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Abstract. Queries on software artifacts play an important role in novel software
development approaches, such as Aspect-Oriented Software Development and
OMG's Model Driven Architecture. Keeping them separate from the
modifications operating on them has proven to be beneficial with respect to
their comprehensibility and their reusability. In this paper we describe what
relationships can exist between such stand-alone queries. These relationships
allow the combination of existing queries to form new ones, enabling
developers to come up with abstractions for common selection patterns.

1 Introduction

Queries are an essential software artifact in modern software development techniques,
such as Aspect-Oriented Software Development (AOSD) [12] and OMG's Model-
Driven Architecture (MDA) [18]. Experiences gained in AOSD have shown that
dealing with queries as first-class entities (i.e., as autonomous entities that can exist
without further reference to any other entities) helps to understand and reason about
the purpose and the effects of aspect-oriented adaptations, and improves the
reusability of aspect-oriented code [9] [8]. From these experiences we anticipate that
the same benefits will be brought forth to MDA if model queries are handled as
autonomous artifacts. However, to actually achieve these benefits, developers require
appropriate means to relate two (or more) queries to each other, so that to combine
two queries to form a new one (for example).

In this paper, we present a set of binary relationships that can be established
between two query models. With help of these relationships, developers can compose
new queries from existing ones. Furthermore, the relationships help developers to
reason on the semantic dependencies between queries; thus, providing developers
with the means to identify recurring "selection patterns" that they may abstract from
for future use.

The remainder of this paper is structured as follows: First of all (section 2), we give
a brief overview of «Join Point Designation Diagrams» [23], the model query
notation used throughout this paper, and introduce the running example for the
motivation section. After that, we discuss why and what relationships between query
models are needed and beneficial (section 3). Then we give a general description of
the relationships that may exist between query models, and detail their semantics,



giving a supplementary example (section 4 and 5). After elucidating related work in
section 6, we conclude the paper with a summary and a short discussion in section 7.

2 Overview to JPDDs and to the Motivating Example

«Join Point Designation Diagrams» (JPDDs) have been introduced in [23] and [22] as
a notation to specify query models. The notation is based on Unified Modeling
Language (UML) [20] user-model symbols, and provides means to specify lexical
constraints on element names (in terms of name and signature patterns) as well as on
the structural context and/or the behavioral context those elements reside in (e.g. the
(non-)containment of features in classes and of classes in packages; or the (non-
)existence of paths between classes (or objects) in the class (or object) hierarchy and
between messages in the call graph, etc.). Fig. 1 gives a graphical overview to the
most important symbols, which may be arranged in analogy to standard UML
symbols as stated in the UML specification [20].
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Fig. 1. Specifying selection constraints with «Join Point Designation Diagrams» (cf. [23])



Apart from selection constraints, JPDDs may specify those elements that are to be
exposed for further adaptations (e.g. for model transformations). These elements are
given identifiers, which are prepended by a question mark (?) and entangled in angle
brackets (< >), and which are listed in a parameter box in the lower right corner of the
JPDD.

In the following section, multiple sample JPDDs will be given and explained in
further detail (see Fig. 2, Fig. 3, Fig. 5, and Fig. 6). These JPDDs are used to
represent a pointcut as it is used to implement the decorator design pattern [7] with
AspectJ [14]. The example is adopted from [15]; its goal is to monitor the progress of
reading some input stream. To do so, it hooks onto method read of any
InputStream object, and ties the monitoring dialog to a GUI component – in this
case, a JComponent object from the javax.swing package.

3 Motivation

Relationships between query models are needed for the following reasons: First of all,
they are necessary to concatenate selection constraints that are rendered by different
diagrams and/or different notations. In Fig. 2, for example, the object diagram on the
left outlines the structural selection constraints of a query (select all objects <?is> of
(sub)type InputStream), while the interaction diagram on the right renders the
behavioral selection constraints (select all method invocations <?jp> to operations
named "read" (of objects being (sub)type of InputStream), taking an arbitrary
number of parameters (..), and returning one parameter of type int). Usage of
relationships in this way permits the representation of each selection constraint in its
most appropriate manner. For example, control flow-based constraints can be
represented in terms of interaction diagrams; state-based constraints can be
represented using state chart notation; and data flow-based constraints can be
represented with help of activity diagrams; etc. In the context of MDA, these
relationships allow each part of a query to be specified in terms of the diagram and/or
notation which it is eventually going to be applied to.

