
A Graphical Notation to Specify Model Queries
for MDA Transformations on UML Models

Dominik Stein
Stefan Hanenberg

Rainer Unland

University of Duisburg-Essen
Essen, Germany

{dstein, shanenbe, unlandR}@cs.uni-essen.de

Abstract. Specifying queries on models is a prerequisite to model transforma-
tions in the MDA because queries select the model elements that are the source
of transformations. Current responses to OMG's MOF 2.0 QVT RFP mostly
propose to use (and/or extend) OCL 2.0 as specification language for queries. In
this paper, we demonstrate that using textual notations (like OCL) quickly leads
to complex query statements even for simple queries. In order to overcome this
handicap, we present a graphical notation based on the UML that facilitates
comprehension of query statements as well as estimation of the (ultimately) se-
lected model elements. We advocate that queries should be specified in terms of
user model entities and user model properties (rather than meta model entities
and meta model properties) for the sake of feasibility and comprehensibility to
the user.

1 Introduction

Model-Driven Architecture (MDA) [16] aims to assist the development process of
software intensive systems by providing a standardized framework for the specifica-
tion of software artifacts and integration directives. Its key idea is to install traceable
relationships between software artifacts of different domains or different development
phases. In that way, the MDA aims to improve software quality since software devel-
opers can directly relate the final program code to design decisions and/or require-
ment specifications of the early phases of software development. It allows them to
validate and test the final code for compliance to particular requirements, thus making
maintenance much simpler. Further, the MDA promotes reuse of existing system so-
lutions in new application domains by means of conceptual mappings and artifact
integration.

The principal software artifact of consideration in the MDA are machine-readable
models. The underlying technique of the MDA is model transformation. Transforma-
tions are accomplished according to the tracing and mapping relationships established
between the software artifacts (i.e., between their models).

Striving for a standardized language to define such model transformations, the
OMG released the "MOF 2.0 Query / Views / Transformation (QVT)" Request For
Proposal (RFP) in April 2002 [17]. It has been one of the mandatory requirements to

come up with a query language to select and filter elements from models, which then
can be used as sources for transformations. In response to the RFP, several proposals
for general-purpose model transformation languages have been submitted (e.g., [1],
[5], [9] and [20]). Most of them propose to use (and/or extend) the Object Constraint
Language (OCL) 2.0 [18] as query language (e.g., [9] [20] [1]). Having said so, only
one proposition [20] provides a graphical representation for its query language.

We think, though, that a graphical notation to specify and visualize model queries
is inevitable for the MDA to drive for success. We think that software developers
require a graphical representation of their selection queries, which they can use to
communicate their ideas to colleagues, or to document design decisions for maintain-
ers and administrators. A graphical visualization would facilitate their comprehension
on where a transformation actually modifies their models. We think that using a tex-
tual notation (like OCL), instead, would quickly turn out to lead to very complex ex-
pressions even when defining a relatively small number of selection criteria.

In this paper we present a graphical notation to specify selection queries on models
specified in the Unified Modeling Language (UML) [19], aiming to overcome the
lack of most of the RFP responses when working in a UML model context. We intro-
duce several abstraction means in order to express various selection criteria, and
specify how such selection criteria are evaluated by OCL expressions. Query models
built from such abstraction means are called "Join Point Designation Diagrams" [26]
(or "JPDD" in short). JPDDs originate in our work on Aspect-Oriented Software De-
velopment (AOSD) [7] in general, and on the visualization of aspect-oriented con-
cepts in particular. They are concerned with the selection of points in software arti-
facts that are target to modifications (so-called "join points" in AOSD). They extend
the UML with selection semantics. And they make use of, and partially extend,
UML's conventional modeling means.

This paper is an immediate follow-up paper of our submission [24] to the "MDA
Foundation and Application" workshop [3]. We carefully revised that submission
taking into account the comments and remarks that we received at the workshop.
Meanwhile, JPDDs have also been presented in [26]. While there we have identified
the general need to specify queries on software artifacts as a new evolving design
issue, here we concentrate on the integration of JPDDs into the MDA context. In par-
ticular, we describe a generic mechanism to map JPDDs onto OCL statements, thus
giving way to the integration of our approach with the current QVT submissions.

The remainder of this paper is structured as follows: In the first section we empha-
size the need of a graphical notation to specify selection queries with the help of an
example. After that, we briefly sketch the background that JPDDs originate from, and
point to the parallels of query specification in AOSD and MDA. In section 4, we
briefly describe the abstract syntax of our notation. We then present the graphical
means as well as the OCL expressions by which they are evaluated. We conclude the
paper with relation to other work and a summary.

