointcuts
[21], traversal strategies [22], match or type patterns [39, 21],
logic queries [11, 13, 31], applicability conditions [7], etc.

Each of these designation means comes with its own particular
abstractions that permit to specify join point selections based on
different selection constraints. For example, pointcuts in AspectJ
[21] select method calls depending on (particular characteristics
of) the control flow they occur in. Traversal strategies in
Demeter/Java [22] select classes and objects based on their
structural relationships. Match patterns in Hyper/J [39] designate
method specifications based on their names. Logic queries in
Sally [13] select classes based on particular attributes or methods
that they contain. Applicability conditions in JAsCo [6] select
objects depending on the state they are in, etc.

In a perfect world, we would have one "master" aspect-oriented
programming language, equipped with appropriate abstraction
means for all of the aforementioned join point selection
constraints (maybe even more). The language would permit
developers to combine those selection constraints in arbitrary
ways so they can express exactly what they want to happen (i.e.
what join points they want to select). Furthermore, the language
would allow programmers to gather (all) relevant selection
constraints in one place so that maintainers can easily determine
and comprehend the intents of a selection.

In reality, though, developers often use one particular aspect-
oriented programming language that does not provide (all) the
appropriate abstraction means needed to capture and reflect the
developers' intention. In consequence, developers are forced to
come up with cumbersome workarounds – most commonly
consisting of a group of abstractions that only co-jointly
implement the developers' intentions. The impacts on the resulting
program code are severe: Since the program's intents are

disseminated across multiple abstractions, it is difficult for
maintainers to understand what the programmers originally
intended to do (i.e. what join points they wanted to select).

For example, a common workaround for state-based join point
selections [6] in AspectJ is to use one pointcut/advice pair to
monitor if the system has reached a particular state, and to use
another pointcut/advice pair to actually realize the aspectual
functionality that should be performed (only) in that state (we are
going to further investigate such a solution later on). In order to
fully understand under which circumstances the aspect affects the
system, a maintainer must read and understand both
pointcut/advice pairs and, moreover, must recognize their inter-
dependencies.

The best solution to deal with such a problem would be to switch
to a programming language that provides suitable abstraction
means to capture the entire aspect applicability conditions.
However, this is most oftenly prohibited by external requirements:
Maybe large parts of the systems have already been implemented
and their re-implementation would be too costly. Changing the
used programming language might just shift the problem to
another place, anyway – unless the new language is capable to
express the selection criteria of all the join point selections which
need to be implemented in the system. Even if multiple
programming languages can be used in the same development
project, the necessity to combine the join point designation means
of two different languages may arise in order to select the right set
of join points. Then again, maintainers need to explore the entire
code so they won't miss an important hint to realize which join
points are actually affected by the aspects.

Therefore, we advocate the need for query models, i.e. the
visualizations of join point selections. Query models can help to
provide developers with an abstract view on join point selections.
Such visualizations are particularly useful when a join point
selection needs to be implemented by means of a group of code
abstractions. In that case, the abstract view can help maintainers to
recognize the purpose of each of the code abstractions and can
provide them with a broader picture on how they jointly fulfill a
particular objective.

Contemplating on the pivotal importance of join point queries in
aspect-oriented software development and the benefits of keeping
it separate from the adaptation specification (cf. [14, 12]), we
consider it advisable to have distinct design models that help to
understand and reason about the conditions and constraints under
which join points should be selected. With help of such query
models developers can strictly focus on the selection constraints
of their join point selections. Furthermore, having distinct query
models helps developers to reflect on the dichotomy of join point
selection and join point adaptation (or "quantification" and
"assertion" [10]) in aspect-oriented programming. Finally, it
permits to analyze the reusability of join point selections in
different application contexts – independently from the adaptation
that is associated with those selections.

3. JOIN POINT DESIGNATION DIAGRAMS
Interaction diagram-based1 «Join Point Designation Diagrams»
(JPDDs [35]) have been proposed as a modeling approach
especially dedicated to the graphical representation join point
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selections. In particular, the notation provides graphical means to
visualize join point queries based on the lexical properties [23,
26] of program elements as well as based on the dynamic and
structural context [26, 11] they occur in. In the following, all
relevant abstraction means that are necessary to understand the
considerations in the remainder of this paper are introduced. A
comprehensive introduction to JPDD is omitted here due to space
limitations. The interested reader is pointed to [35, 36, 37] for
further details.

3.1 General Syntax
JPDDs make use of (and partially adapt) the graphical symbols
from UML class and object diagrams as well as from UML
interaction diagrams, i.e. sequence diagrams (Unified Modeling
Language [30]). These graphical elements may be arranged in
JPDDs analogously to their equivalents in UML diagrams. Figure
1 shows a sample JPDD that outlines all graphical symbols
relevant for this paper.

As shown in Figure 1, JPDDs are (most commonly2) rendered as
dashed rectangles with rounded corners. They are given a name
which is shown in their top left corner (aSampleJPDD), and they
are given a parameter box at their lower right corner that lists a set
of identifiers (cf. section 3.3) designating those elements that  are
exposed to aspectual adaptations (e.g. to some modification or
enhancement realized by some introduction or advice, etc.).
JPDDs may specify behavioral selection constraints and structural
selection constraints. For the former, they make use of (partially
adapted) interaction diagram symbols; and for the latter they make
use of (partially adapted) object or class diagram symbols. A
single JPDD may specify both behavioral and structural selection
constraints at the same time. Consequently, symbols of either
diagram type may be combined in a single JPDD, in which case
they are separated by a dotted vertical line (see Figure 1 for an
example).

