A Graphical Notation to Specify Model Queries
for MDA Transformationson UML Modeds

Dominik Stein
Stefan Hanenberg
Rainer Unland

University of Duisburg-Essen
Essen, Germany
{dstein, shanenbe, unlandR}@cs.uni-essen.de

Abstract. Specifying queries on models is a prerequisitetalel transforma-
tions in the MDA because queries select the moéehents that are the source
of transformations. Current responses to OMG's M- QVT RFP mostly
propose to use (and/or extend) OCL 2.0 as spetiificéanguage for queries. In
this paper, we demonstrate that using textual ieois{like OCL) quickly leads
to complex query statements even for simple quehiesrder to overcome this
handicap, we present a graphical notation basetherJML that facilitates
comprehension of query statements as well as dgtimaf the (ultimately) se-
lected model elements. We advocate that queriaddbe specified in terms of
user model entities and user model properties dratian meta model entities
and meta model properties) for the sake of feafsitihd comprehensibility to
the user.

1 Introduction

Model-Driven Architecture (MDA) [16] aims to assiite development process of
software intensive systems by providing a standariframework for the specifica-
tion of software artifacts and integration direesv Its key idea is to install traceable
relationships between software artifacts of différ@omains or different development
phases. In that way, the MDA aims to improve sofeaguality since software devel-
opers can directly relate the final program codelésign decisions and/or require-
ment specifications of the early phases of softwreelopment. It allows them to
validate and test the final code for complianceddicular requirements, thus making
maintenance much simpler. Further, the MDA promogese of existing system so-
lutions in new application domains by means of emtgal mappings and artifact
integration.

The principal software artifact of considerationtire MDA are machine-readable
models. The underlying technique of the MDA is madansformation. Transforma-
tions are accomplished according to the tracingraagdping relationships established
between the software artifacts (i.e., between tmeidels).

Striving for a standardized language to define soeddel transformations, the
OMG released the "MOF 2.0 Query / Views / Transfation (QVT)" Request For
Proposal (RFP) in April 2002 [17]. It has been of¢he mandatory requirements to

come up with a query language to select and fdtements from models, which then
can be used as sources for transformations. lIronsgpto the RFP, several proposals
for general-purpose model transformation langudgeg& been submitted (e.g., [1],
[5], [9] and [20]). Most of them propose to usedgm extend) the Object Constraint
Language (OCL) 2.0 [18] as query language (e.d.[249] [1]). Having said so, only
one proposition [20] provides a graphical represigon for its query language.

We think, though, that a graphical notation to #yeand visualize model queries
is inevitable for the MDA to drive for success. Whenk that software developers
require a graphical representation of their sedectjueries, which they can use to
communicate their ideas to colleagues, or to dootimiesign decisions for maintain-
ers and administrators. A graphical visualizatiavule facilitate their comprehension
on where a transformation actually modifies theadels. We think that using a tex-
tual notation (like OCL), instead, would quicklyruout to lead to very complex ex-
pressions even when defining a relatively small peimof selection criteria.

In this paper we present a graphical notation &xip selection queries on models
specified in the Unified Modeling Language (UML)9]1 aiming to overcome the
lack of most of the RFP responses when working iivl. model context. We intro-
duce several abstraction means in order to expraseus selection criteria, and
specify how such selection criteria are evaluate®BL expressions. Query models
built from such abstraction means are called "Romt Designation Diagrams" [26]
(or "JPDD" in short). JPDDs originate in our wonk Aspect-Oriented Software De-
velopment (AOSD) [7] in general, and on the viszation of aspect-oriented con-
cepts in particular. They are concerned with tHecsien of points in software arti-
facts that are target to modifications (so-callggn”points" in AOSD). They extend
the UML with selection semantics. And they make wv$eand partially extend,
UML's conventional modeling means.

This paper is an immediate follow-up paper of aubmission [24] to the "MDA
Foundation and Application" workshop [3]. We callgfuevised that submission
taking into account the comments and remarks tretreceived at the workshop.
Meanwhile, JPDDs have also been presented in [26]le there we have identified
the general need to specify queries on softwalifaeit as a new evolving design
issue, here we concentrate on the integration DD3Fnto the MDA context. In par-
ticular, we describe a generic mechanism to mapD¥énto OCL statements, thus
giving way to the integration of our approach wviltle current QVT submissions.

The remainder of this paper is structured as fadtow the first section we empha-
size the need of a graphical notation to specifgcs®n queries with the help of an
example. After that, we briefly sketch the backgmbthat JPDDs originate from, and
point to the parallels of query specification in 8D and MDA. In section 4, we
briefly describe the abstract syntax of our notatid/e then present the graphical
means as well as the OCL expressions by which @aheyevaluated. We conclude the
paper with relation to other work and a summary.

2 Motivation

In order to make the motivation of this work motear, we take a look at a hypo-
thetical, yet easy-to-understand example (adoptad {20]): Imagine, for some ar-
bitrary model transformation, we need a model quégt selects all classes with

name "cn" that either have an attribute named "an*: in case not — that have an
association to some other class with name "cnl¢hvhi turn has an attribute named
"an". Fig. 1, right part, demonstrates how suchrguweould be expressed using the
textual and graphical notation as proposed in [E@]. 1, left part, shows the same
guery, once expressed as an OCL statement, ancegpoessed as a JPDD.

