On Relationships between Query Models

Dominik Stein
Stefan Hanenberg
Rainer Unland

University of Duisburg-Essen
Essen, Germany
{dstein, shanenbe, unlandR}@cs.uni-essen.de

Abstract. Queries on software artifacts play an importafe no novel software
development approaches, such as Aspect-Orientad&ef Development and
OMG's Model Driven Architecture. Keeping them separ from the
modifications operating on them has proven to beefieial with respect to
their comprehensibility and their reusability. Inist paper we describe what
relationships can exist between such stand-aloeeieggs These relationships
allow the combination of existing queries to fornewn ones, enabling
developers to come up with abstractions for coms®action patterns.

1 Introduction

Queries are an essential software artifact in modeftware development techniques,
such as Aspect-Oriented Software Development (AOHR) and OMG's Model-
Driven Architecture (MDA) [18]. Experiences gainéd AOSD have shown that
dealing with queries as first-class entities (ises,autonomous entities that can exist
without further reference to any other entitieslpbedo understand and reason about
the purpose and the effects of aspect-oriented tafilaps, and improves the
reusability of aspect-oriented code [9] [8]. Frdmede experiences we anticipate that
the same benefits will be brought forth to MDA ifodel queries are handled as
autonomous artifacts. However, to actually achignse benefits, developers require
appropriate means to relate two (or more) queodesach other, so that to combine
two queries to form a new one (for example).

In this paper, we present a set of binary relatigpss that can be established
between two query models. With help of these metethips, developers can compose
new queries from existing ones. Furthermore, tHatiomships help developers to
reason on the semantic dependencies between quimiess providing developers
with the means to identify recurring "selectiontpais” that they may abstract from
for future use.

The remainder of this paper is structured as fdltoiirst of all (section 2), we give
a brief overview of «Join Point Designation Diageam[23], the model query
notation used throughout this paper, and introdtiee running example for the
motivation section. After that, we discuss why avitht relationships between query
models are needed and beneficial (section 3). Theigive a general description of
the relationships that may exist between query fsodnd detail their semantics,

giving a supplementary example (section 4 and ®erfelucidating related work in
section 6, we conclude the paper with a summaryaasttbrt discussion in section 7.

2 Overview to JPDDs and to the M otivating Example

«Join Point Designation Diagrams» (JPDDs) have lrenduced in [23] and [22] as
a notation to specify query models. The notatiorbédsed on Unified Modeling
Language (UML) [20] user-model symbols, and prosideeans to specify lexical
constraints on element names (in terms of namesmméture patterns) as well as on
the structural context and/or the behavioral cantiease elements reside in (e.g. the
(non-)containment of features in classes and ofsela in packages; or the (non-
Jexistence of paths between classes (or object$ieirclass (or object) hierarchy and
between messages in the call graph, etc.). Figvdsc graphical overview to the
most important symbols, which may be arranged ialagy to standard UML
symbols as stated in the UML specification [20].

Association Constraints

association name pattern explicit multiplicity restrictior

Classifier Constraints c D

boolean restriction class name pattern
/ identifier A B

l’) —— aRole A 0.% *| | {not}
<?c>*:Con D AC
.:

) — object name pattern o
Auributes boolean restriction

} attl : Stri Kinlicit association role
not} attl : String ,_—{— multiplicity range name pattern oyi
att2 : Integer [2!..100]| restriction P existence of path

1 Onerati along associations
perations T
*(val - * exact multiplicity o)
set*(val : *) I restriction Gener alization Constraints
get*() : *

run(vall : Integer, ..
vali : Real, ..,

- “ boolean restriction
A
valn : String) A [\ m
I . N
signature patterns [0..
= o
expected features

existence of path along
M essage Constraints generalization relationships

signature pattern Package Constraints

l | Cll | | C | SomePackage
oplQy | sonleOp*(..) ! i
someOp*(..) op2(, / ’\
* T
i i T 1 [0].\ package containment
activating control flow activated control flow existence of path

along call graph

Fig. 1. Specifying selection constraints with «Join P@esignation Diagrams» (cf. [23])

Apart from selection constraints, JPDDs may speitibse elements that are to be
exposed for further adaptations (e.g. for modeisfarmations). These elements are
given identifiers, which are prepended by a questi@ark () and entangled in angle
brackets € >), and which are listed in a parameter box in tiveek right corner of the
JPDD.

In the following section, multiple sample JPDDsIviE given and explained in
further detail (see Fig. 2, Fig. 3, Fig. 5, and.F&). These JPDDs are used to
represent a pointcut as it is used to implementdéprator design pattern [7] with
AspectJ [14]. The example is adopted from [15]gidal is to monitor the progress of
reading some input stream. To do so, it hooks omethod read of any
| nput St r eamobject, and ties the monitoring dialog to a GUinpmnent — in this
case, a Conponent object from thg avax. swi ng package.