3.2 Name/Signature Patterns And Wildcards
By default, every string in a JPDD is considered to be a name
pattern for an element name. Name patterns may contain asterisk
wildcards (*) to abstract from an arbitrary number of characters.
A bare asterisk (*) is used as an all-quantifier, i.e. the precise
name of the respective element is considered irrelevant for the
selection. Method and operation signatures are constrained by
signature patterns (which consist of multiple name patterns for the
method/operation name, their arguments, and their argument
types, etc.). Signature patterns may contain the wildcard ".." in
their parameter list, which is used to abstract from an arbitrary
number of arguments (in analogy to the semantics of ".." in
AspectJ [21]).

Figure 1 illustrates how patterns and wildcards can be used to
specify selection constraints on the lexical properties of a program
element [23, 26]. The signature pattern on the right side, for
example, is used to refer to all method calls (<?jp>) on
operations whose names start with "search". The asterisk
wildcard (*) is used here to denote that the operations' names may
end arbitrarily. Furthermore, the selected operation calls (<?jp>)
must take one argument of type int, they must return an
argument of type DiseaseType, and they must be invoked on
objects of type DiseaseRepositoryDBMS. In these cases, the
bare asterisk (*) denotes that the precise names of the argument
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being passed and the object being called are considered irrelevant
for the selection.

The wildcard ".." used in the signature pattern in the middle of
Figure 1 determines that the number of arguments being passed to
the operation is irrelevant for selection. The asterisks "*" in front
of and after that parameter list pattern outline that the precise
name and the return type of the operations being called are
irrelevant, too.

3.3 Identifiers
Identifiers are enclosed in angled brackets (< >) and always begin
with a question mark (?) so that they can be distinguished from
ordinary name patterns. They are placed in front of the name or
signature pattern of the element that they refer to. Identifiers may
refer to any element that is rendered in a JPDD – e.g. classes,
objects, messages, or stimuli3, etc. In Figure 1, for example,
identifier <?jp> refers to a stimulus, while identifier <?s> refers
to an object. Identifiers are used to designate elements inside a
JPDD which are to be exposed for aspectual adaptations. JPDDs
provide a parameter box at their lower right corner that lists all
identifiers of such exposed elements (<?jp> in Figure 1, for
example). Apart from designating exposed elements, identifiers
may also be used to interrelate elements in different sections of a
JPDD. Such (interrelated) elements are deemed to be the same.
For example, identifier <?s> in Figure 1 is used to designate an
object (i.e. the same object) in the left and right part of the JPDD.
The right part renders the behavioral selection constraints on that
object, while the left part outlines the structural selection
constraints.

3.4 Indirect Relationships
Figure 1 elucidates furthermore how selection constraints can be
specified on the dynamic or structural context of join points [26,
11]. The indirect message symbol ( ) in the middle of Figure
1, denotes that all selected method calls (<?jp>) need to occur in
the control flow of another method invocation – namely in the
control flow of an arbitrary method call invoked on an arbitrary
instance (<?s>) by an (any) instance of ServletEngine. On
the left side of Figure 1, the receiver instances (<?s>) of such
method calls are further confined to instances of ListServlet,
(or of one of its subtypes). This is accomplished by means of an
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message specification. In other words, a stimulus represents a
runtime instance of a message specification.
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Figure 1: A Sample JPDD (cf. [35])



indirect inheritance relationship ( ) which constraints that
there must exist a path from one class to another class across the
inheritance hierarchy. Both kinds of indirect relationships may be
adorned with a multiplicity that indicates how many classes,
objects, or method calls, respectively, may reside on the path from
one element to the other.

3.5 Combination Relationships
Two JPDDs may be combined in a way that the selection
constraints of one JPDD are relieved or restricted by the selection
constraints of the other. This may be accomplished by means of
special union (∪), confinement (∩), or exclusion (\) relationships
(cf. [37]). Figure 2 illustrates how these combination relationships
are established between two JPDDs: JPDD_D is connected to
JPDD_A by means of a union relationship (∪) – meaning that the
selection criteria of JPDD_A are included into JPDD_D as
alternative selection criteria. Furthermore, JPDD_D is connected
to JPDD_B by means of a confinement relationship (∩) – which
means that the selection criteria of JPDD_B are included into
JPDD_D as additional selection criteria. Finally, JPDD_D is
connected to JPDD_C by means of an exclusion relationship (\) –
denoting that the selection criteria of JPDD_C are included into
JPDD_D as exclusion constraints. In all three cases, the ρ
annotation defines how the elements of the including JPDD
(JPDD_D) relate to the elements of the included JPDDs
(JPDD_A, JPDD_B, and JPDD_C, respectively). This mapping is
particularly useful (and necessary), if the elements of the
including JPDD are named differently than the elements of the
included JPDD (as with the exclusion relationship in Figure 2, for
example).

3.6 The Problem With Current JPDDs
JPDDs have been originally developed for aspect-oriented
systems whose conceptual view on join point selections is based
on object interactions. Consequently, the notation presented in
[35] has been based on class (and object) diagrams and interaction
(i.e. sequence) diagrams. The focus of these diagrams is to render
constituent object-oriented concepts, such as inheritance as well
as message sending and reception. Hence, (interaction diagram-
based) JPDD – as introduce in [35] – should be principally
capable to express any query on object-oriented software artifacts.
However (as we will show), from a conceptual modeling
perspective, restricting the join point selection mainly to object-
interactions is not always satisfactory. For example, if we
contemplate on different system states and their transitions, or if
we reason on the necessary steps to fulfill a particular task, the
information which objects are involved and which messages they
exchange is only of secondary interest.

In the subsequent three sections, we investigate under which
circumstances the existing means (based on interaction diagrams)
are sufficient to capture the conceptual idea behind a join point
selection – and under which circumstances these means turn out to
be insufficient. Based on this we propose new modeling means
which are better suited to emphasize that conceptual view.