Apart from that, relationships enable developers to come up with abstractions over
recurring selection patterns, thus facilitating their comprehension and allowing their
reuse in different settings. For example consider Fig. 3, which visualizes an
application of the prominent "wormhole selection pattern" [14] as it is regularly used
in AOSD. The wormhole selection pattern in AOSD is used to perform adaptations on

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp

behavioral_constraint

 ?is

structural_constraint

* : InputStream

<?is>* : *

[0..*] «confine»

Fig. 2. Concatenating selection constraints of different nature (e.g. structural and behavioral
selection constraints, in this case)



the behavior of programs which make use of context information from an earlier step
in the execution process. The wormhole shown in Fig. 3, for example, selects all
method invocations (<?jp>*(..) : *) that occur in the control flow ( ) of any
(other) method (*(..) : *) invoked on an object of (sub)type JComponent (as
defined in package javax.swing); the receiver object of the latter is exposed by
the query model for further adaptations, or for use by another query model. Factoring
out the wormhole selection semantics into a separate query (and giving it an
appropriate name) helps developers to recognize the intention as well as the effects of
the query more easily1. Furthermore, the same wormhole can now be reused by
multiple (other) queries.

We expect to see many selection patterns like that to arise in the MDA context.
Over time, developers are going to recognize that they are using similar selection
patterns over and over again. They are going to find suitable idioms for those
selection patterns, and we anticipate them to ask for suitable means to abstract over
those patterns and to reuse them in most different contexts. The wormhole pattern
described above is one example of such recurring selection patterns. It is used to
reason about the entities that have participated in (e.g. initiate) a certain task, and to
select them for future adaptation (i.e. transformation). Another interesting example is
concerned with the reasoning on and selection of recurring method calls; this will be
considered in the subsequent chapter 4 in subsection 4.5.
                                                          
1 It may be advisable to abbreviate the (explicit) relationships to the structural selection

constraints using the (implicit) short hand described in section 4.3 (see Fig. 5), in this case.
That way, we have to deal with just two rather than four JPDDs.
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Fig. 3. Grouping selection constraints according to intention and effects, and finding
abstractions for common selection patterns to facilitate comprehension and enhance reusability



4 Relationships

Having elucidated necessity and benefits of query model relationships, we now take a
closer look at the nature of these relationships and define them more rigorously. We
introduce three kinds of relationship: «union», «confinement», and «exclusion».
These relationships combine the selection criteria of one query model with the
selection criteria of another query model; however, every time in a different manner.

In the following, we refer to the including query model (e.g. JPDD_D in Fig. 4) as
the "client" query model, and to the included query model  (e.g. JPDD_A, JPDD_B,
or JPDD_C in Fig. 4) as the "supplier" query model (in compliance to common UML
parlance).

4.1 Mapping Rules

All combination relationships can be annotated with mapping rules indicating what
identifiers from the including (client) query model are matched to what identifiers
from the included (supplier) query model for unification purposes. Mapping rules are
enclosed in curly braces ({ }) and are prepended by a lower-case Rho "ρ" in the
following manner "ρ{clientid=supplierid}" (see Fig. 4 for an example). In
case no explicit mapping rules are given, correspondence is assumed for all identifiers
of same name. If explicit mapping rules are given, though, any identifier from
included (supplier) query model and/or the including (client) query model not being
mentioned in the mapping rules is considered irrelevant for the union, confinement, or
exclusion, respectively.

Mappings may only be established between identifiers referring to the same type of
element (i.e. classes, objects, attributes, operations, parameters, stimuli, etc.).
Furthermore, mapping rules may only be specified for identifiers of the included
(supplier) query model if they are exposed in the query model's parameter box. Any
other identifier specified inside the included query model is not accessible from
outside the query model. In contrast to this, identifiers specified inside the including
(client) query model may be involved in mapping rules. This is because the inclusion
is assumed to happen in the namespace of the including query model (the including
query model is "calling for" the inclusion). Consequently, the identifiers of the

∪∪∪∪
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 ?jpa
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JPDD_C
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\

ρ{?jpd = ?jpb}

ρ{?jpd = ?jpc}

∩∩∩∩

Fig. 4. Graphical representation of combination relationships between query models



including query model are deemed to be visible.
It remains to note that if a JPDD calls for multiple unions, confinements, and

exclusions at the same time, combining is accomplished in the following order "1. all
unions – 2. all confinements – 3. all exclusions". Any other combination order needs
to be explicitly modeled using an execution tree.