3 Motivation

Relationships between query models are needetiddiotiowing reasons: First of all,
they are necessary to concatenate selection constthat are rendered by different
diagrams and/or different notations. In Fig. 2, daample, the object diagram on the
left outlines the structural selection constranfta query (select all object®i s> of
(sub)typel nput St r eam), while the interaction diagram on the right rersdéhe
behavioral selection constraints (select all metimcations<?j p> to operations
named "read" (of objects being (sub)typelofput St r eam), taking an arbitrary
number of parameters (), and returning one parameter of typet). Usage of
relationships in this way permits the representatibeach selection constraint in its
most appropriate manner. For example, control fimsed constraints can be
represented in terms of interaction diagrams; diated constraints can be
represented using state chart notation; and data-hsed constraints can be
represented with help of activity diagrams; etc. the context of MDA, these
relationships allow each part of a query to be iigelcin terms of the diagram and/or
notation which it is eventually going to be applted

Apart from that, relationships enable developersame up with abstractions over
recurring selection patterns, thus facilitatingitteamprehension and allowing their
reuse in different settings. For example considey. B, which visualizes an
application of the prominent "wormhole selectiort@an” [14] as it is regularly used
in AOSD. The wormhole selection pattern in AOSised to perform adaptations on

7 sructural_constraint ™\ /" behavioral_constraint N
\
1
: InputStream Pl <Pig> ¥
A i
J

«confine» I

A
i
M
v °
3
i
i
:
s
k
'
'
i
7T
.
A
)
\
o
3
Q.
i
:
i
i
~
;
g
i

Fig. 2. Concatenating selection constraints of differeature (e.g. structural and behavioral
selection constraints, in this case)

the behavior of programs which make use of coritédetmation from an earlier step
in the execution process. The wormhole shown in Bigfor example, selects all
method invocations<?j p>*(..) : *) that occur in the control flowA>) of any
(other) method*((..) : *) invoked on an object of (sub)ty@&onponent (as
defined in packaggavax. swi ng); the receiver object of the latter is exposed by
the query model for further adaptations, or for igeanother query model. Factoring
out the wormhole selection semantics into a sepacatery (and giving it an
appropriate name) helps developers to recognizantbetion as well as the effects of
the query more easily Furthermore, the same wormhole can now be rebsed
multiple (other) queries.

" structural_constraint2 " aWormholeSelectionPattern “
, \ / \
r \ /
/ javax.swing \ ! * ok <Po>* - * * - * % \\l
| : :
! 1
* : JComponent | ! T !
] 1] 1
/\ (oo | *()* :
0. I «confinex > o !
- i | P <?ip>:* () % !
: ! 0. | ARzl |
N bee— e /-, \\ i 1 i F=---- L——
Ny 12c ' .. L7lp i
|
! «confine»
i
]
mTT TS s s s s m s -~ D bmmmm e N
7 structural_constraint /7 behavioral_constraint N
\

o <Ris>*

Fig. 3. Grouping selection constraints according to intentand effects, and finding
abstractions for common selection patterns toifatél comprehension and enhance reusability

We expect to see many selection patterns like ttharise in the MDA context.
Over time, developers are going to recognize thay tare using similar selection
patterns over and over again. They are going td Baoitable idioms for those
selection patterns, and we anticipate them to aslsditable means to abstract over
those patterns and to reuse them in most diffetentexts. The wormhole pattern
described above is one example of such recurritectien patterns. It is used to
reason about the entities that have participatg@.m initiate) a certain task, and to
select them for future adaptation (i.e. transforamt Another interesting example is
concerned with the reasoning on and selection afrring method calls; this will be
considered in the subsequent chapter 4 in subgettio

1 It may be advisable to abbreviate the (explicé)ationships to the structural selection
constraints using the (implicit) short hand desadlilin section 4.3 (see Fig. 5), in this case.
That way, we have to deal with just two rather tfam JPDDs.

4 Relationships

Having elucidated necessity and benefits of quesgdehrelationships, we now take a
closer look at the nature of these relationshigs @afine them more rigorously. We
introduce three kinds of relationship: «union», rédement», and «exclusions.
These relationships combine the selection critefiaone query model with the
selection criteria of another query model; howeegery time in a different manner.

In the following, we refer to the including querydel (e.g. JPDD_D in Fig. 4) as
the "client" query model, and to the included querydel (e.g. JPDD_A, JPDD_B,
or JPDD_C in Fig. 4) as the "supplier" query mo(elcompliance to common UML
parlance).

