
Why Aspect-Oriented Software Development and
Model-Driven Development Are Not The Same

– A Position Paper –
Dominik Stein and Stefan Hanenberg

Institute for Computer Science and Business Information Systems (ICB)

University of Duisburg-Essen, Germany

{dstein | shanenbe }@cs.uni-essen.de

ABSTRACT
Aspect-Oriented Software Development (AOSD) and Model-
Driven Development (MDD) are often said to be alike since both
approaches are based on the selection of elements (i.e. join points
in AOSD and model elements in MDD) and their subsequent
adaptation (i.e. weaving in AOSD and transformation in MDD).
But does this mean that AOSD and MDD are in fact two words
for pretty much the same thing? In this position paper, we argue
that there are essential differences between the aspect-oriented
and the model-driven approach.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) and Model-
Driven Development (MDD) are both concerned with the
adaptation of an input system in order to receive an
augmented/modified output system. In aspect-oriented literature,
this process is referred to as weaving, while in the model-driven
domain, this process is referred to as transformation.

From an abstract point of view, it looks like there are no
significant differences between both approaches – except maybe
that both approaches use a different terminology for the same
conceptual idea: The adaptation of developer-specified elements.
A close look to both approaches reveals, though, that they focus
on different domains.

Aspect-oriented literature often refers to the term separation of
concerns (cf. e.g. [2]). Following that idea, elements in the
program code (implemented with a particular programming
language) should always reflect on just one certain concern that
the developer has in mind. Aspect-oriented extensions attach
additional concerns to that code – concerns that do not comply
with the primary concern, or the dominant concern, which has
dictated a dominant decomposition [10] onto the program.

The focus in the model-driven world is slightly different. Model-
driven development has a model (of a piece of software) in mind –
a (generally) non-turing complete programming language, which
possibly represents just a part of an application. The underlying
intention for applying a model transformation is the creation of
machine-readable models that can be understood by automatic
tools that generate schemas, code skeletons, testing models, test
packs, and integration code for multiple platforms and
technologies1.

1 http://www.xpdian.com/ModelDrivenArchitecture.html

Hence, the goals and objectives of both technologies are most
different. Nevertheless, it is still unclear if their underlying
techniques are the same and whether both approaches can be
considered equal.

In this position paper, we start in section 2 with an example from
the aspect-oriented literature and discuss the aspect-oriented
elements being used within this example. In section 3, we discuss
how the corresponding example can be implemented using a
model-driven approach. Then, we discuss the parallels and
differences between the aspect-oriented approach and the model-
driven approach. In section 4, we formulate our position by stating
from the aspect-oriented point of view why “aspect-orientation is
more than model-driven development” and by stating from the
model-driven point of view “why model-driven development is
more than aspect-orientation”. Finally, we conclude our position
in section 5.

2. PERSONAL INFORMATION
MANAGEMENT – AN ASPECT-ORIENTED
EXAMPLE FROM THE LITERATURE
In order to exemplify the parallels and differences of aspect-
oriented software development and model driven development,
we make use of a simple example. The example has been inspired
by [1] and realizes an access control policy for a Personal
Information Management (PIM) system. The PIM system is
intended to keep track of personal information, such as addresses,
tasks, and daily assignments.

Figure 1 gives an overview to the core entities of the PIM system.
The (singleton) PIMSystem is the general broker class that is
used by a (singleton) Person to administer his/her various
PIMUnits, such as Tasks, Contacts, and Appointments. It
is assumed that the system is designed for single-user usage only
and does not implement any access control mechanisms. These
are to be added to the system now by means of aspects in order to
allow multiple-user usage.

2.1 Owner Management
The aspect-oriented solution (exemplified by a corresponding
AspectJ implementation) realizes the owner management by an
OwnerManagement aspect (based on a similar implementation
given in [1]). This implementation is realized in AspectJ [7] and is
illustrated in Figure 2: The aspect implements a couple of
introductions, three of which augment the PIMSystem class with
a login operation and an additional currentUser state –

together with a corresponding getter method. The other three
introductions augment the PIMUnit class with an extra owner
state – again, together with corresponding getter and setter
methods.