As you can learn from the example, even a simpldahquery quickly results in a
complex query expression — when using a textuatiaot (cf. Fig. 1, top part). As a
result, comprehension of the query and estimatibatwnodel elements finally will
be selected is rather difficult. The graphical tiota shown in Fig. 1, bottom right
part, helps to keep track of what is going on mgklection query. However, since the
query is specified in terms of meta model entiied meta model properties, unnec-
essary and distracting noise is added to the diagfa simple association between
classes "c" and "c1" is represented by three diséntities.

Fig. 1, bottom left part, shows what the query Bbke using a JPDD. JPDDs rep-
resent model queries in terms of user model estitied user model properties. Using
user model entities and user model propertiesderyspecification (rather than meta
model entities and meta model properties) is toativantage of feasibility and com-
prehensibility: Software developers work with abstion means they are familiar
with. They do not need to bother about meta modeigther, query models turn out
to be concise and comprehensible: They specifyranmai pattern to which all ulti-
mately selected model elements must comply.

someUmIModel.contents (UML.Class, c) [name = "cn", feature =

->select(c: Class |
(c.name='cn' and
c.allAttributes->exists(att | att.name="an'))
or (c.name='cn' and not
c.allAttributes->exists(att | att.name="an’) and
c.oppositeAssociationEnds->exists(ae |
let c1 : Class = ae.participant in
cl.name='cnl' and
cl.allAttributes->exists(att | att.name="an")

)))

7 mda_query .
/ <?c>cn N
! <?c>en oo - Attributes |
| Attributes {or} {not} <?att>an :
| <?att>an | Operations !
: I Operation: :
| [|
| <2cl>cnl :
| I Attributes H
i <?att>an E
\ I Operations h
\ /
\ /
\\ /I
el 172c

i 2att !

Fig. 1. Selection query expressed in OGb(left par}, using the textual and graphical nota-

{ (UML.Attribute) [name="an"] }]
or
(UML.Class, c) [name = "cn", feature =
{ not (UML.Attribute) [name="an"] }] and
(UML.Class, c1) [name ="cnl", feature =
{ (UML.Attribute) [name="an"] }] and
(UML.Association) [connection =
{ (UML.AssociationEnd) [participant = c],
(UML.AssociationEnd) [participant = c1] }]

c: Class att: Attribute
name="cn name="an
{or}
c: Class X Attribute
name="cn name="an
AssociationEnd o
Association

AssociationEnd

cl: Class
name="cnl

|

att: Attribute
name="an

tion presented in [20Fight part), and with help of a JPD¢ttom left park

3 Background

JPDDs originate in our work on AOSD. AOSD dealdwmiie encapsulation afoss-
cutting concerngnto separate modular units, callespectsA crosscutting concern is
a concern that cannot be cleanly decomposed tprthary decomposition of a pro-
gram, thus leading to crosscutting code that isteseal throughout every module of
the dominant decomposition. This is what becamewknas theTyranny of the
Dominant Decompositiofi28]. An aspect encapsulates the crosscutting adde
crosscutting concern. Besides specifying the craag code that should be injected
into the primary decomposition, an aspect alsoifipedhe conditions under which
the injection shall take place.

In order to do so, aspect-oriented programmingrtiegkes rely on the concepts of
join pointsandweaving Join points designateci (in program code) oinstants(in
program execution) at which injection takes plateaving defines the exactanner
in which injection takes place. Since crosscuttisgally takes place at more than one
join point (in fact, this is the major case that 3D is focused on), aspect-oriented
programming techniques provide various ways to ifpeelections of join points.
For example, join point selection is possible basedexical similarities of join point
properties [14] [15] (e.g., of their name or typeckdrations), based on the structural
arrangement the join points reside in [8] (sucthaspresence of particular parameters
in an operation's parameter list, or the existevfca navigable path to a particular
class), or based on the dynamic context join paiatir in [15] (e.g., in the scope of
a particular object, or in the control flow of arfieular method).

We see strong parallels between AOSD and MDA wegpect to the selection of
locations in software artifacts that are focus afdification. We estimate (e.g., from
the examples given in [20]) that selection in MDldcadepends on lexical similarities
of model element properties — in particular, ofitheames. Further, structural ar-
rangements, such as the existence of certain &saturrelationships, are deemed to
play a major role in model element selection, all. \8#¢ructural constraints may also
involve general statements on navigable paths,indirect associations or indirect
generalizations between classifiers.

In the following, we explain the graphical elemetiiat we provide to specify
model element selections based on lexical simiariand structural arrangements
with JPDDs. We briefly sketch their general syntaxd detail their semantic impli-
cations using OCL expressions.

4 Notation and Semantics

A JPDD consists of at least one selection critersmme of which delineate selection
parameters. A JPDD represents a selection critéiseff and thus may be contained
in another JPDD (e.g., for reuse of criteria spe&ifons). JPDDs can be fully inte-
grated into the UML, making use of UML's modelinggans and its meta model:
Structurally, JPDDs compare to UML templates of UMamespaces (cf. Fig. 2).
Note, though, that semantically JPDDs differ frommeentional UML templates since
they render a "selection pattern" rather than axégetion pattern". This means in
particular that the parameters of JPDDs represgitdl variables (whicheturn val-

ues), while the parameters of a conventional UMhphate arefed with values. To

SelectionCriterium
A = -1 SelectionPar ameter

templateParamet

ModelElement
ownedElemer ___1 TemplateParameter
namespac
AN templat
[I 1
| Classfier HCollaboraIionH Package ‘

Fig. 2. Abstract syntax of JPDD$op par) mapped to UML's meta moddidttom par} (cf.[26])

emphasize this difference in meaning visually, peaters of JPDDs are summarized
at the lower right corner of JPDDs — rather thanhair upper right corner as with
conventional UML templates (see Fig. 4 in sectidorsan example).