4.2 Union

The first kind of relationship considers the selection criteria of the included (supplier)
query model to be alternative selection criteria that extend those given in the
including (client) query model. Consequently, the elements being designated by the
including (client) query model are complemented with those being designated by the
included (supplier) query model. Basically, this lead to a union of the designation
results of both query models. Therefore, we use a union symbol "∪" to symbolize this
kind of relationship (see Fig. 4 for an example). In union relationships, mapping rules
must be specified at least for all identifiers contained in the parameter box of the
including (client) query model so that no element may be left unspecified in any tuple
of the final designation result.

4.3 Confinement

The second kind of relationship looks at the selection criteria of the included
(supplier) query model as additional restrictions that confine the selection criteria of
the including (client) query model. Confinement is accomplished using mapping rules
which are attached to the relationship and that indicate what identifier from the
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 ?c

aWormholeSelectionPattern

[0..*]

* : JComponent

<?c>* : *

[0..*]

javax.swing

<?jp>: read(..) : int

* : * <?is>* : *

 ?jp
 ?c

joined_structural_and_behavioral_constraints

* : InputStream

<?is>* : *

[0..*]

ρ{?jp = ?jp,
     ?c = ?c}

∩∩∩∩

Fig. 5. Shorthand for concatenating selection constraints of different nature using a dotted line



including (client) query model confines what identifier from the included (supplier)
query model. In consequence, the designation result of the including (client) query
model is diminished to those tuples only that have a corresponding tuple in the
designation result of the included (supplier) query model. We use an intersection
symbol "∩" to indicate this kind of relationship (see Fig. 4 for an example).

As a short hand, confinement relationships can be abbreviated in a single query
model by means of a dotted line. This is particularly useful when selection constraints
of different nature (e.g. structural and behavioral selection constraints) are to be
confined, and no distinct representation of either (or both) selection constraint(s)
seems befitting. For example, Fig. 5 demonstrates how the structural and behavioral
selection constraints from Fig. 3 (see section 3) can be merged into two rather than
four query models. Further merging (e.g. in order to get one single all-inclusive query
model) would be possible. Doing so, however, would obstruct the easy recognition of
the application of the wormhole selection pattern in the query model.

4.4 Exclusion

The third kind of relationship regards the selection criteria of the included (supplier)
query model to be exclusion constraints, which means that all tuples designated by
the including (client) query model are excluded from its designation result if there is a
corresponding tuple in the designation result of the included (supplier) query model.
Again, correspondence between tuples is established by means of mapping rules that
specify what identifier from the including (client) query model matches with what
identifier from the included (supplier) query model. We use the difference symbol "\"
to designate this kind of relationship (see Fig. 4 for an example).

4.5 Example

Having introduced the different combination relationships in detail, we now want to
demonstrate their usage and their different effects with help of a small example.

Fig. 6 shows two query models, one of which is already well known from the
previous examples (the bottom one). The other (top) one represents a general
abstraction over recurring method calls: It selects two messages <?jp1> and
<?jp2>, which both are sent to the same object <?obj>, and which both invoke
methods with the (same) signature <?sig>. Message <?jp1> is "chained" to
message <?jp2> with help of an indirect message symbol, which designates that
message <?jp2> occurs in the control flow of message <?jp1>. Assuming that an
object does not have two methods with the same signature, this query model selects
all (equivalent) recurrences of a given message in its own control flow. This selection
pattern is often needed to ensure that a given adaptation (or transformation) is applied
only once (e.g. at the first occurrence of a method call) rather than every time the
method is invoked.

