Why Aspect-Oriented Software Development and
Model-Driven Development Are Not The Same
— A Position Paper —

Dominik Stein and Stefan Hanenberg
Institute for Computer Science and Business Information Systems (ICB)
University of Duisburg-Essen, Germany
{dstein | shanenbe }@cs.uni-essen.de

ABSTRACT

Aspect-Oriented Software Development (AOSD) and &fod
Driven Development (MDD) are often said to be aldkece both
approaches are based on the selection of element®in points
in AOSD and model elements in MDD) and their subsed
adaptation (i.e. weaving in AOSD and transformatiorMDD).
But does this mean that AOSD and MDD are in faa tords
for pretty much the same thing? In this positiopgyawe argue
that there are essential differences between tpectasriented
and the model-driven approach.

1. INTRODUCTION

Aspect-Oriented Software Development (AOSD) and &fod
Driven Development (MDD) are both concerned withe th
adaptation of an input system in order to
augmented/modified output system. In aspect-orikfiterature,
this process is referred to agaving while in the model-driven
domain, this process is referred tar@msformation

From an abstract point of view, it looks like theage no
significant differences between both approachesce@ maybe
that both approaches use a different terminologytti@ same
conceptual idea: The adaptation of developer-speciélements.
A close look to both approaches reveals, thougt, tthey focus
on different domains.

Aspect-oriented literature often refers to the tesgparation of
concerns (cf. e.g. [2]). Following that idea, elements ihet
program code (implemented with a particular programming
language) should always reflect on just one certaincern that
the developer has in mind. Aspect-oriented exterssiattach
additional concerns to that code — concerns thahaocomply
with the primary concern, or théominant concernwhich has
dictated alominant decompositidi 0] onto the program.

The focus in the model-driven world is slightly fdilent. Model-
driven development hasnaodel(of a piece of software) in mind —
a (generally) non-turing complete programming lagg) which
possibly represents just a part of an applicatidme underlying
intention for applying a model transformation i tbreation of
machine-readable models that can be understood utgnzatic
tools that generate schemas, code skeletons, destodels, test
packs, and integration code for multiple platformend
technologies

! http://www.xpdian.com/ModelDrivenArchitecture.html

receive a

Hence, the goals and objectives of both technotogiee most
different. Nevertheless, it is still unclear if theunderlying
techniques are the same and whether both approacmesde
considered equal.

In this position paper, we start in section 2 véthexample from
the aspect-oriented literature and discuss the caspiented
elements being used within this example. In sec3iowe discuss
how the corresponding example can be implementéag us
model-driven approach. Then, we discuss the pésakend
differences between the aspect-oriented approadtrenmodel-
driven approach. In section 4, we formulate ouiitmsby stating
from the aspect-oriented point of view why “aspexentation is
more than model-driven development” and by stafiiogn the
model-driven point of view “why model-driven devploent is
more than aspect-orientation”. Finally, we conclude position
in section 5.

2. PERSONAL INFORMATION
MANAGEMENT — AN ASPECT-ORIENTED
EXAMPLE FROM THE LITERATURE

In order to exemplify the parallels and differencafs aspect-

oriented software development and model driven Ideweent,

we make use of a simple example. The example has ibspired

by [1] and realizes an access control policy forParsonal

Information Management (PIM) system. The PIM syst&n
intended to keep track of personal informationhsag addresses,
tasks, and daily assignments.

Figure 1 gives an overview to the core entitiethefPIM system.
The (singleton)Pl MSyst em is the general broker class that is
used by a (singletonPer son to administer his/her various
Pl MUni t s, such a§asks, Cont act s, andAppoi nt ment s. It

is assumed that the system is designed for sirgge-usage only
and does not implement any access control mechanishese
are to be added to the system now by means of taspearder to
allow multiple-user usage.

2.1 Owner Management

The aspect-oriented solution (exemplified by a esponding
AspectJ implementation) realizes the owner managerg an
Onner Managemnent aspect (based on a similar implementation
given in [1]). This implementation is realized ispgectd [7] and is
illustrated in Figure 2: The aspect implements aipt® of
introductions, three of which augment fleMSy st emclass with
a | ogi n operation and an additionalur r ent User state —

together with a corresponding getter method. ThHeerothree
introductions augment thiel MUni t class with an extrawner
state — again, together with corresponding getted aetter

methods.