In the following we present the core modeling metiras may be used to specify
selection queries with help of JPDDs. We explaigirtiyraphical notation, and de-
scribe how they can be evaluated using OCL metaatipas. Such meta operations
are appended to UML's meta model classes (e.glassifiers, attributes, operations,
associations, messages, etc.). Note that not &l aperations are shown due to space
limitations. At last, we sketch how the meta operst are deployed in order to re-
trieve an actual set of matching model elements.

4.1 Classifier Selection

Looking at the selection semantics for classifiars,may learn about the general se-
lection mechanism for all model elements: Prindipahodel elements are selected

Table 1. OCL meta operation for matching classifidest(parf), and a sample class pattern that
could be passed as an argumeigih¢ part)

context Classifier: A sample class
matchesClassifier(C : Classifier) : Boolean pattern, which is
post: result = - 1. evaluate name pattern | given an identifier
if [...] -- given an identifier(see footnote 2) (20):
self. matchesNamePattern(C.taggedValue->[...])
else --default name patter
self.matchesNamePattern(C.name) identifier R\
endif Hescon®
_ _ - Il evaluate defined meta properties st mteger [21.100]
and (self.isRoot = C.isRoot or C.isRoot = ") - operations
and (self.isLeaf = C.isLeaf or C.isLeaf =") set(val :)
and (self.isAbstract = C.isAbstract or C.isAbstract = ") ?f,:(f,)a'u - Integer, ..,
-- lll. evaluate attributes and operations L vali : Real, ..,
and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT)) vain : String)
or C.allAttributes->size() = 0) expected features
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP))
or C.allOperations->size() = 0)

1 We usedOCL Checkerversion 0.3 (http://www.klasse.nl/ocl/ocl-checkéml), to write the
OCL statements, andCLE version 2.02 (http://Ici.cs.ubbcluj.ro/ocle),typecheck them.

based on the values of thefeta attributesin case of classifiers, these are the prop-
erties "isAbstract”, "isLeaf", and "isRoot" (seebleal, block II).

Besides that, model elements are selected basdtieimmeta relationshipgso
composite model elements. In case of classifiersetample, special regards must be
given to the features they must possess in ordee telected (see Table 1, block III).

At last, note that name matching of model elementccomplished with help of
name patterns (see Table 1, block I). Name patteas contain wildcards, e.g. "*",
in order to select groups of model elements baseldxcal similarities. All element
names in a JPDD represent name patterns by defiaase an element needs to be
referenced within the JPDD (e.g., if it needs tadbéined as a JPDD parameter), the
element may be given an identifieln diagrams, identifiers are enclosed into angle
brackets and are prepended by a question mark'€8€>Con*" in Table 1 for ex-
ample, or "<?c>cn", "<?cl>cnl", and "<?att>an" ig.FL of section 2). They are
placed in front of the element they refer to.

Having explained these general selection princjphes concentrate on discussing
the particularities of other modeling means infgilwing.

4.2 Operation Selection

Special regards in operation selection must bengteethe usage of wildcard ".." in
the operation's signature pattern. Wildcard ".dvtes for the selection of operations
based on their structural arrangement — that isedan the existence of particular
parameters, while others are disregarded.

Table 2 gives a detailed description on how suchcgiral arrangements are

Table 2. OCL meta operation for matching parameter lift par), and a sample signature
pattern whose parameter list could be passed asgamentifght part)

context Operation def: A sample signature
let ownPars : Sequence(Parameter) = self.parameter->asSequence() pattern fun), pro-
let patternPars(par : Sequence(Parameter)) : Sequence(Parameter) viding a sample

= par->reject(p | p.name ="..")
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter)
= ownPars->select(p |
patternPars(par)->exists(parp | p.matchesParameter(parp)))

parameter list

({vall : Integer, ..,
vali : Real, ..,
valn : String}):

context Operation def: <2C>Con*

let matchesParameterList(par : Sequence(Parameter)) : Boolean - Atrbutes
post: result = -- . compare parameter order ;ZZ(V'aI)
matchesParameterOrder(matchingPars(par), patternPars(par)) o) - *
-- Il. compare first parameters run(vall : Integer, ..
and Sequence{l..ownPars->size()}->forAll(i : Integer | ownPars->at(i) zz::]Rsetﬁlng)

.matchesParameter(par->at(i)) 1
or Sequencefl..par->size()}->collect(j : Integer | j <= signature patterns
and par->at(j).name ="..")->size() <> 0) name pattern
-~ lll. compare last parameters
and Sequence{l1..ownPars->size()}->forAll(i : Integer | ownPars->at(
ownPars->size() - i)
.matchesParameter(par->at(par->size() - i))
or Sequence{l..par->size()}->collect(j : Integer | j <=
and par->at(par->size() - j).name ="..")->size() <> 0)

2 In that case, the name pattern is stored (techy)ida a special tagged value.

evaluated by means of an OCL expression: Meta tiparamatchesParameterList”
compares (a) theverall orderof parameters in the actual operation("self")'sapee-
ter list to the one being passed from the JPDD lgrabblock I), as well as (b) the
partial order of parameters at the parameter lists' beginningbl€T2, block Il) and
their ends (Table 2, block IIl). For that purpoee meta operation defines a couple
of sub-expressions: "ownPars" comprises all pararsebf the actual operation
("self"); "patternPars" holds the parameters bgiagsed from the JPDD, neglecting
all wildcarded parameters ".."; and "matchingPdssd subset of "ownPars", contain-
ing only those parameters that have a matchingtequart in "patternPars".