PIMUnit

+ view()

 Operations
 Attributes

Appointment

− date
− time
− topic
− attendees

+ schedule()
+ move()

 Operations

 Attributes
Contact

− name
− address
− telephone

+ create()
 Operations

 Attributes

Task

− description
− duedate
− progress
− priority

+ create()
+ setProgress()
+ setPriority()

 Operations

 Attributes

PIMSystem

− calendar
− tasklist
− contactlist

+ initialize()
+ view()
+ add()
+ remove()

 Operations

 Attributes
Person

− Name
− SSN
 Operations

 Attributes

*

Figure 1: A Sample Base System (cf. [1]).

The introduced members are used by the after advice, which
takes care of storing the currently logged on user
(PIMSystem.getCurrentUser) to the owner attribute of a
PIMUnit (PIMUnit.setOwner). Before doing so, it tests if
the current user is already set (i.e. not null). In such a case, it
asks the current user to login (by calling operation login of class
PIMSystem).
aspect OwnerManagement(){
 private static String PIMSystem.currentUser ;
 public static String PIMSystem.getCurrentUser() {...} ;
 public static void PIMSystem.login() {...} ;
 private String PIMUnit.owner ;
 public String PIMUnit.getOwner() {...} ;
 public void PIMUnit.setOwner(String user) {...} ;

 pointcut authentifyUnit(PIMUnit pimUnit):
 (call(* Appointment.schedule(..)) ||
 call(* Contact.create(..)) ||
 call(* Task.create(..))) && target(pimUnit) ;

 after(PIMUnit pimUnit) : authentifyUnit(pimUnit) {
 if (PIMSystem.getCurrentUser() == null)
 { PIMSystem.login() ; } ;
 pimUnit.setOwner(PIMSystem.getCurrentUser()) ;
 }
}

Figure 2: An Aspect-Oriented Implementation.

The advice refers to the pointcut authentifyUnit that
outlines the points in the execution of the program where a current
user needs to be stored to the owner attribute of a PIMUnit. In
particular, these are all method calls to operation schedule of
class Appointment, to operation create of class Contact,
and to operation create of class Task. At last, the instance of
PIMUnit being called is exposed by the pointcut by means of
AspectJ's target pointcut designator.

When taking a closer look to pointcut authentifyUnit, we
can observe that all join points at which the after advice needs
to be executed correspond to certain elements in the code (i.e.
method calls to Appointment.schedule, Contact.

create, and Task.create). In consequence, the adaptation
(weaving) of the base system can be accomplished by simply
inserting the core advice code to the places designated by the
pointcut. These can be detected by a simple code analysis of the
base classes and base methods. No problem so far!

2.2 Access Control
Now, we want to use the owner management data to ensure that
particular PIMUnits (i.e. tasks, contacts, or appointments) may
only be modified or viewed by their proper owner.

Thereto, an Authorization aspect defines a pointcut
restrictAccess that picks out all invocations to methods
whose access needs to be controlled. In particular these are all
method calls to move operations of Appointment instances as
well as all method calls to setProgress and setPriority
operations of Task instances.