4.1 Mapping Rules

All combination relationships can be annotated withpping rules indicating what
identifiers from the including (client) query modate matched to what identifiers
from the included (supplier) query model for urafion purposes. Mapping rules are
enclosed in curly braceg () and are prepended by a lower-case Rpibifi the
following manner p{ cl i enti d=suppl i eri d}" (see Fig. 4 for an example). In
case no explicit mapping rules are given, corredpoae is assumed for all identifiers
of same name. If explicit mapping rules are givémugh, any identifier from
included (supplier) query model and/or the inclgd{client) query modehot being
mentioned in the mapping rules is considered iveetefor the union, confinement, or
exclusion, respectively.

Mappings may only be established between idergifieferring to the same type of
element (i.e. classes, objects, attributes, opmersiti parameters, stimuli, etc.).
Furthermore, mapping rules may only be specifiedifentifiers of the included
(supplier) query model if they are exposed in tbergy model's parameter box. Any
other identifier specified inside the included gquenodel is not accessible from
outside the query model. In contrast to this, idiems specified inside the including
(client) query model may be involved in mappingesul This is because the inclusion
is assumed to happen in the namespace of the inglggiery model (the including
guery model is "calling for" the inclusion). Conseqtly, the identifiers of the

{ JPDD_A | { JPDD_B |
| R N, 1 R
\ 2jpa | L 2ipb
TR : AL
\\ Il
\ /
p(eipd = 3pa} [] (1 plipd = 2ipb}
\ I' —————————
\ / { JPDD_C !
\ - l Spic
1 JPDD_D |_---" N v :
| SN S, . . [P '
L T2pd 1 P{?ipd = ?jpc}

Fig. 4. Graphical representation of combination relatigpsietween query models

including query model are deemed to be visible.

It remains to note that if a JPDD calls for mukiplinions, confinements, and
exclusions at the same time, combining is accomgtisn the following order "1. all
unions — 2. all confinements — 3. all exclusio&iy other combination order needs
to be explicitly modeled using an execution tree.

4.2 Union

The first kind of relationship considers the setattriteria of the included (supplier)
guery model to bealternative selection criteriathat extend those given in the
including (client) query model. Consequently, thengents being designated by the
including (client) query model are complementedhvitiose being designated by the
included (supplier) query model. Basically, thisdeto a union of the designation
results of both query models. Therefore, we useianusymbol TJ" to symbolize this
kind of relationship (see Fig. 4 for an example)uhion relationships, mapping rules
must be specified at least for all identifiers @dnéed in the parameter box of the
including (client) query model so that no elemenmtyrbe left unspecified in any tuple
of the final designation result.

4.3 Confinement

The second kind of relationship looks at the saactriteria of the included
(supplier) query model eadditional restrictionsthat confine the selection criteria of
the including (client) query model. Confinemenatcomplished using mapping rules
which are attached to the relationship and thatcaid what identifier from the

-~ aWormholeSelectionPattern

% N
/ N,

/| javax.swing o <?c>* Lk o o y
I 1
I 1
| s a — |
: £\ O TR : : |
| (0.1 g > <o ()t |
: 0.7] 2> () 3 |
bl
\ = | 1 1 1 :,)Jp E
- -2
E ___________
L
E y joined_structural_and_behavioral_constraints \
! ! : 4
T A = |
H | ¥ ! |
H E [0..4] 1 <2ip>: read(.) : i i
[
""""""" * =
\ — . T S
\ 1 ?ip I

Fig. 5. Shorthand for concatenating selection constraihtifferent nature using a dotted line

including (client) query model confines what idéeti from the included (supplier)
qguery model. In consequence, the designation re$ute including (client) query
model is diminished to those tuples only that haveorresponding tuple in the
designation result of the included (supplier) quergdel. We use an intersection
symbol "n*" to indicate this kind of relationship (see Figo4 an example).

As a short hand, confinement relationships canliwesiated in a single query
model by means of a dotted line. This is partidulaseful when selection constraints
of different nature (e.g. structural and behavimalection constraints) are to be
confined, and no distinct representation of eitfmr both) selection constraint(s)
seems befitting. For example, Fig. 5 demonstrates the structural and behavioral
selection constraints from Fig. 3 (see sectiona) lbe merged into two rather than
four query models. Further merging (e.g. in oraeget one single all-inclusive query
model) would be possible. Doing so, however, wabdtruct the easy recognition of
the application of the wormhole selection patterthie query model.

4.4 Exclusion

The third kind of relationship regards the selectiniteria of the included (supplier)
guery model to bexclusion constrainfswhich means that all tuples designated by
the including (client) query model are excludedrfrits designation result if there is a
corresponding tuple in the designation result ef iticluded (supplier) query model.
Again, correspondence between tuples is establisfiedeans of mapping rules that
specify what identifier from the including (clientjuery model matches with what
identifier from the included (supplier) query modéle use the difference symbol "\"
to designate this kind of relationship (see Fifprdan example).