4. CONTROL FLOW MODEL
At first, we deal with the specification of join point selections
whose conceptual model is based on control flows. We use an
example taken from [27] that implements a unit test to verify if a
newly registered user is actually stored into a database. To do so,
the testing aspect logs if the database server really executes the
corresponding request.

In [27], the testing aspect is implemented using an AspectJ
pointcut that designates the following join points: It collects all
executions of method addUser (taking two arguments of type
String, and returning void) performed by instances of
DbServer. These executions are collected only, if they occur in
the control flow (cflow) of a method call to method
registerUser (again taking two arguments of type String,
and returning void) on instances of AuthServer.
pointcut remotePointcut():
cflow(call(void AuthServer.registerUser(String, String)))
&& execution(void DbServer.addUser(String, String));

The cflow pointcut designator expresses a chronological
dependency between two given join points in which one must
occur "between entry and exit" [2] of the other. With help of the
means presented in section 3, this dependency is rendered as
follows (see Figure 3): The JPDD outlines a method invocation
from an arbitrary object of arbitrary type (* : *) on method
registerUser (taking two arguments of type String) of an
arbitrary object of type AuthServer. That object of type
AuthServer hands over the control – via an arbitrary number of
further objects (as indicated by the symbol , with the
cardinality [0..*]) – to an object which invokes the method
addUser (taking two arguments of type String) on an instance
of DbServer. In its parameter box at the bottom right corner, the
JPDD lists the element <?jp> that is returned, i.e. the execution
of method addUser in this case.

When evaluating the appropriateness of the pointcut visualization
shown in Figure 3, we need to identify the key characteristics of
the remotePointcut join point selection described before. As
such (i.e. as the key characteristic), we identify the relationship
between the two method calls to addUser and to
registerUser: According to the cflow selection criterion,
the former method call is required to occur while the latter method
call is still active (that is, while the latter method is still
executing).

∪∪∪∪

JPDD_D

 ?jp

JPDD_A

 ?jp

JPDD_B

 ?jp

JPDD_C

 ?njp

ρ{?jp = ?jp}

\

ρ{?jp = ?jp}

ρ{?jp = ?njp}

∩∩∩∩

Figure 2: Combination Relationships (cf. [37])

registerUser
( * : String,

* : String  )
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 ?jp

remotePointcut

[0..*]

Figure 3: Logging the Insertion of New Users Into a Database



Looking at Figure 3, the query representation seems to emphasize
that relationship appropriately: The JPDD outlines how control is
passed from one instance to another by means of method
invocations. It renders the chronological dependencies between
method calls, and indicates how each method is invoked in the
dynamic context of another. The activation bars on the lifelines of
each object indicate that each method remains active until the
termination of the subsequent methods.

In conclusion to these observations, we consider the interaction
diagram-based modeling means of JPDDs to be suitable to
represent join point selections which reflect on the (particular
characteristics of a program's) control flow. Moreover, this
representation seems appropriate for any join point selection
which reflects on object interactions and their chronological
dependencies. Hence, we deem interaction diagram-based JPDDs
to be an effectual help for developers who need to understand join
point selections relying on a conceptual model based on control
flows – even if the implementation language in use does not
provide corresponding abstractions (which has not been the case
here, since AspectJ provides the cflow pointcut).

5. DATA FLOW MODEL
In this section, we investigate join point selections whose
conceptual model focuses on data flows. To do so, we adopt an
example taken from [25]. The example is part of a sanitizing
aspect that quotes strings received from an untrusted party before
sending them out to the HTTP stream. The goal is to avoid "cross-
site scripting", i.e. the execution of malicious scripts originating
from malintended thirds on the requesting machine.

In our adoption of the join point selection described in [25], we
make use of three pointcuts: The first one (clientString-
Origin) selects all calls to method getParameter of
Request objects, which both take one argument of type
String and return one value of type String. The second
pointcut (clientStringModification) designates all
method calls to (arbitrary) methods of objects of type String (or
of one of its subtypes (+)) that return a String value; the
number of arguments being passed is considered irrelevant (..).
The third pointcut (respondClientString), finally, selects
all invocation calls to print methods (print*) of
PrintWriters. These invocation calls need to be defined in
class Servlet (or one of its subtypes (+)), and they need to pass
one argument o of type String.
pointcut clientStringOrigin() :
call(String Request.getParameter(String))
after() returning (String o) : clientStringOrigin() {...}

pointcut clientStringModifications() :
call(String String+.*(..))
after() returning (String o) : clientStringModifications() {...}

pointcut respondClientString(String o) :
call(* PrintWriter.print*(String)) && args(o) && 

within(Servlet+)

The three pointcuts are affiliated with three pieces of advice that
jointly realize the sanitizing aspect as follows (precise
implementation not shown here): The first advice (affiliated with
the first pointcut) keeps track of all objects that originate from
"untrusted" sources. In this case, the sanitizing aspect assumes
that all data coming in via an HTTP Request needs to be
considered "untrusted". The second advice (affiliated with the
second pointcut) keeps track of all changes applied to "untrusted"
objects, as well as of all objects that are newly generated from

"untrusted" objects. For our investigations, we assume that any
string modification and string reproduction in the base system is
accomplished using the corresponding string methods provided by
Java's String class (e.g. concat, substring, replace,
etc.). The third advice, finally, (affiliated with the third pointcut)
realizes the actual sanitization, and quotes all "untrusted" strings
before they are being printed out to PrintWriters – which
take care of streaming out an HTTP response to the internet.