The upper (supplier) query model is now included into the lower (client) query
model in three different ways: � by means of a confinement relationship, � by
means of a exclusion relationship, and � by means of a combination of both. The
confinement relationships are annotated with mapping rules stating that message
<?jp> from the lower (client) query model is mapped to message <?jp1> in the



upper (supplier) query model. The exclusion relationships are annotated with mapping
rules stating that message <?jp> from the lower (client) query model is mapped to
message <?jp2> in the upper (supplier) query model. The effects of these
combination relationships are as follows:

In the first case �, method calls matching the lower (client) query model are only
selected if there exists an recurring, i.e. an equivalent, method call in their control
flow. As a result, all recursive method calls are selected, but the last. In the second
case �, method calls matching the lower (client) query model are selected only if
they do not represent a recurring method call in the control flow of an equivalent
method call. In consequence, only the first method call of a recurring set of equivalent
method calls is selected, as well as any non-recurring method call. In the third case �,
the selection semantics of � and � are combined. As a result, all method calls
representing the first ones in a recurring set of equivalent method calls are selected
(due to the exclusion relationship); unlike to the previous case, though, selection of
non-recurring method calls is not considered (due to the confinement relationship).

5 Semantics

In this section, the semantics of the relationships (that have been introduced in the
previous section) are specified using the Object Constraint Language (OCL) 2.0 [19].
The OCL is chosen as it has been commonly proposed as the standard query language
for QVT model transformations (cf. [10], [21], [6]).

<?jp1>:
<?sig>* (..) : *

* : * <?obj>
* : *

* : *

<?jp2>:
<?sig>* (..) : *

<?obj>
* : *
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 ?jp2
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Fig. 6. Different usages of combination relationships



5.1 General OCL Semantics

Using the Object Constraint Language (OCL), the combination relationship can be
defined more rigorously. To do so, we assume that each query model selects a set of
model elements – i.e. those model elements that are given an identifier in the query
model – from a given user-model. The model elements are returned as a set of tuples,
while each tuple represents a distinct combination of model elements (from the given
user-model) that satisfies the selection criteria outlined in the query model. In Table 1,
these sets are rendered by QueryA_identifierResultSet and QueryB_-
identifierResultSet. The operations take one parameter (someModel) that
is the user-model which is to be queried.

From all model elements in the query model that are given an identifier, only a
projection is exposed for further processing. These model elements (i.e. their
identifiers) are listed in the query model's parameter box. Again, the model elements
are returned as a set of tuples. In Table 1, these set operations are exemplified by
QueryB_parameterResultSet. And again, the operations take one parameter
(someModel) identifying the user-model that is to be queried.

Available to a «union», «exclusion», or «confinement» combination relationship
are (a) all identified model elements of the including (client) query model (i.e.
QueryA_identifierResultSet in Table 1, subsequently referred to as T1)2, as
well as (b) only the exposed model elements of the included (supplier) query model

Table 1. OCL semantics of combination relationships

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :

Set(TupleType(idA1 : idTypeA1, ..., idAi : idTypeAi, ..., idAk : idTypeAk, ..., idAn : idTypeAn)) = ...
let QueryB_identifierResultSet(someModel : Namespace) :

Set(TupleType(idB1 : idTypeB1, ..., idBj : idTypeBj, ..., idBl : idTypeBl, ..., idBm : idTypeBm)) = ...
-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :

Set(TupleType(parB1 : parTypeB1, ..., parBr : parTypeBr, ..., parBs : parTypeBs)) =
 QueryB_identifierResultSet(someModel)->collect(tup |

Tuple{parB1 = tup.idB1, ..., parBr = tup.idBj, ..., parBs = tup.idBm})
-- result sets to be combined
let T1(..) = QueryA_identifierResultSet(..)
let T2(..) = QueryB_parameterResultSet(..)