45 Example

Having introduced the different combination relaships in detail, we now want to
demonstrate their usage and their different effetts help of a small example.

Fig. 6 shows two query models, one of which is alsewell known from the
previous examples (the bottom one). The other (top¢ represents a general
abstraction over recurring method calls: It selent® messages<?j pl1> and
<?j p2>, which both are sent to the same objebbj >, and which both invoke
methods with the (same) signatu@si g>. Message<?j pl> is "chained" to
message<?j p2> with help of an indirect message symbol, whichiglestes that
message?j p2> occurs in the control flow of messag@j pl>. Assuming that an
object does not have two methods with the sameagigg, this query model selects
all (equivalent) recurrences of a given messagts iown control flow. This selection
pattern is often needed to ensure that a giventati@p (or transformation) is applied
only once (e.g. at the first occurrence of a metball) rather than every time the
method is invoked.

The upper (supplier) query model is now includet ithe lower (client) query
model in three different waysD by means of a confinement relationsh®, by
means of a exclusion relationship, a@dby means of a combination of both. The
confinement relationships are annotated with mappinles stating that message
<?j p> from the lower (client) query model is mapped tessage<?j p1l> in the

recurringCalls

fo] e <20bj> * <2obj> |
: * ook * ok :
i T i
1 1 1
1 1 1
i <?jpl>: > i
=
i <SG () [0 *]t <?jp2>: > i\?'
! - <?sig>* (L) ¥ | [N
\ 1 1
\ 1 PR S
4\7 R 1 I 1 1 E’,)Jpl ' \\
/ ~< | o ' \
,,/ ______ /:\ | L:)J_IJ_Z_ ______ i \
| 1 ' !
PiP=7P N (D PP =2p1} N _ \ P{?ip="ip2} @ \ P%ip =7p2}
3 i i /
\\ s mmmmm oo fe e e e e e -~ ¥
/ joined_structural_and_behavioral_constraints N o
1 H 1
| A . |
1 * H |
| [0-7] ‘ 1 <?ip>: read(..) : i |
1 H I
AN 1 ?ip H

Fig. 6. Different usages of combination relationships

upper (supplier) query model. The exclusion refeghops are annotated with mapping
rules stating that messag®j p> from the lower (client) query model is mapped to
message<?j p2> in the upper (supplier) query model. The effecfs tlese
combination relationships are as follows:

In the first caseD, method calls matching the lower (client) querydeloare only
selected if there exists an recurring, i.e. an\ejent, method call in their control
flow. As a result, all recursive method calls ae¢ested, but the last. In the second
case®, method calls matching the lower (client) querydeloare selected only if
they do not represent a recurring method call & ¢bntrol flow of an equivalent
method call. In consequence, only the first mettaltlof a recurring set of equivalent
method calls is selected, as well as any non-regumethod call. In the third cas,
the selection semantics @ and @ are combined. As a result, all method calls
representing the first ones in a recurring setqfivalent method calls are selected
(due to the exclusion relationship); unlike to fhevious case, though, selection of
non-recurring method calls is not considered (aduta¢ confinement relationship).

5 Semantics

In this section, the semantics of the relationsifthat have been introduced in the
previous section) are specified using the ObjectsBaint Language (OCL) 2.0 [19].
The OCL is chosen as it has been commonly propaséke standard query language
for QVT model transformations (cf. [10], [21], [6])

Table 1. OCL semantics of combination relationships

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :

Set(TupleType(ida; : idTypead, ..., idai : idTypeai, ..., idak : iIdTypeak, ..., idan : idTypean)) = ...
let QueryB_identifierResultSet(someModel : Namespace) :

Set(TupleType(idBl . idTypeBl, . idBj . idTypij, ceny idB| . idTypeB|, . idBm . IdTypeBm)) =..
-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :

Set(TupleType(parg; : parTypesg, ..., parg: : parTypesy, ..., pargs : parTypess)) =

QueryB_identifierResultSet(someModel)->collect(tup |
Tuple{parg; = tup.idgy, ..., pare = tup.idg;, ..., parss = tup.idgm})

-- result sets to be combined
let T1(..) = QueryA_identifierResultSet(..)
let T2(..) = QueryB_parameterResultSet(..)

-- set of tuple type labels in T1 and T2 having identical names (cf. [3])

let D = p.first.allAttributes->intersection(p.second.allAttributes)

-- set of joinable tuples from T1 X< T2

let X(..) = T1(..)->product(T2(..))->select(p | D->forAll(d | p.first.d = p.second.d))

--union

T1(..)->union(T2(..))