5.1 Conventional Representation
Considering this example from a modeling perspective, a one-to-
one representation of the three distinct pointcuts using the means
presented in section 3 is not appropriate. In particular, the
representation wouldn't reveal the chronological dependencies
between these pointcuts – therefore, the latter pointcut will not
have much effect unless the former two have identified
"untrusted" objects before, and have collected them in a list. What
we would like to have is a visualization of all relevant selection
criteria in one model.

Using JPDDs the aforementioned pointcut can be visualized as
shown in Figure 4: An arbitrary object (of arbitrary type) sends a
message named getParameter to an arbitrary object of type
Request. It is providing an arbitrary argument of type String,
and gets an object <?obj> in return. At a later point in time,
control flow may be passed to the returned object <?obj> and a
modified version of that object <?obj> may be returned. Finally,
the control flow reaches an object of (sub)type Servlet which
uses the previously retrieved object <?obj> as an argument to
some invocation on operations starting with "print" on objects
of type PrintWriter. Note how multiple indirection symbols
are used to indicate that control flow (a) could originate either
from the object requesting <?obj> or from any other arbitrary
object (indicated by the interrupted lifeline). The control flow
could (b) traverse only one or multiple objects and/or only one or
multiple links before it finally reaches an instance of (sub)type
Servlet (indicated by the interrupted message). The asterisk in
front of a multiplicity tag of an interrupted message denotes that
the subsequent control flow may occur once, multiple times, or

respondClientString

 ?jp
 ?obj

<?jp>print*(<?obj>* : String)

* :
<?c>*

* : Print
Writer

getParameter(* : String)

* : * * :
Request

<?obj>* : String

Servlet

<?c>*

[0..*]

[0..*]

*(..)

<?obj>*
: String

<?obj>* : String

* : *

 *[0..*]

Figure 4: Intercepting the Printing of Strings
from Untrusted Origin (A)



not at all. And finally, the invocation of the print operation
could happen in (c) any activation of the ultimately reached
instance (indicated by the interrupted activation bar). The JPDD
returns the requesting object <?obj> as well as the stimulus
<?jp> that caused the print method call (i.e. the join point).

Taking a critical look on the interaction diagram-based JPDD
shown in Figure 4, we observe that – even though the
chronological dependency between the invocation of method
getParameter, the subsequent self-modification, and the
ultimate invocation of a print method is well visualized – the
actual selection criteria, i.e. the data flow of object <?obj>, is
not sufficiently emphasized. One must carefully study the diagram
to discover that the object <?obj> being returned by method
getParameter and the object <?obj> being passed to the
print method must be the same.

From a modeling perspective, this is not satisfactory. What we
would like to have is an explicit visualization of object <?obj>,
as well as of the different ways it is involved in each method. It
should be easy to recognize that object <?obj> is (both) output
from method getParameter and input to some print
method. In interaction diagrams, however, input and output
parameters are rendered as "annotations" to messages only.
Hence, they are incapable to stress the fundamental significance
of input and output parameters to the selection result of data flow-
based queries. The use of interaction diagram-based JPDDs to
represent selection constraints relying on a data flow-oriented
conceptual model must therefore be considered inappropriate.

5.2 Improved Representation
In answer to our previous findings, we investigate a new modeling
notation that is more suitable to express data flow-based join point
selections than the interaction-based JPDDs.

Figure 5 shows a JPDD which is based on UML activity diagrams
[30]. It outlines three (call) activities: getParameter (hosted
by classifier Request), print* (hosted by classifier
PrintWriter), and an arbitrary (*) activity (hosted by
classifier String). These activities are connected by indirect
transitions (of cardinality [0..*]), which means that multiple
activities (i.e. none, one, or more) may take place between the
former and the latter activity. Likewise, getParameter neither
needs to be the first activity in the workflow; nor does print*
need to be the last activity (as indicated by the indirect transition
symbols from the initial state and to the final state, respectively).
A self-transition from and to the arbitrary (*) activity hosted by
the String classifier indicates that this activity may be executed
multiple times, before the execution eventually proceeds with the
print* activity. The activities are arranged in swimlanes, which
indicate who is responsible for performing the respective activity:
While we require the print* activity to be conducted by a
Servlet instance, we make no restrictions concerning the
initiations of activity getParameter and the arbitrary (*)
activity. The actual data flow is represented using object flow
symbols: Activity getParameter produces one object
<?obj> of type String as output parameter, which eventually
is passed to activity print* as an input parameter. In the
meanwhile, the object <?obj> may be involved (and possibly
modified) by one or more arbitrary (*) activities. Similar to the
JPDD shown in Figure 4, the JPDD shown in Figure 5 returns a
reference to the activity to crosscut <?jp>, as well as to the
object <?obj> involved in that activity.

When comparing the activity diagram-based JPDD shown in
Figure 5 with the interaction diagram-based JPDD shown in
Figure 4, we can observe that the focus of the activity diagram-
based JPDD is on workflow and data flow – rather than control
flow. That means, that the activity diagram-based visualization
neglects how program control is handled over from one activity to
another (e.g. from getParameter to print*). Instead, it
concentrates on the order of activities as well as on the data
involved. The diagram emphasizes the mutual dependencies
between different activities, as well as between activities and data.
In consequence, the different roles of object <?obj> in either of
the activities getParameter and print* is easy to conceive.

With help of activity diagram-based JPDDs, developers are thus
capable to easily recognize the key selection constraints of data
flow-based join point selections. The dedicated focus of activity
diagram-based JPDDs on the dependencies between activities and
data – such as the engagement of the same object in diverse
operations, for example – makes them an appropriate means to
represent join point selections which are based on data flow. Thus,
they can help developers to comprehend the selection objectives
of such join point selections – even if these objectives are
disseminated across multiple code abstractions (as it has been the
case in this example).