-- set of tuple type labels in T1 and T2 having identical names (cf. [3])
let D = p.first.allAttributes->intersection(p.second.allAttributes)
-- set of joinable tuples from T1  T2
let X(..) = T1(..)->product(T2(..))->select(p | D->forAll(d | p.first.d = p.second.d))

-- union
T1(..)->union(T2(..))
-- confinement
T1(..)->select(q | X(..)->exists(p | p.first = q))
-- exclusion
T1(..)->reject(q | X(..)->exists(p | p.first = q))



(i.e. QueryB_parameterResultSet in Table 1, subsequently referred to as T2)2

(cf. Mapping Rules section).
In case of a union, the set of tuples T1 and T2 are unified using the OCL core

operation union (see Table 1).
In case of a confinement, all pairs of tuples from T1 and T2 that comply to each

other in all of their attributes having the same name (referred to as D in Table 1) are
collected from the Cartesian product of T1 and T2 (following the approach of [3] to
compute a relational join). These pairs of tuples (referred to as X in Table 1)2 are then
used to diminish the set of tuples T1 to those that are also part of X.

In case of an exclusion, initial proceeding is the same as in case of a confinement.
Afterwards, though, the set of tuples T1 is diminished to those tuples that are not part
of X (see Table 1).

Note that the semantics of both confinement and exclusion relationships are
defined such that they allow the combination of query models whose result sets are
different in structure (i.e. that comprise different – that is, only partially overlapping –
sets of attributes). Note further that in the OCL code (see Table 1) we abstract from
the mapping rules. Mapping, i.e. renaming of and projection to relevant identifiers in
T1 and T2, cannot expressed trivially – and in a general way (!) – in the OCL (cf. [3],
[4]). Hence, this can only be done manually for a particular combination relationship
(as it will be demonstrated in the following).

5.2 A Concrete Example

After describing the general OCL semantics of the combination relationships in Table
1, we now take a look at their actual implications to a concrete example. We do so by
revisiting the example from section 4.5.

First of all, we need to specify the relevant result sets of the query models, i.e. the
identifier result set of the including query model as well as the parameter result set of
the included query model (see above). Table 2 exemplifies how this is accomplished
for query model recurringCalls3 – referred to as QueryB in Table 2 (the
specification of the result set of query model joined_structural_and_beha-
vioral_constraints – referred to as QueryA in Table 2 – is omitted here for
space reasons): The OCL code4 starts out with collecting all possible combinations of
model elements from the user-model being passed (someModel) that are of same
type as the identifier model elements in the query model. In this example, the result
set therefore contains all combinations of two stimuli model elements (stim1 and
stim2), one instance model element (inst), and one operation model element
(sig) that can be found in the user-model. Then, in a second step, this result set is
reduced to only those combinations that consist of elements complying to the
selection criteria specified in the query model. This evaluation is accomplished by
special matchModelElement operations, such as they have been specified in [23] [22].
The operations take as parameter an identifier model element from the query model
                                                          
2 Note that we abstract from parameter someModel of the result sets T1, T2, and X in the

subsequent text and in Table 1.
3 The approach has been inspired by the OCL code in [13].
4 We used OCLE 2.02 (http://lci.cs.ubbcluj.ro/ocle) to syntax and type check the OCL code.

Note that we abstract from any type cast (oclAsType) in the code shown.



Table 2. Applying the OCL semantics to the example

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :

Set(TupleType(stimulus : Stimulus, instance: Instance)) = [...]

let QueryB_identifierResultSet(someModel : Namespace) : Set(TupleType(stimulus1 : Stimulus,
stimulus2 : Stimulus, instance : Instance, signature : Operation)) =
-- create Cartesian product of all stimuli, instances, and signatures in someModel
someModel.allContents->select(me | me.oclIsKindOf(Stimulus))->collect(stim1 |

someModel.allContents->select(me | me.oclIsKindOf(Stimulus))->collect(stim2 |
someModel.allContents->select(me | me.oclIsKindOf(Instance))->collect(inst |

someModel.allContents->select(me | me.oclIsKindOf(Operation))->collect(sig |
Tuple {

stimulus1 : Stimulus = stim1,
stimulus2 : Stimulus = stim2,
instance : Instance = inst,
signature : Operation = sig

} ))))
-- select those tuples that match the selection criteria specified in the query model...
->select(tup | tup.stimulus1.matchesStimulus(self.allContents->any(me | me.name="jp1"))

and tup.stimulus2.matchesStimulus(self.allContents->any(me | me.name="jp2"))
and tup.instance.matchesInstance(self.allContents->any(me | me.name="obj"))
and tup.signature.matchesOperation(self.allContents->any(me | me.name="sig"))