-- confinement

T1(..)->select(q | X(..)->exists(p | p.first = q))
-- exclusion

T1(..)->reject(q | X(..)->exists(p | p-first = q))

5.1 General OCL Semantics

Using the Object Constraint Language (OCL), the lmimation relationship can be

defined more rigorously. To do so, we assume thah euery model selects a set of
model elements — i.e. those model elements thagisen an identifier in the query

model — from a given user-model. The model elemargseturned as a set of tuples,
while each tuple represents a distinct combinatibmodel elements (from the given

user-model) that satisfies the selection critetlimed in the query model. In Table 1,
these sets are rendered QyeryA identifierResultSet and QueryB -

i dentifierResul t Set. The operations take one parametasneModel) that

is the user-model which is to be queried.

From all model elements in the query model thatgiven an identifier, only a
projection is exposed for further processing. Thesedel elements (i.e. their
identifiers) are listed in the query model's pareméox. Again, the model elements
are returned as a set of tuples. In Table 1, tkeseperations are exemplified by
QueryB par anet er Resul t Set . And again, the operations take one parameter
(someModel) identifying the user-model that is to be queried.

Available to a «union», «exclusion», or «confinemseoombination relationship
are (a)all identified model elements of the including (cliemuery model (i.e.
QueryA identifierResultSet in Table 1, subsequently referred told9?, as
well as (b)only the exposedhodel elements of the included (supplier) querydeto

(i.,e.QueryB_par anet er Resul t Set in Table 1, subsequently referred toT&3?
(cf. Mapping Rules section).

In case of a union, the set of tuplEs and T2 are unified using the OCL core
operationuni on (see Table 1).

In case of a confinement, all pairs of tuples fréinand T2 that comply to each
other in all of their attributes having the samenaareferred to ab in Table 1) are
collected from the Cartesian productTdf andT2 (following the approach of [3] to
compute a relational join). These pairs of tuptegefred to aX in Table 13 are then
used to diminish the set of tupl€$ to those that aralso part ofX.

In case of an exclusion, initial proceeding is shene as in case of a confinement.
Afterwards, though, the set of tupl€% is diminished to those tuples that aw part
of X (see Table 1).

Note that the semantics of both confinement andusian relationships are
defined such that they allow the combination ofrguaodels whose result sets are
different in structure (i.e. that comprise differerthat is, only partially overlapping —
sets of attributes). Note further that in the OQide (see Table 1) we abstract from
the mapping rules. Mapping, i.e. renaming of armjgmtion to relevant identifiers in
T1 andT2, cannot expressed trivially — and in a general {ay in the OCL (cf. [3],
[4]). Hence, this can only be done manually foraztipular combination relationship
(as it will be demonstrated in the following).

5.2 A Concrete Example

After describing the general OCL semantics of thealgination relationships in Table
1, we now take a look at their actual implicatitm® concrete example. We do so by
revisiting the example from section 4.5.

First of all, we need to specify the relevant resats of the query models, i.e. the
identifier result set of the including query modslwell as the parameter result set of
the included query model (see above). Table 2 elii@agphow this is accomplished
for query modelr ecurri ngCal | s® — referred to afueryB in Table 2 (the
specification of the result set of query mogei ned_st ruct ur al _and_beha-

vi oral _constrai nts — referred to aQuer yA in Table 2 — is omitted here for
space reasons): The OCL cédearts out with collecting all possible combinasaf
model elements from the user-model being passedg€Mbdel) that are of same
type as the identifier model elements in the quaogdel. In this example, the result
set therefore contains all combinations of two gtirmodel elementsst i nil and
sti nR), one instance model elementnét), and one operation model element
(si g) that can be found in the user-model. Then, ir@rd step, this result set is
reduced to only those combinations that consisteleinents complying to the
selection criteria specified in the query modelisTévaluation is accomplished by
specialmatchModelElemerndperations, such as they have been specified3in22].
The operations take as parameter an identifier ineldenent from the query model

2 Note that we abstract from parametemeMbdel of the result set31, T2, andX in the
subsequent text and in Table 1.

3 The approach has been inspired by the OCL coffin

4 We used OCLE 2.02 (http://Ici.cs.ubbcluj.ro/odle)syntax and type check the OCL code.
Note that we abstract from any type castl(AsType) in the code shown.