6. STATE MODEL
At last, we consider a persistency aspect which takes care of
synchronizing a set of business objects with their database
representation. The example is used to exemplify selections
relying on a conceptual model of states and state transitions. It is
taken from [33], and deals with the sub-task of trapping accesses
to transient representations of deleted persistent objects that have
not yet been collected by Java's garbage collector.

In order to realize the previously described aspect, two pointcuts
are defined in [33]: The first one selects all executions of method
delete, being invoked on instances of PersistentRoot (or
subtypes thereof (+)). The second pointcut selects all relevant
kinds of accesses to those same instances. These are, in particular,
the invocation of setter and getter methods (no matter of their
precise parameter list (..) and return type (*)) as well as the
invocation of the object's toString method.
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 ?jp
 ?obj

[0..*]
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(String)

[0..*]

[0..*]

Figure 5: Intercepting the Printing of Strings
from Untrusted Origin (B)



pointcut trapDeletes(PersistentRoot obj):
this(obj) &&
execution(public void PersistentRoot+.delete());
before(PersistentRoot obj) : trapDeletes(obj) {...}

pointcut detectDeletedObjects(PersistenRoot obj):
this(obj) &&
( execution(public * PersistentRoot+.get*(..)) ||
  execution(public * PersistentRoot+.set*(..)) ||
  execution(public String PersistentRoot+.toString()) );
before(PersistentRoot obj) : detectDeletedObjects(obj) {...}

The two pointcuts are used by two pieces of before advice which
implement the interception as follows (precise implementation not
shown here): The first advice hooks onto the first pointcut and
marks the transient representation of the deleted persistent object.
That mark is used by the second advice (which hooks onto the
second pointcut) in order to check if invocations should be
intercepted. With other words, the first advice is concerned with
identifying all relevant objects that the second advice is supposed
to affect: It is collecting all objects that are deemed to be in state
"deleted". (In doing so, the first advice basically realizes some
(application-specific) selection semantic – rather than adapting (or
"advising") methods of the base program, which advice were
originally intended for.)

6.1 Conventional Representation
As with the example presented in section 5, a one-to-one
representation of the two distinct pointcuts cannot be considered
appropriate. Such a representation would not reveal the
chronological dependencies between these pointcuts – in that a
join point designated by the first pointcut must have been selected
before a join point designated by the second pointcut will be
adapted. Therefore we make use of one model, again, which
comprises all of the relevant selection constraints.

With help of the means presented in section 3, the pointcuts
described above can be visualized as follows (shown in Figure 6):
First, the JPDD renders a method invocation from an arbitrary
object (of arbitrary type) to some method delete on an arbitrary
object <?obj> of (sub)type PersistentRoot. After that,
there are two alternative ({xor}) method invocations shown:
One invocation to methods beginning with "set" or with "get"
(taking an arbitrary number of parameters), and one invocation to
method toString (taking no parameter at all, yet returning a
value of type String). The methods need to be invoked on the
same object <?obj> that already received the delete method
(indicated by the interrupted activation lane). However, they do
not need to be invoked by the same object that already sent the
delete method (indicated by the interrupted lifeline). The JPDD
returns the receiver object <?obj> as well as the stimulus
<?jp2> that caused either of the latter (alternative) methods to
execute (i.e. the join points).

Investigating the appropriateness of the JPDD shown in Figure 6,
we can attest once more that an interaction diagram-based
visualization of join point selections may be well-suited to point
out to the chronological dependency between object interactions,
i.e. the invocations of the setter and getter methods, method
toString, and the (previously called) delete method.
However, it fails to visualize the effects that such interactions may
have on the system or object state. In this case, for example, the
diagram does not outline the significant effects that the invocation
of method delete on object <?obj> has on the object's future
behavior (i.e. it is not supposed to answer to any more
invocations).

From a modeling perspective, this must be considered
inappropriate since the selection criteria in the original problem
was to select objects that have reached state "deleted" – rather
than to select objects that have received a message invoking their
method delete. We would like to have an explicit visualization
of that state change: a visualization that emphasizes the pivotal
importance of this criterion to the join point selection (and
furthermore, to the aspectual adaptation that follows). Since the
interaction diagram-based JPDD does not provide means to
effectively indicate such a change in an object’s state, it does not
help developers to reflect on a join point selection that is based on
a conceptual model that relies on object-states.

6.2 Improved Representation
Looking for modeling means that may overcome these problems,
we identified UML state charts [30] as a promising solution.
Figure 7 demonstrates how such a state chart-based JPDDs may
look like for our sample join point selection: It renders an object
<?obj> of type PersistentRoot (or one of its subtypes) and
constraints its behavior using a state chart. That state charts
consists of one arbitrary state (*) which has a transition to some
other arbitrary state (*), named <?deleted>. The transition
connecting these states is triggered by a method invocation on
method delete. Once being in state <?deleted>, all method
invocations to setter and getter method, as well as to method
toString, are intercepted – and returned by the JPDD
(<?jp>)4. The selected method invocations have no effect on the
object's state, i.e. they are required to trigger self-transitions.
Apart from the method invocations <?jp>, the JPDD returns the
object <?obj> receiving those method invocations (similar to the
JPDD shown in Figure 6). Note that in the considered example,
state <?deleted> is characterized solely by the transitions it is
connected to. No further restrictions are made concerning its
name, or its entry, exit, and do action, etc.

Considering Figure 7, we observe that it emphasizes the relevance
of state changes to the join point selection appropriately. In
contrast to the interaction diagram-based JPDD shown in Figure
6, it abstracts from the general system behavior as a sequence of
actions and focuses on the effects of such actions with respect to
the system state. Consequently, the JPDD in Figure 7 reveals the
semantics5 of the operation delete as being a trigger to the state
transition from any (arbitrary, or unknown) state (*) to state
<?deleted>. Provided with this extra piece of information, it is

                                                                
4 From a modeling perspective, it probably would be advisable to

select every (*) method invocation on the "deleted" object
<?obj>.