The sub-expressions are used to compare the oeedat of parameter lists with
help of meta operation "matchesParameterOrder" ghotvn here). That operation
recursively iterates over "matchingPars" and "paRars", verifying if (subsequences
of) the former contains all the elements belondm{subsequences of) the latter. The
partial order is evaluated based on "ownPars" &edparameter list being passed
from the JPDD. Order evaluation stops (i.e., isagisvtrue) when the first wildcarded
parameter ".." is reached in the parameter lissgédrom the JPDD (see collect
statement at end of block Il and III).

4.3 Relationship Selection

When selecting relationships, special regards meggiven to indirect relationships.
Indirect relationships are a sophisticated mearstetrain structural arrangements:
Indirect relationships may be used in JPDDs tociai#i that a classifier does not need
to be directly connected to a particular parentldctor associated classifier. This
means in case of associations, that the particlédessifier must be reachable via the
designated association, but does not need to brea deighbor.

In diagrams, indirect relationships are renderec lwpuble-crossed likeTable 3
(left part) states, for example, that there musab®avigable path from class "C" to
class "B" for the selection criterion to be fulifl. The ends of that path must match
with the association ends of the indirect assamatin case of indirect generaliza-
tions, the particular parent or child needs todesiomewhere in the inheritance tree,
but does not need to be a direct parent or chitd.@xample, class "C" in Table 3
(right part) must be among the ancestors of cl&sénd class "B" must be among
the descendants of class "C", for the selecticerion to be satisfied. The respective
OCL meta operations are omitted here due to spattations. Please refer to [26]
for a detailed description.

Table 3. Sample relationship patterns for (indirect) relaships, which could be passed to a
meta operation as an argument (meta operatiormnatied here; see [26] for further details)

E association name
c j JA
1 iyl
A
52)
indirect association B indirect generalization

3 Technically, indirect relationships are rendergdabspecial stereotype for associations or
generalizations, respectively. Query evaluatiobaised on the (hon-)presence of that stereo-
type (cf. [26]).

4.4 Multiplicity Restrictions

Special attention in association end selection nbespaid to the association end's
multiplicity specificatiort: Multiplicity of an association end may declareeixupper
and/or lower limits; or it may designate the upped/or lower bounds which the
multiplicity of an association end must not exceedinderrun (respectively). Being
able to declare exact limits and/or minimal and imak bounds provides for further
flexibility in query specification based on strualbarrangements.

Graphically, exact multiplicity bounds are indicatby exclamation marksThe
lower multiplicity limit of association end "aRolé&1 Table 4, for example, denotes a
strict limit. Accordingly, association ends areyortlected, if their lower multiplicity
limit equates "2". The upper multiplicity limit d&Role", on the contrary, denotes a
maximum. Association ends are selected as longeisupper multiplicity limit does
not exceed "100".

Table 4. OCL meta operation for matching association etefs §arf), and a sample associa-
tion end pattern that could be passed as an argyrign part)

context AssociationEnd:: A sample associa-
matchesAssociationEnd(ae : AssociationEnd) : Boolean tion pattern 4),
Pozt _rfeSU'tz [-] i | tiniciry | COMPrising a sam-
and ((if[...] - exact limit _ ~ --evaluate multiplicity ple association engl
self.multiplicity.range.lower = ae.multiplicity.range.lower attern §Role):
else -- minimum bound p ole):
self.multiplicity.range.lower >= ae.multiplicity.range.lower exact multiplicity
endif restrictior
and if[...] -- exact limit E
self.multiplicity.range.upper = ae.multiplicity.range.upper A
else -- maximum bound arol| 2% 100
self.multiplicity.range.upper <= ae.multiplicity.range.upper E
endlf) T " multiplicity
or ae.multiplicity = ") range restrictio

45 Message Selection

Selection is not restrained to structural aspetcts WML model as they are specified
in UML class diagrams, for example. Selection cidtenay as well involve behav-
ioral requirements as they are specified in UMLeiattion and collaboration dia-
grams. Table 5 shows the notational means to gpseiéction criteria on messages,
and how such criteria are evaluated by an OCL dioera

Messages are selected based on the action theleirfVable 5, block 1). In case of
operation call actions, signature patterns maydeal Wo restrict the operation called.
Further, messages are selected based on theirrseamitk receivers (Table 5, block
). It is important to note that the OCL operatievaluates the senders' and receivers'
base classifiers rather than their role specificeti This is accomplished deeming
that selections should consider the full speciicabf classifiers rather than restricted

4 The same counts for the multiplicity specificatimfrattributes (see sample classifier pattern in
Table 1 for an example).
5 Technically, fix upper and lower limits are spéasifas stereotypes of multiplicity ranges.