Table 2. Applying the OCL semantics to the example

-- identifier result sets
let QueryA_identifierResultSet(someModel : Namespace) :
Set(TupleType(stimulus : Stimulus, instance: Instance)) =...]

let QueryB_identifierResultSet(someModel : Namespace) : Set(TupleType(stimulusl : Stimulus,
stimulus2 : Stimulus, instance : Instance, signature : Operation)) =
-- create Cartesian product of all stimuli, instances, and signatures in someModel
someModel.allContents->select(me | me.ocllsKindOf(Stimulus))->collect(stim1 |
someModel.allContents->select(me | me.ocllsKindOf(Stimulus))->collect(stim2 |
someModel.allContents->select(me | me.ocllsKindOf(Instance))->collect(inst |
someModel.allContents->select(me | me.ocllsKindOf(Operation))->collect(sig |
Tuple {
stimulus1 : Stimulus = stim1,
stimulus?2 : Stimulus = stim2,
instance : Instance = inst,
signature : Operation = sig
)
-- select those tuples that match the selection criteria specified in the query model...
->select(tup | tup.stimulus1l.matchesStimulus(self.allContents->any(me | me.name="jp1"))
and tup.stimulus2.matchesStimulus(self.allContents->any(me | me.name="jp2"))
and tup.instance.matcheslInstance(self.allContents->any(me | me.name="0bj"))
and tup.signature.matchesOperation(self.allContents->any(me | me.name="sig"))
-- ...and whose elements are related to each other as specified in the query model
and tup.stimulusl.receiver = tup.instance
and tup.stimulus2.receiver = tup.instance
and tup.stimulusl.dispatchAction.method.specification = tup.signature
and tup.stimulus2.dispatchAction.method.specification = tup.signature
and tup.stimulus2.allActivators()->includes(tup.stimulusl))

-- exposed result set
let QueryB_parameterResultSet(someModel : Namespace) :
Set(TupleType(stimulusl : Stimulus, stimulus?2 : Stimulus)) =
-- project identifier result set to those elements being exposed by the query model
QueryB_identifierResultSet(someModel)->collect(tup |
Tuple{ stimulus1 = tup.stimulus1, stimulus2 = tup.stimulus2 })

-- result sets to be combined
let T1(someModel : Namespace) = QueryA_identifierResultSet(someModel)
let T2(someModel : Namespace) = QueryB_parameterResultSet(someModel)
-- set of joinable tuples from T1 > T2 (according to mapping rules outlined in Fig. 6)
let X1(someModel : Namespace) = T1(someModel)->product(T2(someModel))
->select(p | p-first.stimulus = p.second.stimulus1)
let X2(someModel : Namespace) = T1(someModel)->product(T2(someModel))
->select(p | p.first.stimulus = p.second.stimulus2)

-- confinement (D)

let ResultSet_1(someModel : Namespace) = T1(someModel)
->select(q | X1(someModel)->exists(p | p.first = q))

-- exclusion (@)

let ResultSet_2(someModel : Namespace) = T1(someModel)
->reject(q | X2(someModel)->exists(p | p.first = q))

-- simultaneous confinement and exclusion (®)

let ResultSet_3(someModel : Namespace) = T1(someModel)
->select(q | X1(someModel)->exists(p | p.first = q))
->reject(q | X2(someModel)->exists(p | p.first = q))

(i.,e.j pl,j p2, obj, andsi g, respectivel§); the parameter is taken as a selection
pattern to which the user-model elements are coeapdt last, the OCL code assures
that the elements in the remaining combinationsiadigt relate to each other as
specified in the query model (the evaluation iseldasn the (meta-)associations
between the model elements as specified in the Widta-model [20]).

Once we have retrieved the identifier result settha& (included) query model
(QueryB_identifierResultSet), we need to project that result set such that
its tuples only consists of model elements that aotially exposed by the query
model. Therefore, a parameter result @tief yB par anet er Resul t Set) is
created from the identifier result set, whose tsiglely consist of model elements that
are (designated by the identifier model elemernste¢d in the parameter box of the
guery model (i.e. the stimudit i mul us1 andst i nul us2, in this case).

Now we are ready to perform the confinement andetteusion, respectively. To
do so, two setX1 andX2 of "joinable tuples" are created — one for eaclppireg
specification given in the example (see Fig. 6)e Blkts comprise all pairs of tuples
from QueryA identifierResultSet (referred to asTl) and QueryB -
par armet er Resul t Set (referred to ad2) that are referring to the same model
elements in their attributes being mapped (i.estim mul us andsti mul usl, as
well as inst i mul us andsti mul us2, respectively). The sets are then used to filter
the identifier result set of the including query dab (Quer yA i dentifier-
Resul t Set, referred to a¥1) such that it consists only of those tup@deing part
of X1 (resulting into a confinement)? being not part of X2 (resulting into an
exclusion), and finally® being part ofX1, but not part ofX2 (resulting into a
combined confinement and exclusion).

6 Redated Work

JPDDs as we have used them in this paper relat¢hter approaches that provide
visualization means for model queries in the MDAmM&in. Examples of such
approaches are basically all proposals to specifylehtransformations, such as
MOLA [11], BOTL [17], or the QVT-Merge submissio2]], etc. However, none of
these approaches provide means to reason aboutl madges in isolation. In
consequence, no abstraction means are provideggegate recurring selection
patterns, and no relationships are specified toseesuch recurring selection patterns
in different discrete application domain-specif@testion queries.