5 as it is seen from the perspective of the persistency aspect
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a lot easier for developers to comprehend the intention and the
effects of this join point selection.

In conclusion, with help of these new state chart-based modeling
means, developers are able to address the selection of events
depending on the state of the system, or of a particular object,
more appropriately. As such, state chart-based JPDDs can be seen
as an appropriate visualization means for join point selections
relying on system state, object state, and their transitions.

7. COMBINATION OF MODELS
Having discussed the various different conceptual models of join
point selections and how such conceptions may be visualized
appropriately, we now discuss how several conceptual models
may be used jointly in one single join point selection and how that
combination of conceptions can be represented visually. To do so,
we revisit the example given in section 5: The sanitizing aspect
considered there has to be extended in a way that it does not quote
strings that already have been quoted (this example is again taken
from [25] and slightly modified). Hence, we need to supplement
the selection constraints concerning the data flow (that have been
presented in section 5) with an additional constraint relating to the
state of that data.

To implement this, we define an extra pointcut (client-
StringQuotation) that selects all calls to a quote method
executed on any (arbitrary) object (*), taking and returning a
String value. The pointcut is affiliated with an advice that
removes all "untrusted" objects from the collection of "untrusted"
objects once they have been sanitized (i.e. quoted). (Recall from
section 5 that the collection of "untrusted" objects is maintained
by the pointcuts clientStringOrigin and client-
StringModification).
pointcut clientStringQuotation() :
call(String *.quote(String))
after() returning (String o) : clientStringQuotation() {...}

Taking a closer look at the extended join point selection
(implemented by the (four) pointcuts from this section and from
section 5), we realize that we now need to represent selection
constraints based on data flow (i.e. the engagement of "untrusted"
objects in both operations getParameter and print*, for
example) as well as on object state (i.e. all selected objects must
be (still) "untrusted", i.e. not quoted). We are thus faced with the
problem how to visualize that combination of selection constraints
in a feasible manner.

As we have seen in the previous sections, selections based on data
flow and based on object state are significantly different in nature.
Accordingly, we are using different ways to represent them, each
unveiling the individual essence of the respective kind of query:
Data flow-based selection criteria are represented by using

activity-diagram based JPDDs, while state-based selection criteria
are represented with help of state chart-based JPDDs.

From a modeling perspective, it is now desirable to visualize the
different selection constraints of the aforementioned query in their
most appropriate ways – that is, using distinct diagrams
(disregarding that the query is being specified by a single
expression on implementation level). Doing so helps the designer
to focus on the different selection constraints of the query one by
one. Furthermore, it helps him/her to identify the actual intention
of each selection constraints.

Representing different selection criteria of a query in different
diagrams calls for a mechanism to relate those diagrams to each
other. Therefore, we make use of a confinement relationship that
we introduced in [37] to concatenate two JPDDs to each other. In
Figure 8, we demonstrate how the different selection criteria of
the query mentioned above are specified by means of distinct
JPDDs, and how they are subsequently combined.

The bottom JPDD in Figure 8 is quite similar to the JPDD shown
in section 5. However, supplementary assertions are made
concerning the state of object <?obj> (a) after being returned by
activity getParameter and (b) before being passed to activity
print*: In the former case (a), the state is considered irrelevant
([*]; could be omitted). In the latter case (b), the state is required
to be <?unquoted>. Both object states are connected by an
interrupted data flow symbol, emphasizing6 that the object state
                                                                
6 A non-interrupted data flow symbol (used in a JPDD) would

have the same meaning, yet is less illustrative.
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could have changed arbitrary times in arbitrary manners. As we
can see, <?unquoted> is an identifier which is further specified
in the upper JPDD in Figure 8. That JPDD outlines a state chart
for objects <?obj> of type String. According to that state
chart, <?unquoted> refers to an arbitrary state (*) that has a
state transition, triggered by an invocation of method quote, to
some other arbitrary state (*), named <?quoted>. The JPDD
exposes the object <?obj> as well as its state <?unquoted> in
its parameter box. These exposed elements are related to the
elements in the lower JPDD of Figure 8 by means of a
confinement relationship. The mapping of the confinement is
specified in the ρ annotation of the relationship.

It should be noted that it may be sufficient to look at the including
JPDD only. In Figure 8, for example, it can be well observed from
the bottom JPDD that object <?obj> must be in some state
<?unquoted> in order to comply to the selection criteria. At
this point, it may be neglected what the characteristics of state
<?unquoted> are exactly. Only if this becomes essential for
one or the other reason, we need to have a look at the details in the
upper JPDD in Figure 8.

All of the previously presented JPDD diagram types may be
combined similar to the mechanism shown in Figure 8. That way,
combined selection may be represented in their most appropriate
way – even if they are based on different conceptual models.

8. RELATED WORK
8.1 Visualizing Queries
The idea of visualizing queries is present in computer science for
quite a while. The visualization means for join point selections
presented in this paper relate to these existing means in various
ways. For example, the principle idea of JPDDs relates to the idea
of Query-By-Example (QBE) [40] as it is known from the
database domain. In QBE, developers specify a query by defining
sample entities which are then compared to existing entities in a
database in order to find matches. Operators may be used to
define permissible degrees of deviation in which selected entities
may vary from those sample entities in order to be still selected.
In JPDDs, too, sample patterns are defined that render the
particular characteristics of those elements that should be selected.
Possible deviations may be specified with help of operator
symbols (such as wildcards or double-crossed lines/arrows, etc.).