Furthermore, the pointcut makes use of the target pointcut
designator to get a reference to the actual instance of the
PIMUnit (i.e. or of its subclasses) being called. It uses this
reference to verify if the owner of that (target) instance matches
the user that is currently logged on the PIMSystem. To do so,
AspectJ's if pointcut designator is used.
aspect Authorization(){
 pointcut restrictAccess(PIMUnit pimUnit):
 (call(* Appointment.move(..)) ||
 call(* Task.setProgress(..)) ||
 call(* Task.setPriority(..))) && target(pimUnit) &&
 if(!pimUnit.getOwner().equals(PIMSystem.getCurrentUser())
 || (PIMSystem.getCurrentUser()== null));

 void around(PIMUnit pimUnit) : restrictAccess(pimUnit) {
 System.out.println("Access Denied!") ;
 }
}

 Figure 3: An Aspect-Oriented Implementation

Looking at the pointcut of this aspect, we can identify that the join
points at which the around advice needs to be executed are
(again) outlined by the characteristics of code elements (i.e. by the
occurrence of method call statements Appointment.move,
Task.setProgress and Task.setPriority). However,
apart from that, the pointcut restrictAccess refers to the
values of attribute owner of class PIMUnit as well as of
attribute currentUser of class PIMSystem in its if pointcut
designator (in order to evaluate if they match). These values are
not known until runtime. Hence, in contrast to the previous
adaptation, this one here cannot be effectuated until runtime.

3. PERSONAL INFORMATION
MANAGEMENT – ATTEMPTING A
MODEL-DRIVEN APPROACH
Let's have a look at how we could realize the Personal
Information Management (PIM) example from the previous
section with help of MDD.

3.1 Owner Management
Figure 4 outlines how the structural adaptations of the owner
management aspect can be specified. The upper part
ownerManagement_lhs depicts a model query (using the
notational means presented in [9]). The model query selects all
classes named PIMSystem and PIMUnit, and exposes them

with help of identifier ?pimSys and ?pimUnit in its output
parameter box (see lower right corner).

The lower part ownerManagement_rhs of Figure 4 depicts
the affiliated model transformation which is to be performed at
those selected model elements (the representation resembles
pretty much conventional UML templates, except that the
parameters ?pimSys and ?pimUnit are depicted differently).
According to that adaptation specification diagram, the model
elements exposed by ?pimSys are enhanced with a static and
private attribute currentUser of type String, as well as two
static and public operations login (returning nothing) and
getCurrentUser (returning a value of type String). The
model elements designated by ?pimUnit are augmented with a
private attribute owner of type String, as well as two public
operations getOwner (returning a value of type String) and
setOwner (taking an argument of type String).

<?pimUnit>

− owner : String

+ getOwner() : String
+ setOwner(user : String)

 Operations

 Attributes

<?pimSys>

− currentUser : String

+ login()
+ getCurrentUser() : String

 Operations

 Attributes

<?pimSys>
PIMSystem

<?pimUnit>
PIMUnit

 ?pimSys
 ?pimUnit

ownerManagement_lhs

 ?pimSys
 ?pimUnit ownerManagement_rhs

Figure 4: Transformation of the Base Program's Structure.

Figure 5 depicts the behavioral adaptations that are needed to
realized the owner management aspect. The upper part
pointcut_authentifyUnit, again, outlines a model query.
It selects all method calls to operations named create or
schedule, which are invoked on classes named
Appointment, Contact, or Task. Both, method calls and
corresponding receiver classes, are exposed by means of
identifiers ?jp and ?pimUnit.

These model elements are then transformed as outlined in the
bottom part afterAdvice_storeOwner of Figure 5. For that
transformation, the method call ?jp is cut into two halves:
refers to (and abstracts from) the sender class and the invocation
of the method call; refers to (and abstracts from) the
receiver class as well as the action being invoked. These two
halves are arranged in such way that the original invocation is
intercepted and redirected to class ?pimUnit2, which then

2 strictly speaking, there is no "redirect" in this case since
?pimUnit (by accident) refers to the receiver class of the
original action.

executes the original action. After that, the current user is stored
to the owner attribute of the ?pimUnit (setOwner) – unless
it is undefined (i.e. null) in which case the login operation of
class PIMSystem is called. Finally, the control flow returns to
the next action after the intercepted original method call ().