Table 5. OCL meta operation for matching (indirect) messaggft part), and a sample mes-

sage pattern that could be used as an argumght part)

context Message::

matchesMessage(m : Message) : Boolean
post: result =
self.action.matchesAction(m.action)

-- |. evaluate action

-- II. evaluate sender/receiver/...
and self.sender.base->exists(C |
C.matchesRelationships(m.sender) and
C.matchesClassifier(m.sender))
and self.receiver.base->exists(C |
C.matchesRelationships(m.receiver) and
C.matchesClassifier(m.receiver))
and self.communicationConnection.base

A sample message
pattern §omeOp*),
and an "indirect"
message symbol:

signature pattem

msomeOp i op2(

activating control ﬂow {

h

.matchesAssociation(m.communicationConnection) activated control flo'

-- lll. evaluate activator
and ((if m.activator.stereotype->exists(st | st.name='indirect’) then
self.activator.matchesReceptionContext(m.activator) and .
self.allActivators->exists(M | M.matchesSendingContext(m.activator)) :
else U—//—>

self.activator.matches(m.activator) T ["']'\
endif) or m.activator=") arbitrary control flow
-- V. evaluate predecessors/successors/...
and (m.predecessor->forAll(p |
if p.stereotype->exists(st | st.name='indirect’) then
self.predecessor->exists(P |
P.matchesSendingContext(p) and
P.allActivatedMessages->including(P)->exists(M |
M.matchesReceptionContext(p)))
else
self.predecessor->exists(P | P.matches(p))
endif) or m.predecessor->size()=0)
and (m.successor->forAll([...]) or m.successor->size()=0) -- analogously
and (m.activated->forAll([...]) or m.activated->size()=0) -- analogously

projections thereof. The same counts for the aaons used for transmitting the
messages.

Lastly, messages may be selected based on thiatactmessage, their predeces-
sor and successor messages, as well as based omesisages they are activating
themselves (Table 5, block Il and IV). This is fparlarly useful to constrain the
(preceding) control flow in which selected messagey occur, as well as the (suc-
ceeding) control flow that selected messages magk;m Message "someOp" in
Table 5, for example, must be activated in the rebritow of message "opl", and
must in turn invoke message "op2".

Messages of special stereotype "indirect" can leel s indicate arbitrary control
flow that may occur between two successive messdgediagrams, indirect mes-
sages are depicted as double-crossed arrows. Tattiiniindirect relationships are
rendered as special message stereotypes. The @eeskthat stereotype is checked
during query evaluation (see Table 5, block Il &ddfor illustration). Evaluation of
indirect messages is accomplished in two steps: D& is concerned with finding
messages that comply to the sending context ofhttieect message (i.e. sender role,
predecessors, successors, and activator messtgesjher step deals with the identi-
fication of messages matching to the receptionecandf the indirect message (i.e.
receiver role and subsequently activated messages).

4.6 Combination of Selection Criteria

By default, all selection criteria specified in BOD are implicitly combined with
"and". That is, all such selection criteria mustilélled by a given model element in
order to be selected by the query. In some calsesgh, we may need to specify al-
ternative, exclusive, or mutual exclusive selectaiteria. In order to render such
combinations of selection criteria, we may use traind strings ("{or}", "{xor}", and
"{not}"). The corresponding OCL operations specifat either at least, or exactly,
one (respectively) of all model elements interedadby such a constraint must comply
to the selection criteria; or it inverts the resaflimatching in case the model element
is constrained with "{not}". The OCL operations armitted here due to space limi-
tations. Please refer to [24] for further illustoas.

4.7 Retrieving Matching M odel Elements

Retrieval of actual model elements from user motetccomplished using the UML
meta model operations as they have been exempiifite previous sections. A cor-
responding meta operation is specified for each Ufkta model element (whose
instances may appear in class/object diagrams iotéraction diagrams, e.g. classifi-
ers, attributes, operations, associations, messatey In order to retrieve a set of
(matching) model elements, the meta operation sgoegly invoke one another so

{somedPDD ™\ someM odel
! |
e 8
\-———1' ?cPatterlp—\ -
——————— 4
let cPattern = self.templateParameter in // IE‘

context TemplateParameter:: ==
matchingModelElements(someModel : Namespace) : Set(ModelElement)

post: result =
® someModel.allContents->select(everyModelElement | oclisKindOf(Classifier) and ...

... and --(that) K ...and --(that)\

matchesClassifier(cPattern) matchesRelationships(cPattern)

... and --(that) K \ ...and —(that)
possessesMatchingAttribute possessesMatchingParent
(O cPattern.attPatterns) (O cPattern.parentPatterns)

... and --(that) ... and --(that)

possessesMatchingOperation possessesMatchingAssociation ... and --(every parent)
. and (O cPattern.opPatterns) (O cPattern.assocPatterns) matchesClassifier
--(every attribute) + [.] * (parentPattern) and
matchesAttribute .) matchesRelationships
(attPattern) ... and --(every operation) ... and --(every assocation) (parentPattern)

matchesParameterList matchesAssociationEnd

(opPattern.parlistPattern) (O assocPattern.assocEndPatterns)

... and --(every parameter) ... and --(every participant) @

matchesParameter matchesClassifier

(O parlistPattern.parPatterns) (assocEndPattern.participantPattern) and
matchesRelationships /‘A®
(assocEndPattern.participantPattern)

Fig. 3. Cascading evaluation of JPDDs (note that not aluation steps are shown)

that all selection criteria specified in the JPDi2 avaluated (see Fig. 3). The meta
operations take a model element pattern from ti¥DJ&s argument, and compare its
characteristics with an actual model element irstaof a user model. Starting point
of evaluation is a return parameter of the JPDD.daeh return parameter of a JPDD,
a set of matching elements in the given user migdelrieved.