Model-Driven Development (MDD), such as the Model-Driven
Architecture (MDA [28]) of the Object Management Group
(OMG), is another computer science domain that deals with the
visualization of queries: In MDD, model transformations involve
a query specification that designates all those elements in a model
which have to be adapted. In currently proposed transformation
techniques for MDD (such as MOLA [17] or the QVT-Merge
submission [32]), query specifications are tightly coupled to their
corresponding adaptations and cannot be considered in isolation
(although the OMG explicitly calls for dedicated query support
"to select and filter elements from models" in its "MOF 2.0 Query
/ Views / Transformation (QVT)" Request For Proposal (RFP)
[29]). JPDDs improve this situation and consider model queries as
first-class entities (i.e. entities that can exist on their own).
Consequently, they permit to reuse existing query specifications
in different application areas and permit to refine them in order to
cope with new requirements or incremental software evolution.

8.2 Visualizing Join Point Selections
Most aspect-oriented modeling approaches are capable to express
join point selections in one or the other way. In Theme/UML [3],
for example, join point selections are represented by means of
binding relationships. Such binding relationships are tagged with
an annotation that minutely designates all join points (to which an
aspectual adaptations should be applied) either by name, by
enumeration, or by meta-query (see Figure 9; adopted from [5]).
In contrast to JPDDs, join point designation is accomplished in a
pure textual manner. As a result, the (structural) relationships
between the individual join points being selected (i.e. classes and
its methods) are not visualized. Moreover, no means are provided
to express join point selection criteria with respect to the (earlier)
behavior of a system. In consequence, neither of the previously
described conceptual models of join point selection can be
visualized in Theme/UML. Join point selections in Theme/UML
can only refer to static properties of a system.

The Aspect-Oriented Design Model (AODM) [38] makes use of
AspectJ's core pointcut language to represent join point selections
(see Figure 10). In doing so, the approach suffers from the same
problems as the programming language when it comes to
implementing join point selections of unsupported conceptual
models. Moreover, by not providing a graphical representation,
the approach does not facilitate or improve the identification of
the (supported) conceptual models of a join point selection. Other
solutions following the same idea, i.e. adopting the pointcut
language of an existing aspect-oriented programming language
(e.g. [16], [18], etc.), suffer from similar problems.

Concern models in the superimposition approach [19] visualize
both the join point selection as well as the join point adaptation in
the same diagram. To distinguish between one and the other, join
point selections are gray-shaded, while join point adaptations are
solid black (see Figure 11). The approach allows in principle to
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use any type of UML diagram to represent a join point selection,
and thus can reflect on each of the previously described
conceptual models. However, the problem of this approach is that
join point selections are being intermingled with their affiliated
adaptations. Hence, join point selections cannot be reused in or
refined for another application context, and developers cannot
design their join point selections in isolation from the adaptation.

With help of the Aspect-Oriented Statechart Framework (AOSF)
[24], two (or more) independent state charts can be woven into
one composite state chart, where each of the original state charts
resides in its own orthogonal region. The crosscutting execution
of the composite state chart is then realized by event
reinterpretation, meaning that an event in one of the orthogonal
regions is reinterpreted as an event with a different meaning in
another orthogonal region. This event reinterpretation is
visualized as shown in Figure 12. The bold lines and ellipses
designate and relate the join points, i.e. the reinterpreted events, in
each state chart, and thus can be seen as a join point selection.

The problem with visualizing join point selections by relating the
join points in the base artifacts directly, is that they need to be
specified ad-hoc and for a particular application only. No
abstraction means are provided that allow to use an existing join
point selection in another context. As with the previous approach,
this does not promote the reuse and refinement of join point
selections in another problem domain.

8.3 Join Point Selections In AOP Languages
The different conceptual models discussed in the previous
chapters are realized in various different aspect-oriented
programming languages. In the following, we give prominent
examples of such programming languages for each conceptual
model. As stated before, using a particular programming language
realizing a particular conceptual model does not hinder
application developers from specifying join point selections being
based on another conceptual model. To demonstrate this fact, we
give examples of such mismatches from scientific literature.

8.3.1 Control Flow Model
The pointcut mechanism in AspectJ allows to select distinct points
in the dynamic execution of a program – which are interpreted as
points in the dynamic call graph [20, 15]. Therefore, AspectJ can
be considered to realize a control flow-oriented conceptual model
of join point selection (and it provides dedicated selection means
to reflect on this conceptual model, such as the cflow pointcut
designator, for example). Similarly, tracematches [1] follow a
control flow-oriented conceptual model: They permit to specify a
sequence of object (inter)actions that must come to pass in a
particular (partial) order during the dynamic execution of a
program. Composition Filters [4] are another approach that
implements a (somewhat restricted) control flow-oriented
conceptual model: Its join point selections reflect on messages
being sent to or by a given object.

8.3.2 Data Flow Model
The data flow-oriented conceptual model of join point selection
has been recognized in [25]. That work extends AspectJ with a
new dflow pointcut designator that allows developers to reflect
on that conceptual model in a succinct and concise manner. The
following pointcut demonstrates how that pointcut designator is
used to express a similar join point selection as the one presented
in section 5. As can be seen, the three pointcuts from section 5 are
condensed to just one single pointcut, which – in particular –
abstracts from the modifications that may be applied to
"untrusted" objects before they are printed to the HTTP output
stream. With help of the new pointcut designator, developers are
able to express their actual join point selection objectives directly
in the code.
pointcut respondClientString(String o) :
call(* PrintWriter.print*(String)) && args(o) && 

within(Servlet+)
&& dflow[o,i]( call(String Request.getParameter(String)) 

&& returns(i) );

8.3.3 State Model
The need and presence of a state-based conceptual model of join
point selections has been identified in [7], which introduces a
formal approach to reflect on such state-based join point
selections in aspect-oriented programming. Based on these
findings, a Java-based implementation approach to state-based
join point selections has been presented in [6]. The following code
fragment demonstrates (by revisiting the example from section 6)
how that implementation approach enables developers to define
distinct transitions (trapDeletes, and invalidTrans) that
must occur in a particular order (1. trapDeletes > 2.
invalidTrans). As can be seen, with help of these means
developers can express the relevance of (a sequence of) state
changes to a join point selection directly in the code.
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//defining a state/transition-based join point selection
hook DetectDeletedObjects {
  DetectDeletedObjects(delete(..args), anything(..args)){
    trapDeletes: execute(delete) > invalidTrans;
    invalidTrans: execute(anything) > invalidTrans;
  }
  after invalidTrans() {...}
} [...]