PIMSystem Person
[~ Attributes ————————— [— Attributes
- calendar — Name
— tasklist - SSN
— contactlist * - Operations
[— Operations -
+ initialize() | arputMUnit
+ Vldec\;\g) I~ Operations
+ al)
+ remove() + view() -
Task

Appointment [~ Attributes

i - description
- date Contact - duedate
—time [~ Attributes - progress
- topic —hame - priority
- attendees — address |- Operations
|- Operations - telephone + create()
+ schedule() [~ Operations + setProgress()
+ move() + create() + setPriority()

Figure 1: A Sample Base System (cf. [1]).

The introduced members are used by dfi¢ er advice, which
takes care of storing the currently logged on user
(PI MByst em get Current User) to theowner attribute of a
Pl MUni t (Pl MJni t. set Oaner). Before doing so, it tests if
the current user is already set (i.e. nat |). In such a case, it
asks the current user to login (by calling operetiogi n of class
Pl MByst em).

aspect Owner Managenent () {

private static String Pl MSystem currentUser ;

public static String Pl MSystemgetCurrentUser() {...} ;
public static void Pl Msystem login() {...} ;

private String Pl MJit.owner ;

public String PIMhit.getOmer() {...} ;
public void PIMJnit.setOwmer(String user) {...} ;

poi ntcut authentifyUnit(PIMJit pinnit):
(cal | (* Appointnent.schedule(..)) ||

call (* Contact.create(..)) ||

call (* Task.create(..))) &k target(pinmnit) ;

after(PIMUnit pinUnit) : authentifyUnit(pinmnit) {
if (PIMBystemgetCurrentUser() == null)
{ PIMSystemlogin() ; } ;
pi mUni t. set Omner (Pl MSyst em get Current User()) ;
}
}

Figure 2: An Aspect-Oriented Implementation.

The advice refers to the pointciut hentifyUnit that
outlines the points in the execution of the progrenere a current
user needs to be stored to thener attribute of a1 MJni t . In
particular, these are all method calls to operasohedul e of
classAppoi nt ment , to operatiorcr eat e of classCont act,
and to operatiorr eat e of classTask. At last, the instance of
Pl MUni t being called is exposed by the pointcut by medns o
AspectJ's ar get pointcut designator.

When taking a closer look to pointcatit henti fyUnit, we
can observe that all join points at which tfet er advice needs
to be executed correspond to certain elements @ncdde (i.e.
method calls to Appoi nt ment . schedul e, Cont act.

creat e, andTask. creat e). In consequence, the adaptation
(weaving) of the base system can be accomplishedimply
inserting the core advice code to the places dategnby the
pointcut. These can be detected by a simple codlysas of the
base classes and base methods. No problem so far!

2.2 Access Control

Now, we want to use the owner management data gorerthat
particularPl MJni t s (i.e. tasks, contacts, or appointments) may
only be modified or viewed by their proper owner.

Thereto, an Aut hori zati on aspect defines a pointcut
restrictAccess that picks out all invocations to methods
whose access needs to be controlled. In partidhkese are all
method calls tovove operations ofAppoi nt ment instances as
well as all method calls teet Progr ess andsetPriority
operations ofrask instances.

Furthermore, the pointcut makes use of ther get pointcut
designator to get a reference to the actual instaoic the
Pl MUni t (i.e. or of its subclasses) being called. It udds
reference to verify if thewner of that (target) instance matches
the user that is currently logged on tReMSyst em To do so,

AspectJ's f pointcut designator is used.
aspect Authorization(){
poi ntcut restrictAccess(PIMJit pinbnit):
(call (* Appointnent.move(..)) ||
call (* Task.setProgress(..)) ||
call (* Task.setPriority(..))) &k target(pinbnit) &&
if(!pinmUnit.getOaner().equal s(Pl MSystem get CurrentUser())
|| (Pl MSystem get CurrentUser()== null));

void around(PIMJnit pinmnit) : restrictAccess(pinbnit) {
System out. println("Access Denied!") ;
}
}

Figure 3: An Aspect-Oriented Implementation

Looking at the pointcut of this aspect, we can igithat the join
points at which thear ound advice needs to be executed are
(again) outlined by the characteristics of codenelets (i.e. by the
occurrence of method call statememtppoi nt ment . nove,
Task. set Progress and Task. set Pri ority). However,
apart from that, the pointcutestri ct Access refers to the
values of attributeowner of classPl MUnit as well as of
attributecur r ent User of class Pl MSyst emin itsi f pointcut
designator (in order to evaluate if they match)edgéhvalues are
not known until runtime. Hence, in contrast to theevious
adaptation, this one here cannot be effectuatatruntime.