Taking a closer look at the OwnerManagement aspect
presented in the previous section and the two model
transformations presented here, we can observe that both
adaptations are equivalent – the semantics of the resulting
application are the same. In fact, the pointcut specification in the
aspect-oriented approach corresponds directly to the model query
in the model-driven approach. Also, the advice (which represents
the join point adaptation in the aspect-oriented approach)
corresponds to the transformation as specified in the model-driven
approach. The only directly observable difference between both
approaches is that the model-driven approach provides a visual
representation of the selection and adaptation, while the
corresponding aspect-oriented approach relies on plain code.

 ?jp
 ?pimUnit

pointcut_authentifyUnit

<?pimUnit>
(Appointment|
Contact|Task)

<?jp> : (create|schedule) (..) : *

*

getCurrentUser()

<?pimUnit>

 ?jp
 ?pimUnitafterAdvice_storeOwner

PIMSystem

<?jp>
<?jp>

<?jp>

[currentUser == null]
login()

setOwner(currentUser)

currentUser

getCurrentUser()

currentUser

Figure 5: Transformation of the Base Program's Behavior.

3.2 Access Control
When realizing the Authorization aspect with help of MDD,
the core task is to evaluate if the owner of the PIMUnit
matches the currentUser of the PIMSystem.

The bottom part of Figure 6 demonstrates a common way how
this is done in MDD: First of all – i.e. right after the base
program's behavior is intercepted at ?jp () – the
currentUser needs to be requested from the (singleton)
PIMSystem class with help of operation getCurrentUser.

Then, the currentUser is compared to the ?owner attribute
of the current ?pimUnit. If it is alike, the program execution
should proceed with the originally intercepted method call ?jp
(). If the values do not match, though, the message "Access
denied!" is printed to System.out and the control flow is
passed back again to the original caller ().

«crosscut»
ρ{?jp = ?jp,
 ?pimUnit = ?pimUnit,
 ?owner = ?owner}

 ?jp
 ?pimUnit
 ?owner

pointcut_authentifyUnit

<?pimUnit>
(Appointment|

Task)

<?jp> : (move|setProgress|
setPriority) (..) : *

*

getCurrentUser()

<?pimUnit>

 ?jp
 ?pimUnit
 ?owner afterAdvice_denyAccess

PIMSystem

<?jp>

<?jp>

<?jp>

[currentUser == <?owner>]

currentUser

[currentUser != <?owner>]
println("Access denied!")

System.out

<?pimUnit>
(Appointment|

Task)

<?owner>
− owner: String
 Operations

 Attributes

Figure 6: Transformation of the Base Program's Behavior
on the Specification Level

As can be seen from the query model at the top of Figure 6, these
adaptations are applied to all method calls to operations named
move, setProgress, or setPriority that are invoked on
class Appointment or Task. At the same time, the receiver
class ?pimUnit must provide a private owner attribute of type
String (as this attribute needs to be compared to the
currentUser in the adaptation).

Comparing the model transformation presented here with the
Authorization aspect in the previous section, we can identify
a subtle yet important difference: While in the aspect-oriented
approach, the condition whether currentUser (of
PIMSystem) matches owner (of PIMUnit) is specified within
the join point selection, in the model-driven approach, this
condition is specified within the join point adaptation. The
semantic implications of either solution are identical –
nevertheless, we must recognize that in the latter approach the
constraints under which access to the PIMUnits should be
denied are less obvious (as they are scattered across join point
selection and join point adaptation rather than being nicely
encapsulated in the join point selection).

4. WHY ASPECT-ORIENTATION AND
MODEL-DRIVEN DEVELOPMENT ARE
NOT THE SAME
Based on the examples presented in the previous sections, we now
argue why and where we see parallels and differences between
AOSD and MDD.

4.1 Parallels Between Aspect-Orientation And
Model-Driven Development
As demonstrated by the owner management example, parallels
between AOSD and MDD certainly exist. The implementations of
this concern with either technology are almost equal. In particular,
the conceptual distinction between query and adaptation are in
both approaches the same. Accordingly, the conceptual models
used by the developer (i.e. the selection of method calls and the
subsequent adaptation of those method calls) are identical.