Instead, OCL 2.0 is commonly suggested to serva gpurely textual) query
language — e.g. for OMG's transformation languagéTl cf. [10], [21], [6]).
Therefore, it is interesting to relate our combimatrelationships to OCL's proper
capabilities to express and calculate combinatfets of tuples. Several studies [16]
[1] [3] have been conducted in this regard to itigate the expressiveness of OCL
with respect to relational algebra [5], a well-kmownd well-founded approach to
specify operations on (e.g. combinations of) sdtduples, originating from the

51t is assumed that the OCL code is specified i@ tontext of the query model; thus,
sel f. al | Contents refers to all model elements containedQuer yB. See [22] for
further information on how identifiers and name tpats are stored in the meta-
representation of model elements.

database domain. In the latest study [3], it hankstated that since the introduction
of tuple types and product types as primitive ofmesain OCL 2.0, OCL became
much more expressive. But still, projection andaraimg of tuple attributes needs to
be done on a per-case basis and cannot be expressedjeneral way. When
compared to the mentioned work, it is importanhate that our work is not focused
on providing a (relational) complete set of graphioperators that could serve as a
basis for arbitrary computations over sets of tsiftef model elements). Instead, the
goal was to find appropriate abstractions for comrmombinations of query models
and daily needs in query design.

Nonetheless, the identified combination relatiopshian be compared to relational
operations, and would correspond to the followirgressions: Assuming that sets of
tuplesT1 andT2 (see Table 1) designate relations, a union reigkiip equates to the
following relational operationT1 O T2. A confinement relationship could be
expressed as a left semi-join betw8dnandT2: T1 < T2. And finally, an exclusion
relationship equates ol — (T1 < T2) . A mapping rule serves two purposes: First of
all, it projects the second relatiof2 to those attributes that are relevant for the
respective relational operatiomyro.1, ant2.2, ..., awt2.d 2. Furthermore, it renames the
projected attributes so that their labels complythe attribute labels of the first
relation T1 (and the relational operation can actually be qver€d): pagri1 - ant2.1,
attT1.2 — attT2.2, ..., attT1.n- attT2.n

Apart from that, the presented relationships alsmpare to (and have been
influenced by) the combination operators for jooinp queries (so-called "pointcuts”)
&&, ||, and! in Aspectd [14], the most popular aspect-orienpedgramming
language. If two join point queries are combinedniigans of an AND-operat@&,
the result set contains all join points that areked out byboth queries — which
corresponds to the selection semantics of the mwemient relationship. If two join
point queries are combined by means of an OR-opdrft, the result set contains all
join points that are picked out bgither query — which equates to the union
relationship. If a join point query is prependedeb}NOT-operatot , the join points
designated by that query are dismissed from thexgeh result. This complies to the
exclusion relationship (that is, to be more extwt, exclusion relationship equates to
a combination of an AND-operator and a NOT-operatdspectJ, i.e.&& !'").

7 Conclusion

In this paper we elucidated the need of havingabiét means to combine query
models. We presented three kinds of combinatioraticglships — «union»,
«confinement», and «exclusion» — and detailed tbemnantics informally and with
help of OCL 2.0 expressions. We demonstrated thgeaisind the benefits of these
relationships with help of two common selectioneais.

By means of the presented combination relationshifevelopers are able to
abstract from recurring selection patterns andetgse them in different application
contexts. Furthermore, they are able to relateigsigrertaining to different modeling
notations or diagrams (e.g. to both structural batavioral model specifications);
thus, they are able to specify context-sensitivelehgueries. Of course, in order to
efficiently do so in model transformations, the anetodels of the involved modeling
notations must share some common abstractions.

Provided with the combination relationships presdrin this paper, abstractions of
recurring selection patterns can be assembledbiicplibraries (just like abstractions
of common transformations can be assembled in pubdinsformation libraries),
ready for reuse by the model-driven developer. Wet, developers are freed from
elaborating on recurring selection semantics agaid again (e.g. how to handle
recursive method calls; see section 4.5), each timg are dealing with a new
problem.

It remains to mention that our work is not concerméth the actual evaluation of
guery combinations. That is, we do not consider fiosvresulting sets of tuples (of
model elements) are actually extracted from a giveer model. In particular, we
currently abstract from problems that may occur ttueecursive or circular query
combinations. Such combinations may lead to irditgiops during query evaluation,
or may introduce irresolvable dependencies betwdbha involved query
specifications. It is an interesting field for futuresearch to investigate if such
problems may be detected prior to query executiore tand how they could be
possibly resolved automatically based on staticyganalysis.