3. PERSONAL INFORMATION
MANAGEMENT — ATTEMPTING A
MODEL-DRIVEN APPROACH

Let's have a look at how we could realize the PRebko
Information Management (PIM) example from the poes
section with help of MDD.

3.1 Owner Management

Figure 4 outlines how the structural adaptationsthef owner
management aspect can be specified. The upper part
owner Managenent _| hs depicts amodel query(using the
notational means presented in [9]). The model quefgcts all
classes name®l Msyst em and Pl Mni t, and exposes them

with help of identifier?pi nBys and ?pi mUni t in its output executes the original action. After that, the cotrneser is stored

parameter box (see lower right corner).

The lower partowner Managenent _r hs of Figure 4 depicts
the affiliated model transformation which is to performed at
those selected model elements (the representatsembles

to theowner attribute of the?pi nnit (set Oaner) — unless
it is undefined (i.enul |) in which case théogi n operation of
classPl MSyst emis called. Finally, the control flow returns to
the next action after the intercepted original rodtball (=}).

pretty much conventional UML templates, except thhe Taking a closer look at theOaner Managenent aspect
parameterpi nSys and ?pi nUni t are depicted differently). presented in the previous section and the two model
According to that adaptation specification diagraime model transformations presented here, we can observe Ibodd

elements exposed B3pi mBys are enhanced with a static and adaptations are equivalent — the semantics of #wmlting
private attributecur r ent User of typeSt ri ng, as well as two application are the same. In fact, the pointcut#ieation in the
static and public operationsogi n (returning nothing) and aspect-oriented approach corresponds directlyaarthdel query
get Current User (returning a value of typSt ri ng) The in the model-driven approach. Also, the advice Chhiepresents

model elements designated i nni t are augmented with a the join point adaptation

private attributeowner of typeStri ng, as well as two public
operationsget Oaner (returning a value of type String) and
set Oaner (taking an argument of ty#t ri ng).

in the aspect-orientedpraach)
corresponds to the transformation as specifiedeémtodel-driven
approach. The only directly observable differeneéwieen both
approaches is that the model-driven approach pesval visual
representation of the selection and adaptation, lewhhe

corresponding aspect-oriented approach reliesan pbde.

(’ ownerManagement_lhs \
| I Bttt -~
| <2pimSys> <2pimUnit> | 7 pointcut_authentifyUnit \
| . | | \I
: PIMSystem PIMUnit i i <2pimUnit> |
;\ 5o L ' * (Appointment| |
ST S —— i oﬁlﬂfjﬁ‘t ! | Contact[Task) ;
1 [i 1 T T
i """""" E <?jp> : (create|schedule) (..) Q: i
|
g a\ N
i T2pimSys ' S 1 ?jp i
_______________ e _____'7?7pimSYS N 2 R o
-~ ! . . ' s |
/~ ownerManagement_rhs L ?pimuUnit /E'\ L7pimuntt_;
r) |
| <?pimSys> <?pimUnit> | e
1 Vo . 17p i
| [Awbues —————— L Awbues i /" afterAdvice_storeOwner 1?7pimunit
|| =_currentUser : String — owner : String ! H \
[Operations ————————————— [Operations —————— | i <?pimUnit> PIMSystem E
| |+login() + getOwner() : String i ! !
1\ + getCurrentUser() : String |+ setOwner(user : String)| | i <2ip> T T !
\\ ,// 1 .‘ ol <?jp> E E
N e e e e e e e e e e e e e e e ————————————— - 1 1 1
. . H | |
Figure 4: Transformation of the Base Program'’s Strature. : getCurrentUser() o | |
. . . . 1) |
Figure 5 depicts the behavioral adaptations that rezeded to ! <_________gg_rr_gr1t_us_g|j |
realized the owner management aspect. The uppet par | ! |
. 1 == 1
poi nt cut _aut hent i f yUni t, again, outlines a model query. ; l[g;ir;%muser null |
It selects all method calls to operations nanwaceat e or | etCurrentUser() i |
schedul e, which are invoked on classes named | 9oy > |
. 1
Appoi nt nent , Cont act, or Task. Both, method calls and | P— O |
corresponding receiver classes, are exposed by snedn | _ setOwner(currentUser), i
identifiers?j p and?pi mni t . L [j\?“p | !
\ FTT T T | ,l
These model elements are then transformed as editiim the DS -~
bottom partaf t er Advi ce_st or eOamner of Figure 5. For that
transformation, the method c&)j p is cut into two halves™— Figure 5: Transformation of the Base Program's Beheior.