Nevertheless, it should be noted that this conceptual similarity
results from a very specific application of the aspect-oriented
approach: The selected join points from the execution of the
program directly correspond to elements in the program code – so,
no runtime-specific conditions (called join point checks [4] or join
point residues [7]) are required. There are aspect-oriented systems
that provide only those kinds of join points – these are systems
with purely static join point models (cf. [5, 6]). In contrast to that,
though, popular systems like AspectJ (also) provide a dynamic
join point model which permits the specification of runtime
checks within a join point selection.

Hence, only under the special circumstance that no runtime-
specific condition needs to be checked (i.e. the aspectual
adaptation refers only to specification-level join points), we
consider the aspect-oriented approach and the model-driven
approach to be equivalent.

4.2 Why AOSD Dominates The MDD
Approach – An Aspect-Oriented Perspective
Of course, (as we have shown) runtime-dependent adaptations can
(always) be transformed into specification-level adaptations such
that the effects on the behavior of the final software system are the
same. In fact, this is what aspect-oriented systems commonly do
when they perform code transformations in order to weave in
aspects to the base system (currently, most systems like AspectJ
do weaving of aspects via code transformations): They identify
places in the base system that potentially represent a join point
(such places are called join point shadows in aspect-oriented
literature [8]), and instrument them with join point checks that
evaluate whether the runtime-dependent condition hold or not.

Aspect-oriented systems equipped with a dynamic join point
model (cf. [5, 6]) provide special abstractions that permit to
designate such runtime-level join points. In doing so, they are
freeing the developers from the need to reflect on join point
shadows and necessary join point checks themselves. Examples of
such abstractions are the dynamic pointcut designators this, target,
args and if in AspectJ, which permit to declare that a certain
runtime specific condition needs to be fulfilled (at a particular join
point shadow) for the aspectual adaptation to take effect. The
situation for the MDD approach is different. In MDD, the
developers are required to insert such join point checks
"manually" – which means that they need to be specified as part
of the adaptation. In consequence, the approach forces developers

to separate the applicability constraints of an aspect (e.g. for the
denial of an action) into the locations in the models where the
aspect needs to take effect, as well as the residue (i.e. the join
point check) that remains to be evaluated at that location.

Another consequence of this approach in comparison to the
AOSD approach is that selections and adaptations are less
reusable. In the aspect-oriented approach, an adaptation is
independent of the possible runtime checks that need to be
performed before it takes effect (since these are specified in the
selection). Selections may evolve or may be overridden in
subaspects. Nevertheless, the affiliated adaptations do not need to
be changed. In the MDD approach, though, each selection that
conceptually requires a corresponding runtime check also requires
its own adaptation module (since it is necessary to consider the
runtime conditions within the adaptation). Consequently, if the
application evolves and new selections are needed that require
additional runtime checks, the adaptation modules may need to be
adapted.

Hence, from the aspect-oriented perspective, the aspect-oriented
approach dominates the model-driven one because additional
abstractions for the join point selection are provided, which allow
an (almost) arbitrary combination of join point selections and join
point adaptations.

4.3 Why MDD Dominates The AOSD
Approach – A Model-Driven Perspective
It remains to mention in what respect MDD approaches improve
over AOSD techniques, i.e. in what respect the model-driven
approach dominates the aspect-oriented approach:

This pertains mostly to the capabilities of the adaptation means
that can be applied to base applications. These are quite limited in
the aspect-oriented approach. Most commonly, there are various
constructive adaptation mechanisms (like before and after advice,
as well as introductions in AspectJ) that permit to add some
additional elements to a base application (i.e. the invocation of
aspect-specific code, or the addition of aspect-specific structure,
respectively). However, there are only limited means to specify
destructive adaptations3 (such as around advice in AspectJ that do
not refer to the original join point by means of proceed).