Fig. 3 exemplifies how the OCL meta operations wodether in order to retrieve
a set of matching model elements for a classifagtepn ("?cPattern). The selection
is initiated by a special meta operation "matchinglglElements"”, which is defined
in the context of the JPDD parameter and that mettine set of all model elements
matching to that parameter (i.e. to classifiergratt'?cPattern”; se® in Fig. 3). The
meta operation takes a UML model (or any other regnaee, such as packages, col-
laborations, etc.) as an argument. The contentisadfmodel (or namespace) are then
matched against the selection criteria outlinedheyJPDD parameter (i.e. by classi-
fier pattern "?cPattern™), one by one (&én Fig. 3). The model elements contained
in the model are selected if their meta attribifteshis case, "isAbstract”, "isLeaf",
"isRoot", etc.) as well as their meta relationshfjfws other model elements, such as
attributes, operations, associations, and genatalirs, etc.) comply to the ones de-
fined by classifier pattern "?cPattern" (cf. alsgt®n 4.1). This is checked with help
of operations "matchesClassifier" and "matchesiRelahips" (see® in Fig. 3),
which in turn make use of operations "possessediagéttribute”, "possesses-
MatchingOperation”, "possessesMatchingAssociati@nd "possessesMatchingPar-
ent" (see® in Fig. 3) — and so forth. It is important to ndiat relationship matching
also involves matching the participating classtfiégsee® in Fig. 3f. That way,
evaluation cascades from selection criterion tecin criterion, assessing if all se-
lection criteria in the JPDD are fulfilled.

5 Example

With help of the notational means presented inpifexious section, we now can de-
fine even complex selection queries without gettogg in its specification.

Fig. 4, for example, depicts a sample JPDD thacselall classifiers (identified
with "?C") (1) matching the name pattern "Con*") {Bat donot have an attribute
matching "att1" of type "String"; (3) that do haae array attribute matching "att2" of
type "Integer" whose lower bound equates "2", ahdse upper bound does not ex-
ceed "100"; (4) that either have an operation niatchset*', or an operation match-
ing "put*" (but not both) that both take one par@enef arbitrary type; (5) that have
an operation matching "get*" that returns an valfi@rbitrary type; (6) that have an
operation matching "run” that takes (at least)dtparameters: (6a) the first parameter
in the operation's parameter list must be of tyjpgeger", (6b) the last parameter
must be of type "String"; (6c) besides that, theraion must take a third parameter
of type "Real" (no matter at which position in thygeration's parameter list). Selected
classifiers must be (7) subtypes of "Collectior8) kutnot subtypes of "Array"; and
(9) they have to have an association to exactlyotessifier matching "Database".

Furthermore, selected classifiers must possesadirect association (i.e., a navi-
gable path) to a classifier (identified with "?Ajmaltion™) (1) matching "*"; (2) that

6 Likewise, attribute and operation matching invshmatching of their type and parameter
types, respectively (not shown in Fig. 3).

I |- Atributes

i |attl : String

| |- Operations

| | <?someOp>do* (..

. sample_model_query

Co”wion

JAN JAN
KT (17 {nott

<?C>Con*

<?Application>*

= Attributes
{not} attl : String
att2 : Integer [2!..100]

[Operations

set* (val : *)

j::f{xor}

<?Application>*

i
<?C>Con* | |
i

T
H
<?someMsg> : 1
<?7someOp>do* (.
1

\ t* : *
Sivﬁf) run(..) .
5 Database T run(vall : Integer, .., 'LJ
h i vali : Real, .., T)
valn : String) P
h 1 ?Application

Fig. 4. A sample JPDD

has an attribute matching "attl" of type "String3) and that has an operation
matching "do*" (identified with "?someOp"), whichkes any number of parameters.
That operation must be invoked by some messaggtifiee with "?someMsd) (3a)
which in turn invokes method "run" on the formeagdifier (identified with "?C") —
(3b) no matter when (see "iterating" double-crossedsage in right part of Fig. 4) —
and (3c) using arbitrary values as parameters.a\th# left part of Fig. 4 is matched
against classifiers in class diagrams, the rigit igacompared to message specifica-
tions in interaction diagrams in which matchingssiéiers are involved.

Having found actual model elements that complyhesé selection criteria, the
JPDD returns the resulting model elements vieeisplate parameters "?C", "?Appli-
cation", and "?someMsg".

6 Reated Work

MDA is closely related to the research field of graransformations [21]. In both
domains, we are concerned with the specificatiomodel (or graph) transformations
and — consequently — with the specification of nidde graph) queries. From that
perspective, JPDDs compare to the left-hand sid¢SjLof production rules as we
find them in graph rewrite systems such as PROGRBor AGG [27]. JPDDs dif-
fer from LHS specified in PROGRES in their way tpesify constraints on
(class/object) node attributes. In PROGRES, sucistcaints are either specified us-
ing textual descriptions, or they are attachedh® (class/object) node which they
apply to by means of a hollow fat arrow. Both reygrgations differ considerably
from the class/object notation as it is known fribbia UML. AGG does a better job in
that respect, since attributes are listed withispacial attribute compartment inside
the node. On the other hand, though, AGG does rmtige for the specification of
paths (e.g., indirect associations) between (aagstt) nodes — such as PROGRES
and JPDDs do. The specification means of path ssmes in PROGRES go beyond
those of JPDDs: PROGRES gives developers fine-gdadontrol over the evaluation
process of path expressions (by providing condii@md iterative path expressions).