refers to (and abstracts from) the sender classttanihvocation

of the method call;—™ refers to (and abstracts from) the 3.2 Access Control
receiver class as well as the action being invokdtese two When realizing théwut hori zat i on aspect with help of MDD,
halves are arranged in such way that the originabdation is the core task is to evaluate if trewner of the Pl MJnit

intercepted and redirected to clagpi muni t2 which then matches theur r ent User of thePl MSyst em

The bottom part of Figure 6 demonstrates a comman ow

2

this is done in MDD: First of all — i.e. right aftehe base
strictly speaking, there is no "redirect" in thimse since program's behavior is intercepted & p (™) — the

?pi muni t (by accident) refers to the receiver class of the current User needs to be requested from the (singleton)
original action. Pl MByst em class with help of operatioget Curr ent User .

Then, thecur r ent User is compared to th@owner attribute

of the current?pi nni t. If it is alike, the program execution
should proceed with the originally intercepted roektcall ?j p
(—™). If the values dmot match, though, the message "Access
denied!" is printed toSyst em out and the control flow is
passed back again to the original callex-{-).

[currentUser == <?owner>]/\

[currentUser |= <?owner>]
printin("Access denied!")

V4 pointcut_authentifyUnit N
! <?pimUnit> \
E <?pimUnit> (Appointment| E
! * (Appointment| | : Task) !
: Task) - Attributes :
i T T i | <?owner> !
E <?jp> : (move|setProgress| J - owner: String i
n . > H i
:\ setPriority) (..) : * | i [~ Operations /:
~._ e P i
7':\ 1 2pimUnit E
! «crosscut» iPowner
! p{2p = 2ip,
! ?pimUnit = ?pimUnit, O,
! ?owner = ?owner} 1?jp I
________________ e y72pimUnit)
Ve afterAdvice_denyAccess i2owner
/ 3
i <?pimUnit> PIMSystem System.out !
| |
A | |
| ' : |
i etCurrentUser(} | !
1 1
]] 1
i I Cl l!U?D_tU_S_G_i E
i <2ip> E
! :
1 1
| :
1 1
\ /

Figure 6: Transformation of the Base Program's Beheior
on the Specification Level

As can be seen from the query model at the todquifr€ 6, these
adaptations are applied to all method calls to atpmrs named
nove, set Progress, orsetPriority that are invoked on
classAppoi nt nent or Task. At the same time, the receiver
class?pi muni t must provide a privatewner attribute of type
String (as this attribute needs to be compared to the
current User in the adaptation).

Comparing the model transformation presented heth e
Aut hori zat i on aspect in the previous section, we can identify
a subtle yet important difference: While in the exgporiented
approach, the condition whethercurrent User (of
Pl MSyst em) matcheowner (of Pl MJni t) is specified within
the join point selection, in the model-driven apmo, this
condition is specified within the join point adama. The
semantic implications of either solution are ideati —
nevertheless, we must recognize that in the lapgroach the
constraints under which access to tReMUni t s should be
denied are less obvious (as they are scatteredsagoin point
selection and join point adaptation rather thanndpenicely
encapsulated in the join point selection).

4. WHY ASPECT-ORIENTATION AND
MODEL-DRIVEN DEVELOPMENT ARE
NOT THE SAME

Based on the examples presented in the previotisrsgcowe now
argue why and where we see parallels and diffesebetween
AOSD and MDD.