//binding join point selection to concrete method calls
DetectDeletedObjects ddo = new DetectDeletedObjects(
  void PersistentRoot+.delete(),
  { * PersistentRoot+.get*(*),
    * PersistentRoot+.set*(*),
    String PersistentRoot+.toString() }
) [...]

8.3.4 Mismatches in Design and Implementation
Implementing join point selections in one of the programming
languages mentioned above does not necessarily mean that these
join point selections make use of the same conceptual model as
the underlying programming languages. There are many examples
of join point selections whose conceptual models mismatch the
ones supported by their implementation languages. In [34], for
instance, an updating aspect is specified which is supposed to
update objects to a database only if they have been modified (i.e.
made "dirty"). The corresponding join point selection is
implemented by using a method call pointcut designator in
AspectJ – although the key selection criteria addresses a change in
object state.

Another interesting example is given in [25], which introduces a
bypassing supplement to the dflow pointcut designator
discussed previously. With help of that supplement, developers
are able to exclude particular data flows from the join point
selection. In [25], the bypassing clause is used to avoid that
"untrusted" objects which already have been quoted are (double-)
quoted a second time. However, as we have seen in section 7, the
conceptual model of that selection constraint is state-based.
Hence, in this case, the data flow-oriented extension of AspectJ is
used to realize a state-based join point selection.

The last example is taken from the motivating examples of
tracematches [1]. Tracematches permit to bind variables across
multiple object interactions, which makes it easy to use them to
reflect on object state transitions (rather than message sendings).
In [1], for example, tracematches are used to monitor the state of a
database connection ("open", "closed") whenever a database query
is issued (via that connection). Thus, in this case, the control flow-
oriented join point selection means of tracematches is exploited to
realize a state-dependent join point query.

9. CONCLUSION AND DISCUSSION
In this paper, we discussed the relevance and the impact of
different conceptual models on the design of join point selections.
We pointed out that different aspect-oriented programming
languages support different conceptual models of join point
selections, and consequently provide appropriate means to select
join points in correspondence to those conceptual models.
However, as soon as developers wish to specify join point
selections relying on a conceptual model other than the supported
one, they usually need to implement cumbersome workarounds
which do no longer reflect on the conceptual model underlying the
corresponding join point selection.

In this paper, we proposed a modeling approach to overcome this
dilemma. We identified three different conceptual models for join
point selections – namely control flow-based, data flow-based,

and state-based join point selections. We presented three
idiomatic implementations for each kind of join point selection in
AspectJ, the presently most popular productive aspect-oriented
programming language. We used an existing modeling means (i.e.
interaction diagram-based JPDDs [35]) to visualize those join
point selections, and investigated its appropriateness to capture
the key selection criteria of each join point selection. While we
identified interaction diagram-based JPDDs to render that key
selection criteria for control flow-based join point selections
appropriately, we identified them as being insufficient to visualize
the key elements for data flow- and state-based join point
selections. Based on our findings, we introduced activity diagram-
based JPDDs to represent data flow-based join point selections
and state chart-based JPDDs to represent state-based join point
selections. Our subsequent evaluations have shown that these
means are suitable to capture the key characteristics of the
respective join point selections.

With help of the notation described in this paper, developers are
able to reflect on the conceptual models of their join point
selections – even if their programming language happens not to
support it. This means on one hand developers may design join
point selections independently of their (any) particular
programming language. On the other hand, it helps developers to
comprehend the objectives of existing join point selections –
especially when there is a conceptual mismatch between a join
point selection and its implementation.

The conceptual models of join point selection discussed in this
paper have already been recognized by other researchers in the
field of AOSD. As a solution, these researchers have developed
new programming languages, or extended existing ones, so that
developers may specify different join point selection following
different conceptual models in a succinct and concise manner in
the code. In contrast to that, our approach presented in this paper
is to use aspect-oriented modeling means to help developers to
understand and to communicate a particular join point selection
and its underlying conceptual model – even, and in particular, if
this join point selection is written in a programming language that
does not support the respective conceptual model. In consequence,
we relieve the developers from being forced to change their
productive programming languages just to enable maintainers to
identify the precise intention of their join point selections.

The notations we used to develop our new visualization means
have been around in conventional software development for quite
a while, and have been used there to reflect on the different
conceptual models being discussed here. However, those
notations did not address the design (and implementation) of join
point selections as it is used in AOSD. In this paper, we therefore
extended those modeling means so that they can deal with such
selections. In doing so, we improve the current situation in aspect-
oriented modeling as there is no or only limited modeling support
given for the design of join point selections.

Furthermore, we recognize in this paper that none of the
conceptual models described here comprises another. Hence, we
expect developers to call for suitable selection means reflecting on
all three of them – even in the same development project. The
precise conceptual model that underlies a joint point selection
depends ultimately on the application context or problem domain.
The modeling notation presented in this paper helps developers to
reflect on that conceptual model in their join point selections and
permits to communicate join point selections among developers –
independent of the implementation techniques being used.
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