” Note how the identifier of the message is sepdrfiten the identifier of the operation (which
is being called) by means of a colon.

Furthermore, it permits the specification of optibnodes. Selection criteria specified
in JPDDs, on the contrary, must be satisfied ahialey and their evaluation process
is invariable as determined by the OCL statemergsegmted in this pager

Apart from the transformation approaches origirgtim the field of graph trans-
formations, there are a couple of notations arahat are explicitly dedicated to the
field of MDA, e.g., the QVT approach presented 20][or MOLA [10]. The major
problem with these transformation languages is thay specify model queries in
terms of meta model entities. While this may be enconvenient when referring to
meta properties that have a standard representatidML diagrams, it severely hin-
ders the overall comprehension of the queries. ¥Afjoam that, JPDDs facilitate the
reuse of model queries since they consider modaii@gias first-class entitfeahich
may be involved in multiple transformations.

Considering that most submissions to OMG's QVT RF#pose to use OCL as a
guery language, JPDDs also relate to existing ambes for the visualization of OCL
expressions in general, such as Constraint Diagfddisor Visual OCL [4] [12].
Constraint Diagrams represent a graphical notatiospecify invariants on objects
and their associations (i.e., links) dependingtmndtate they are in. In consequence
to its strict focus on runtime constraints, theation does not provide for the specifi-
cation of model element queries, though. In paldicino means are provided to des-
ignate model elements that serve as sources fwsftnanations. Further, the notation
is not concerned with the specification of struatigelection constraints, such as ex-
istence of particular features. Visual OCL is apfpiaal notation to express OCL con-
straints. It provides graphical symbols for all OReywords, in particular for the
"select" statement as we need it for model elensefection in MDA. However,
similar to the MDA transformation approaches mamgib above, Visual OCL does
not provide for the specification of model elemgueries in terms of user model en-
tities. In consequence, users are confronted \Wwelfull load of OCL complexity — in
particular when specification of indirect relatibiyss (see section 4.3) is necessary.

The idea of specifying queries in terms of user ehahtities we borrowed from
the approach of Query-By-Example (QBE) [30], whista common query technique
in the database domain: We specify sample modélesnthaving sample properties,
and determine how selected model elements muse redasuch samples. We make
use of "operator" symbols (such as wildcards, ewmatéon marks, and double-crossed
lines and arrows) to differentiate whether seleataatlel elements must match the
samples exactly, or with a permissible degree efadien (e.g., names may be ren-
dered with help of patterns, and/or multiplicityusalaries may be specified to denote
minimum and maximum values rather than perfect hesk

As already mentioned above and discussed in [26]SB is another application
area for JPDDs. Here, JPDD are used to visualieetsans of join points, i.e., they
render those points in program code, or programdian, that are to be enhanced by
an aspect. In [25], we demonstrate by example HRBDE may be used to model join
point selections in popular aspect-oriented prognang languages. In particular, we
describe how JPDDs may be used to reprepemttcutsin Aspect] [2],traversal
strategiesn Adaptive Programming [13], @oncern mappings Hyper/J [29].

8 Note that we abstract from evaluation problem©GIL expressions, such as the calculation
of transitive closures (cf. [22]), for example. \Wensider these problems to be OCL-specific
rather than JPDD-specific.

9i.e., as an autonomous entity that can exist witfurther reference to any other entities

7 Conclusion

In this paper, we presented a graphical notatiosptecify model queries on UML
models. We identified model queries to be prereétpsito model transformations as
they are specified in the Model-Driven Architect{idDA). We demonstrated that
even simple query specifications tend to becomessige and complex when using a
textual notation. Aiming to overcome this quandarg, introduced Join Point Desig-
nation Diagrams (JPDD) to specify and representahqderies graphically. We ex-
plained their abstract syntax, as well as the deapmeans to specify the queries'
selection criteria. We specified OCL operations tleg evaluation of such selection
criteria on actual user model elements. We exeraglithe use of JPDDs using a
complex model query, demonstrating that even thenquery specification remains
comprehensible.

The particular focus of this work has been on mhimg graphical means for the
specification of model element queries based ofcdéxsimilarity (e.g., based on
name and signature patterns) and structural arnaags (e.g., based on indirect rela-
tionships). We extrapolated the need of such geteateans from the area of Aspect-
Oriented Software Development (AOSD), where JPDI@seworiginally developed
for. We think that mapping our graphical means @L.Gxpressions can assist devel-
opers in both AOSD and MDA when specifying and ntiodeselections. In particu-
lar, this allows seamless integration of our JPDWH various submissions to the
MOF QVT RFP, which are proposing to use OCL as aehquery language. It is
important to note, though, that JPDDs are not dapaland not intended — to repre-
sent OCL expressions in the general case. Fuithewst be stated that JPDDs may
specify only selections on model elements of a kihi$ not possible, for example, to
collectively select UML model elements of differegpes into the same parameter
(e.g., classes and associations, or all model elesnm®ntained in a model). Instead, a
parameter must be defined for each model elemeettty be selected.