4.1 Parallels Between Aspect-Orientation And

Model-Driven Development

As demonstrated by the owner management examptallgis
between AOSD and MDD certainly exist. The impleraéiohs of
this concern with either technology are almost éduagatrticular,
the conceptual distinction between query and atiaptare in
both approaches the same. Accordingly, the conaephodels
used by the developer (i.e. the selection of mettalts and the
subsequent adaptation of those method calls) argi@l.

Nevertheless, it should be noted that this coneatpimilarity
results from a very specific application of the exgporiented
approach: The selected join points from the exeoutf the
program directly correspond to elements in the nogcode — so,
no runtime-specific conditions (callgoin point check$4] or join
point residueg7]) are required. There are aspect-oriented Byste
that provide only those kinds of join points — theme systems
with purelystatic join point modelécf. [5, 6]). In contrast to that,
though, popular systems like AspectJ (also) provaddynamic
join point model which permits the specification ofintime
checks within a join point selection.

Hence, only under the special circumstance thatrurdgime-
specific condition needs to be checked (i.e. theeetsal
adaptation refers only to specification-level jopoints), we
consider the aspect-oriented approach and the raben
approach to be equivalent.

4.2 Why AOSD Dominates The MDD
Approach — An Aspect-Oriented Perspective

Of course, (as we have shown) runtime-dependemptatiizns can
(always) be transformed into specification-levedptations such
that the effects on the behavior of the final safevsystem are the
same. In fact, this is what aspect-oriented systemnsmonly do
when they perform code transformations in ordemweave in
aspects to the base system (currently, most sydikeng\spectJ
do weaving of aspects via code transformationsgyTidentify
places in the base system that potentially reptesgnin point
(such places are calleppin point shadowsin aspect-oriented
literature [8]), and instrument them wifbin point checkghat
evaluate whether the runtime-dependent conditidd dionot.

Aspect-oriented systems equipped withdgnamic join point
model (cf. [5, 6]) provide speciahbstractionsthat permit to
designate such runtime-level join points. In dosw they are
freeing the developers from the need to reflectjain point
shadows and necessary join point checks themséixasaples of
such abstractions are the dynamic pointcut desigsititis, target,
args and if in AspectJ, which permit to declare that a certain
runtime specific condition needs to be fulfilled &aparticular join
point shadow) for the aspectual adaptation to teffect. The
situation for the MDD approach is different. In MDDRQhe
developers are required to insert such join poitiecks
"manually" — which means that they need to be $ipelcas part
of the adaptation. In consequence, the approackedatevelopers

to separate the applicability constraints of areasye.g. for the
denial of an action) into the locations in the mede&here the
aspect needs to take effect, as well as the regidriethe join
point check) that remains to be evaluated at thettion.

Another consequence of this approach in comparisorthe

AOSD approach is that selections and adaptatiors less
reusable. In the aspect-oriented approach, an atitaptis

independent of the possible runtime checks thatd niee be

performed before it takes effect (since these peeiied in the
selection). Selections may evolve or may be ovdend in

subaspects. Nevertheless, the affiliated adaptsationnot need to
be changed. In the MDD approach, though, each tg@iethat

conceptually requires a corresponding runtime cladsf requires
its own adaptation module (since it is necessargawsider the
runtime conditions within the adaptation). Consedlye if the

application evolves and new selections are neellat require
additional runtime checks, the adaptation modulag need to be
adapted.

Hence, from the aspect-oriented perspective, thbecasriented
approach dominates the model-driven one becauséioaadi
abstractions for the join point selection are pded, which allow
an (almost) arbitrary combination of join pointesgtions and join
point adaptations.

4.3 Why MDD Dominates The AOSD

Approach — A Model-Driven Perspective

It remains to mention in what respect MDD approacingprove
over AOSD techniques, i.e. in what respect the rfddeen
approach dominates the aspect-oriented approach:

This pertains mostly to the capabilities of the @dton means
that can be applied to base applications. Thesgute limited in
the aspect-oriented approach. Most commonly, thezevarious
constructive adaptation mechanisifise before and after advice,
as well as introductions in AspectJ) that permitaitd some
additional elements to a base application (i.e. ittiwecation of
aspect-specific code, or the addition of aspectiipestructure,
respectively). Howeverthere are only limited means to specify

destructive adaptatiodgsuch as around advice in AspectJ that do

not refer to the original join point by meanspofoceed).