The model-driven approach, in contrast to that though, principally
permits to perform arbitrary transformations on a source model –
in particular, it allows unlimited support for the removal of
elements. By these means, the MDD approach could be used, for
example, to implement an arbitrary refactoring [3] on the source
model, by performing the corresponding behavior-preserving
transformations. Aspect-oriented approaches like AspectJ do not
support such transformations since it is not possible to remove a
single method from a source program.

5. CONCLUSION
In this position paper, we argued why the aspect-oriented
approach and the model-driven approach are not equal. We
illustrated our argumentation by an example from the aspect-
oriented literature and showed that it is not always possible to
achieve the same result in an appropriate way with help of the
means provided by model-driven development approaches. The
main argumentation for this is that the aspect-oriented approach

3 See [5, 6] for a discussion of the terms constructive and

destructive adaptation.

provides additional abstractions that permit to specify runtime-
conditions within join point selections.

However, we also argued that the means to adapt a base
application with aspect-oriented constructs are quite limited.
Simple transformations like performing a rename method
refactoring, for example, cannot be achieved via aspect-oriented
techniques – but with model-driven techniques.

From our point of view, it is essential for further research on both
approaches that they cannot be considered to be generally the
same thing. This implies that it might be interesting to see in
future whether one approach can benefit from the other, e.g. by
providing more advanced transformation techniques to AOSD, or
by introducing more advanced selection means to MDD.

REFERENCES
[1] De Win, B., Joosen, W., Piessens, F., Developing Secure

Applications Through Aspect-Oriented Programming, in:
Filman, R., Elrad, T., Clarke, S., Aksit, M., Aspect-Oriented
Software Development, Addison-Wesley, Boston, 2005.

[2] Filman, R. E.; Elrad, T.; Clarke, S.; Aksit, M. (Eds.):
Aspect-Oriented Software Development, Addison-Wesley,
2004.

[3] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W. F.; Roberts, D.:
Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[4] Hanenberg, S.; Hirschfeld, R.; Unland, R.: Morphing
Aspects: Incompletely Woven Aspects and Continuous
Weaving, 3rd International Conference on Aspect-Oriented
Software Development (AOSD), Lancaster, England,
March, ACM Press, 2004, pp. 46-55.

[5] Hanenberg, S.; Stein, D.; Unland, R.: Eine Taxonomie für
aspektorientierte Systeme, In: Liggesmeyer, P.; Pohl. K.;
Goedicke. M. (Eds.): Software Engineering 2005,
Fachtagung des GI-Fachbereichs Softwaretechnik, March,
Essen. Lecture Notes in Informatics 64, GI, 2005, pp. 167-
178.

[6] Hanenberg, S.; Stein, D.; Unland, R.: Roles From an
Aspect-Oriented Perspective, Views, Aspects and Roles
Workshop, ECOOP 2005, Glasgow, UK, July 25, 2005.

[7] Hilsdale, E.; Hugunin, J.: Advice Weaving in AspectJ, 3rd
International Conference on Aspect-Oriented Software
Development (AOSD), Lancaster, England, March, ACM
Press, 2004, pp. 26-35.

[8] Masuhara, H.; Kiczales, G.; Dutchyn, C.: A Compilation
and Optimization Model for Aspect-Oriented Programs,
Proceedings of Compiler Construction (CC2003), LNCS
2622, Springer-Verlag, 2003, pp.46-60.

[9] Stein, D.; Hanenberg, S.; Unland, R.: Query Models, 7th
International Conference on the Unified Modeling Language
(UML 2004), Lisbon, Portugal, October 11-15, 2004,
Springer, LNCS 3273, pp. 98-112.

[10] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S. M.: N Degrees
of Separation: Multi-Dimensional Separation of Concerns,
In 21st International Conference on Software Engineering
(ICSE), 1999, pp. 107–119.