We think, however, that this limitation is more thautranged by the benefits of
specifying model queries in terms of user modailther than meta models, in order to
facilitate their specification and comprehensiornttie user. In this paper, we have
concentrated on a query language for the UML. Weaeate for the development of
further user model-based query languages in otlogleting and domain-specific lan-
guages as well. That way, transformations may keifipd as simple as relating one
user-model-based query to another user-model-t@sey — for the sake of feasibil-
ity and comprehensibility to the user.

References

[1] Alcatel, Softeam, Thales, TNI-Valiosys, CodagBechnologies CorpRevised Submis-
sion for MOF 2.0 Query / Views / TransformationsPRE8. Aug. 2003

[2] Aspectd TeamThe Aspect] Programming Guijdettp://dev.eclipse.org/viewcvs/ index-
tech.cgi/~checkout~/aspectj-home/doc/progguidexrdml, Jan. 2004

[3] Assmann, U. (ed.), Proc. of MDAFA 2004 (Linkdpingweden, Jun. 200
http://www.ida.liu.se/~henla/mdafa2004

[4] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentfe, A Visualization of OCL Usir
Collaborationy, in: Proc. of UML 2001 (Toronto, Canada, Oct. 20QINCS 2185, pj
257-271

[5]
(6]

[7]

(8]

9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]
[30]

CBOP, DSTC, IBMRevised Submission for MOF 2.0 Query / Views / Sfitamation
RFP, 18. Aug. 2003 (http://www.dstc.edu.au/pegameniolipations/ad-03-08-03.pdf)
Ehrig, H., Engels, G., Kreowski, H.-J., Rozenbe@, (eds.):Handbook on Graf
Grammar, Vol. 2: Applications, Languages, and Tools, WoBdientific, River Edg
NJ, 1999

Filman, R., Elrad, T., Clarke, S., Aksit, M.,d&), Aspect-Oriented Software Develop-
ment Addison-Wesley, 2005

Gybels, K., Brichau, J.Arranging language features for more robust pattbasec
crosscutsin: Proc. of AOSD'03 (Boston, MA, Mar. 2003), ACldp. 60-69

Interactive Objects Software, Project TechnoloRevised Submission for MOF
Query / Views / Transformations RFE8. Aug. 2003

Kalnins, A., Barzdins, J., Celms, Bpdel Transformation Language MOL#: [3], pp.
14-28

Kent, S.,Constraint Diagrams: Visualizing Assertions in Qitj®©riented Mode, in:
Proc. of OOPSLA 1997 (Atlanta, Georgia, Oct. 1990M pp. 327-341

Kiesner, Chr., Taentzer, G., Winkelmann,\Msual OCL: A Visual Notation of the Ob-
ject Constraint Languag&d R 2002/23, Technical University Berlin, 2002
Lieberherr, K., Adaptive Object-Oriented Software: The Demeter Fetith Propaga-
tion Patterns PWS Publishing Company, Boston, 1996

Lieberherr, K., Lorenz, D., Mezini, MProgramming with Aspectual Componge, TR
NU-CCS-99-01, Northeastern University, 1999

Masuhara, H., Kiczales, G., Dutchyn, CIA Compilation and Optimization Model
Aspect-Oriented Prograr, in: Proc. of CC 2003 (Warsaw, Poland, Apr. 20Q3yCsS
2622, pp. 46-60

OMG, MDA Guide Version 1,00MG, 1. May 2003 (omg/2003-05-01)

OMG, Request for Proposal: MOF 2.0 Query / Views / Tfamsations RFI, 200:
(OMG Document ad/2002-04-10)

OMG, UML 2.0 OCL Specificatic, Final Adopted Specification, 2003 (OMG Docun
pct/03-10-14)

OMG, Unified Modeling Language Specificat, Version 1.5, March 2003 (ON
Document: formal/03-03-01)

QVT-PartnersRevised Submission for MOF 2.0 Query / Views / Sftamations RF,
18. August 2003 (http://qvtp.org/downloads/1.1/gwtpersl.1.pdf)

Rozenberg, G. (ed.andbook of Graph Grammars and Computing by Grapnd-
formation Vol. 1: Foundations, World Scientific Publishirigiver Edge, NJ, 1997
Schirr, A.,Adding Graph Transformation Concepts to UML's Caist Languag
OCL, Electronic Notes in Theoretical Computer Scieviok 44(4), Elsevier, 2001
Schurr, A., Winter, A., Ziindorf, APROGRES: Language and Environn, in: [6], pp
487-550

Stein, D., Hanenberg, St., Unland, A Graphical Notation to Specify Model Que
for MDA Transformations on UML Model®: [3], pp. 60-74

Stein, D., Hanenberg, St., Unland, IModeling Pointcut, Early Aspect Worksho
AOSD '04 (Lancaster, UK, Mar. 2004)

Stein, D., Hanenberg, St., Unland, Query Model, in: Proc. of UML 2004 (Lisbo
Portugal, Oct. 2004), LNCS 3273, pp. 98-112

Taentzer, G., Ermel, C., Rudolf, NThe AGG Approach: Language and Environr,
in: [6], pp. 551-603

Tarr, P., Ossher, H., Harrison, W., Sutton 3t,, N Degrees of Separation: Multi-
Dimensional Separation of Conce, in: Proc. of ICSE 1999 (Los Angeles, CA, N
1999), ACM, pp. 107-119

Tarr, P., Ossher, HHyper/J User and Installation ManudBM Corp., 2000

Zloof, M., Query-by-Example: A Data Base Langu, IBM Systems Journal, V¢
16(4), 1977, pp. 324-343