-- ...and whose elements are related to each other as specified in the query model
and tup.stimulus1.receiver = tup.instance
and tup.stimulus2.receiver = tup.instance
and tup.stimulus1.dispatchAction.method.specification = tup.signature
and tup.stimulus2.dispatchAction.method.specification = tup.signature
and tup.stimulus2.allActivators()->includes(tup.stimulus1))

-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :

Set(TupleType(stimulus1 : Stimulus, stimulus2 : Stimulus)) =
-- project identifier result set to those elements being exposed by the query model

 QueryB_identifierResultSet(someModel)->collect(tup |
Tuple{ stimulus1 = tup.stimulus1, stimulus2 = tup.stimulus2 })

-- result sets to be combined
let T1(someModel : Namespace) = QueryA_identifierResultSet(someModel)
let T2(someModel : Namespace) = QueryB_parameterResultSet(someModel)
-- set of joinable tuples from T1  T2 (according to mapping rules outlined in Fig. 6)
let X1(someModel : Namespace) = T1(someModel)->product(T2(someModel))

->select(p | p.first.stimulus = p.second.stimulus1)
let X2(someModel : Namespace) = T1(someModel)->product(T2(someModel))

->select(p | p.first.stimulus = p.second.stimulus2)

-- confinement (�)
let ResultSet_1(someModel : Namespace) = T1(someModel)

->select(q | X1(someModel)->exists(p | p.first = q))
-- exclusion (�)
let ResultSet_2(someModel : Namespace) = T1(someModel)

->reject(q | X2(someModel)->exists(p | p.first = q))
-- simultaneous confinement and exclusion (�)
let ResultSet_3(someModel : Namespace) = T1(someModel)

->select(q | X1(someModel)->exists(p | p.first = q))
->reject(q | X2(someModel)->exists(p | p.first = q))



(i.e. jp1, jp2, obj, and sig, respectively5); the parameter is taken as a selection
pattern to which the user-model elements are compared. At last, the OCL code assures
that the elements in the remaining combinations actually relate to each other as
specified in the query model (the evaluation is based on the (meta-)associations
between the model elements as specified in the UML meta-model [20]).

Once we have retrieved the identifier result set of the (included) query model
(QueryB_identifierResultSet), we need to project that result set such that
its tuples only consists of model elements that are actually exposed by the query
model. Therefore, a parameter result set (QueryB_parameterResultSet) is
created from the identifier result set, whose tuples only consist of model elements that
are (designated by the identifier model elements) listed in the parameter box of the
query model (i.e. the stimuli stimulus1 and stimulus2, in this case).

Now we are ready to perform the confinement and the exclusion, respectively. To
do so, two sets X1 and X2 of "joinable tuples" are created – one for each mapping
specification given in the example (see Fig. 6). The sets comprise all pairs of tuples
from QueryA_identifierResultSet (referred to as T1) and QueryB_-
parameterResultSet (referred to as T2) that are referring to the same model
elements in their attributes being mapped (i.e. in stimulus and stimulus1, as
well as in stimulus and stimulus2, respectively). The sets are then used to filter
the identifier result set of the including query model (QueryA_identifier-
ResultSet, referred to as T1) such that it consists only of those tuples � being part
of X1 (resulting into a confinement), � being not part of X2 (resulting into an
exclusion), and finally, � being part of X1, but not part of X2 (resulting into a
combined confinement and exclusion).

6 Related Work

JPDDs as we have used them in this paper relate to other approaches that provide
visualization means for model queries in the MDA domain. Examples of such
approaches are basically all proposals to specify model transformations, such as
MOLA [11], BOTL [17], or the QVT-Merge submission [21], etc. However, none of
these approaches provide means to reason about model queries in isolation. In
consequence, no abstraction means are provided to segregate recurring selection
patterns, and no relationships are specified to re-use such recurring selection patterns
in different discrete application domain-specific selection queries.