The model-driven approach, in contrast to that gioyorincipally
permits to perform arbitrary transformations oroarse model —
in particular, it allows unlimited support for themoval of
elements. By these means, the MDD approach coulaséd, for
example, to implement an arbitramgfactoring [3] on the source
model, by performing the corresponding behaviosereng
transformations. Aspect-oriented approaches likpeadt) do not
support such transformations since it is not pdsdit remove a
single method from a source program.

5. CONCLUSION

In this position paper, we argued why the aspdetted
approach and the model-driven approach are notl.equa
illustrated our argumentation by an example frora #spect-
oriented literature and showed that it is not akva@pssible to
achieve the same result in appropriate waywith help of the
means provided by model-driven development appescihe
main argumentation for this is that the aspectriei@ approach

3 See [5, 6] for a discussion of the terms constrecend
destructive adaptation.

provides additional abstractions that permit toc#geruntime-
conditions within join point selections.

However, we also argued that the means to adaptase b
application with aspect-oriented constructs areteqdimited.
Simple transformations like performing a rename hoet
refactoring, for example, cannot be achieved vigeessoriented
techniques — but with model-driven techniques.

From our point of view, it is essential for furthessearch on both
approaches that they cannot be considered to berajnthe

same thing. This implies that it might be intemegtito see in
future whether one approach can benefit from theerote.g. by
providing more advanced transformation techniqoe&®@SD, or

by introducing more advanced selection means to MDD

REFERENCES

[1] De Win, B., Joosen, W., Piessens,Peyeloping Secure
Applications Through Aspect-Oriented Programmiing
Filman, R., Elrad, T., Clarke, S., Aksit, M., Asp&riented
Software Development, Addison-Wesley, Boston, 2005.

[2] Filman, R. E.; Elrad, T.; Clarke, S.; Aksit, NEds.):
Aspect-Oriented Software Developmeéxddison-Wesley,
2004.

[3] Fowler, M.; Beck, K.; Brant, J.; Opdyke, W. Rpberts, D.:
Refactoring: Improving the Design of Existing Cpde
Addison-Wesley, 1999.

[4] Hanenberg, S.; Hirschfeld, R.; Unland, Rlorphing
Aspects: Incompletely Woven Aspects and Continuous
Weaving3rd International Conference on Aspect-Oriented
Software Development (AOSD), Lancaster, England,
March, ACM Press, 2004, pp. 46-55.

[5] Hanenberg, S.; Stein, D.; Unland, Eine Taxonomie fir
aspektorientierte Systerria: Liggesmeyer, P.; Pohl. K.;
Goedicke. M. (Eds.): Software Engineering 2005,
Fachtagung des Gl-Fachbereichs SoftwaretechnikgtMar
Essen. Lecture Notes in Informatics 64, Gl, 20Q5,167-
178.

[6] Hanenberg, S.; Stein, D.; Unland, Roles From an
Aspect-Oriented Perspectigiews, Aspects and Roles
Workshop, ECOOP 2005, Glasgow, UK, July 25, 2005.

[7] Hilsdale, E.; Hugunin, JAdvice Weaving in Aspect3rd
International Conference on Aspect-Oriented Softwar
Development (AOSD), Lancaster, England, March, ACM
Press, 2004, pp. 26-35.

[8] Masuhara, H.; Kiczales, G.; Dutchyn, @.Compilation
and Optimization Model for Aspect-Oriented Programs
Proceedings of Compiler Construction (CC2003), LNCS
2622, Springer-Verlag, 2003, pp.46-60.

[9] Stein, D.; Hanenberg, S.; Unland, Ruery Models7th
International Conference on the Unified Modelingigaage
(UML 2004), Lisbon, Portugal, October 11-15, 2004,
Springer, LNCS 3273, pp. 98-112.

[10] Tarr, P.; Ossher, H.; Harrison, W.; SuttonM5. N Degrees
of Separation: Multi-Dimensional Separation of Cernts
In 21st International Conference on Software Engjimg
(ICSE), 1999, pp. 107-1109.