References

[1] Akehurst, D.,Bordbar, B.,On Querying UML Data Models with O in: Proc. o
UML'01, Toronto, Canada, LNCS 2185, Springer, Oetdt001, pp. 91-103

[2] ABmann, U.,Aksit, M., Rensink, A.,Model Driven Architecture(European MD¢
Workshops: Foundations and Applications, MDAFA 2@0®1 MDAFA 2004,Twente
The Netherlands, June 26-27, 2003 Linkdping, Sweden, June 10-11, 2004; Rev
Selected Papers), LNCS 3599, Springer, June 2004

[3] Balsters, H.,Modelling Database Views with Derived Classes ie tiML/OCL-
Frameworl, in: Proc. of UML'03, San Francisco, CA, LNCS 28(Springer, Octob
2003, pp. 295-309

[4] Blaha, M., Premerlani, W.,Object-Oriented Modeling and Design for Datak
Applications Prentice Hall, Englewood Cliffs, NJ, 1998

[5] Codd, E.F.Relational Completeness of Data BeSublanguage, in: Rustin, R. (ed.
Courant Computer Science Symposia, Vol. 6: Datab@gstems, Prentice H:
Englewood Cliffs, NJ, 1972, pp. 65-98

[6] Compuware Corporation, SUN Microsysten2nd revised submission for MOF
Query/Views/Transformations RFP1. October 2004 (OMG Document ad/2004-10-03)

[7] Gamma, E., Helm, R., Johnson, Vlissides, J.Design Patterns: Elements of Reus:
Object-Oriented Softwaréddison-Wesley, Reading, 1995

[8] Hanenberg, SSchmidmeier, A.ldioms for Building Software Frameworks Aspect,
2nd AOSD Workshop on Aspects, Components, and fRatfer Infrastructure Softwe
(ACP4IS), Boston, MA, March 17, 2003

[9] Hannemann, JKiczales, G.,Design pattern implementation in Java aAspect, in:
Proc. of OOPSLA'02, Seattle, Washington, SIGPLANit&s 37(11), ACM, Novemb
2002, pp. 161-173

[10] Interactive Objects Software, Project Technolc2™ revised Submission for MOF |
Query/Views/Transformations RFR2. January 2004 (OMG Document ad/2004-01-
14.pdf)

[11] Kalnins, A.,Barzdins, J.Celms, E.,Model Transformation Language MO, in: [2],
pp. 62-76

[12] Kiczales, G.,Lamping, J.,Mendhekar, A., MaedeChr., Lopes, C.V.Loingtier, J-M.
Irwin, J.: Aspect-Oriented Programmi, in: Proc. of ECOOP '97Jyvaskyla, Finlan

(13]

(14]

(15]

(16]
[17]
(18]
[19]
(20]
(21]
(22]

(23]

LNCS 1241, Springer, June 1997, pp. 220-242

Kozusznik, J.Dotazovanipohledy atransformace v MD, in: Proc.of Objekty 2002
Ostrava,CzechRepublic, ISBN 80-248-0274-(V§B-TechnicaIUniversity of Ostrave
November 2003, pp. 120-128

Laddad, R.,AspecJ in Action: Practical Aspect-Oriented Progmaimg, Manning
Publications, Greenwich, 2003

Lesiecki, N.,.Enhance design patterns wAspect, Part 1, IBMDeveloperWorks > Ja
Technology > AOP@Work (http://www-128.ibm.com/deystrworks/java/library/j
aopwork5)

Mandel, L., Cengarle, M.,On the Expressive Power of O, in: Proc. of FM'9¢
Toulouse, France, LNCS 1708, Springer, Septemi@9,1$p. 854-874

Marschall, F., Braun, PModel Transformations for the MDA with BC, in: Worksho|
Proc. of MDAFA 2003, Enschede, The Netherlands, TCTiéchnical Report TR-CTIT-
03-27, University of Twente, June 2003, pp. 25-36

OMG, MDA Guide Version 1,003 (OMG Document omg/2003-05-01)

OMG, OCL 2.0 Final Adopted SpecificatioR003 (OMG Document ptc/03-10-14)
OMG, Unified Modeling Language Specificat, Version 1.5, 2003 (OMG Documt
formal/03-03-01)

QVT-Merge GroupRevised submission for MOF 2.0 Query / Views / Si@mation
RFP, 2. March 2005 (OMG Document ad/2005-03-02)

Stein, D.,Hanenberg, SUnland, R. A Graphical Notation to Specify Model Queries
MDA Transformations on UML Models: [2], pp. 77-92

Stein, D.,Hanenberg, S.Unland, R.,Query Model, in: Proc. of UML'04, Lisbor
Portugal, LNCS 3273, Springer, October 2004, pp1 93