Instead, OCL 2.0 is commonly suggested to serve as a (purely textual) query
language – e.g. for OMG's transformation language QVT (cf. [10], [21], [6]).
Therefore, it is interesting to relate our combination relationships to OCL's proper
capabilities to express and calculate combination of sets of tuples. Several studies [16]
[1] [3] have been conducted in this regard to investigate the expressiveness of OCL
with respect to relational algebra [5], a well-known and well-founded approach to
specify operations on (e.g. combinations of) sets of tuples, originating from the
                                                          
5 It is assumed that the OCL code is specified in the context of the query model; thus,
self.allContents refers to all model elements contained in QueryB. See [22] for
further information on how identifiers and name patterns are stored in the meta-
representation of model elements.



database domain. In the latest study [3], it has been stated that since the introduction
of tuple types and product types as primitive operators in OCL 2.0, OCL became
much more expressive. But still, projection and renaming of tuple attributes needs to
be done on a per-case basis and cannot be expressed in a general way.  When
compared to the mentioned work, it is important to note that our work is not focused
on providing a (relational) complete set of graphical operators that could serve as a
basis for arbitrary computations over sets of tuples (of model elements). Instead, the
goal was to find appropriate abstractions for common combinations of query models
and daily needs in query design.

Nonetheless, the identified combination relationships can be compared to relational
operations, and would correspond to the following expressions: Assuming that sets of
tuples T1 and T2 (see Table 1) designate relations, a union relationship equates to the
following relational operation: T1 ∪∪∪∪ T2. A confinement relationship could be
expressed as a left semi-join between T1 and T2: T1  T2. And finally, an exclusion
relationship equates to T1 – (T1  T2) . A mapping rule serves two purposes: First of
all, it projects the second relation T2 to those attributes that are relevant for the
respective relational operation: πattT2.1, attT2.2, ..., attT2.n T2. Furthermore, it renames the
projected attributes so that their labels comply to the attribute labels of the first
relation T1 (and the relational operation can actually be performed): ρattT1.1 ← attT2.1,

attT1.2 ← attT2.2, ..., attT1.n ← attT2.n

Apart from that, the presented relationships also compare to (and have been
influenced by) the combination operators for join point queries (so-called "pointcuts")
&&, ||, and ! in AspectJ [14], the most popular aspect-oriented programming
language. If two join point queries are combined by means of an AND-operator &&,
the result set contains all join points that are picked out by both queries – which
corresponds to the selection semantics of the confinement relationship. If two join
point queries are combined by means of an OR-operator ||, the result set contains all
join points that are picked out by either query – which equates to the union
relationship. If a join point query is prepended by a NOT-operator !, the join points
designated by that query are dismissed from the selection result. This complies to the
exclusion relationship (that is, to be more exact, the exclusion relationship equates to
a combination of an AND-operator and a NOT-operator in AspectJ, i.e. "&& !").

7 Conclusion

In this paper we elucidated the need of having suitable means to combine query
models. We presented three kinds of combination relationships – «union»,
«confinement», and «exclusion» – and detailed their semantics informally and with
help of OCL 2.0 expressions. We demonstrated the usage and the benefits of these
relationships with help of two common selection patterns.

By means of the presented combination relationships, developers are able to
abstract from recurring selection patterns and to reuse them in different application
contexts. Furthermore, they are able to relate queries pertaining to different modeling
notations or diagrams (e.g. to both structural and behavioral model specifications);
thus, they are able to specify context-sensitive model queries. Of course, in order to
efficiently do so in model transformations, the meta models of the involved modeling
notations must share some common abstractions.



Provided with the combination relationships presented in this paper, abstractions of
recurring selection patterns can be assembled in public libraries (just like abstractions
of common transformations can be assembled in public transformation libraries),
ready for reuse by the model-driven developer. That way, developers are freed from
elaborating on recurring selection semantics again and again (e.g. how to handle
recursive method calls; see section 4.5), each time they are dealing with a new
problem.

It remains to mention that our work is not concerned with the actual evaluation of
query combinations. That is, we do not consider how the resulting sets of tuples (of
model elements) are actually extracted from a given user model. In particular, we
currently abstract from problems that may occur due to recursive or circular query
combinations. Such combinations may lead to infinite loops during query evaluation,
or may introduce irresolvable dependencies between the involved query
specifications. It is an interesting field for future research to investigate if such
problems may be detected prior to query execution time and how they could be
possibly resolved automatically based on static query analysis.
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