2 Motivation

In order to make the motivation of this work more clear, we take a look at a hypo-
thetical, yet easy-to-understand example (adopted from [20]): Imagine, for some ar-
bitrary model transformation, we need a model query that selects all classes with

name "cn" that either have an attribute named "an", or – in case not – that have an
association to some other class with name "cn1" which in turn has an attribute named
"an". Fig. 1, right part, demonstrates how such query would be expressed using the
textual and graphical notation as proposed in [20]. Fig. 1, left part, shows the same
query, once expressed as an OCL statement, and once expressed as a JPDD.

As you can learn from the example, even a simple model query quickly results in a
complex query expression – when using a textual notation (cf. Fig. 1, top part). As a
result, comprehension of the query and estimation what model elements finally will
be selected is rather difficult. The graphical notation shown in Fig. 1, bottom right
part, helps to keep track of what is going on in the selection query. However, since the
query is specified in terms of meta model entities and meta model properties, unnec-
essary and distracting noise is added to the diagram: A simple association between
classes "c" and "c1" is represented by three distinct entities.

Fig. 1, bottom left part, shows what the query looks like using a JPDD. JPDDs rep-
resent model queries in terms of user model entities and user model properties. Using
user model entities and user model properties for query specification (rather than meta
model entities and meta model properties) is to the advantage of feasibility and com-
prehensibility: Software developers work with abstraction means they are familiar
with. They do not need to bother about meta models. Further, query models turn out
to be concise and comprehensible: They specify a minimal pattern to which all ulti-
mately selected model elements must comply.

someUmlModel.contents
->select(c: Class |

(c.name='cn' and
 c.allAttributes->exists(att | att.name='an'))

or (c.name='cn' and not
 c.allAttributes->exists(att | att.name='an') and
 c.oppositeAssociationEnds->exists(ae |

let c1 : Class = ae.participant in
c1.name='cn1' and
c1.allAttributes->exists(att | att.name='an')

)))

(UML.Class, c) [name = "cn", feature =
{ (UML.Attribute) [name="an"] }]

or
(UML.Class, c) [name = "cn", feature =

{ not (UML.Attribute) [name="an"] }] and
(UML.Class, c1) [name = "cn1", feature =

{ (UML.Attribute) [name="an"] }] and
(UML.Association) [connection =

{ (UML.AssociationEnd) [participant = c],
(UML.AssociationEnd) [participant = c1] }]

{or}

mda_query

 ?c
 ?att

<?c>cn

<?att>an
 Operations

 Attributes

<?c1>cn1

<?att>an
 Operations

 Attributes

<?c>cn

{not} <?att>an
 Operations

 Attributes

c: Class
name="cn"

att: Attribute
name="an"

{or}

AssociationEnd

AssociationEnd

Association

c: Class
name="cn"

c1: Class
name="cn1"

att: Attribute
name="an"

Attribute
name="an"

Fig. 1. Selection query expressed in OCL (top left part), using the textual and graphical nota-
tion presented in [20] (right part), and with help of a JPDD (bottom left part)

3 Background

JPDDs originate in our work on AOSD. AOSD deals with the encapsulation of cross-
cutting concerns into separate modular units, called aspects. A crosscutting concern is
a concern that cannot be cleanly decomposed to the primary decomposition of a pro-
gram, thus leading to crosscutting code that is scattered throughout every module of
the dominant decomposition. This is what became known as the Tyranny of the
Dominant Decomposition [28]. An aspect encapsulates the crosscutting code of a
crosscutting concern. Besides specifying the crosscutting code that should be injected
into the primary decomposition, an aspect also specifies the conditions under which
the injection shall take place.

In order to do so, aspect-oriented programming techniques rely on the concepts of
join points and weaving. Join points designate loci (in program code) or instants (in
program execution) at which injection takes place. Weaving defines the exact manner
in which injection takes place. Since crosscutting usually takes place at more than one
join point (in fact, this is the major case that AOSD is focused on), aspect-oriented
programming techniques provide various ways to specify selections of join points.
For example, join point selection is possible based on lexical similarities of join point
properties [14] [15] (e.g., of their name or type declarations), based on the structural
arrangement the join points reside in [8] (such as the presence of particular parameters
in an operation's parameter list, or the existence of a navigable path to a particular
class), or based on the dynamic context join points occur in [15] (e.g., in the scope of
a particular object, or in the control flow of a particular method).

We see strong parallels between AOSD and MDA with respect to the selection of
locations in software artifacts that are focus of modification. We estimate (e.g., from
the examples given in [20]) that selection in MDA also depends on lexical similarities
of model element properties – in particular, of their names. Further, structural ar-
rangements, such as the existence of certain features or relationships, are deemed to
play a major role in model element selection, as well. Structural constraints may also
involve general statements on navigable paths, i.e., indirect associations or indirect
generalizations between classifiers.

In the following, we explain the graphical elements that we provide to specify
model element selections based on lexical similarities and structural arrangements
with JPDDs. We briefly sketch their general syntax, and detail their semantic impli-
cations using OCL expressions.

4 Notation and Semantics

A JPDD consists of at least one selection criterion, some of which delineate selection
parameters. A JPDD represents a selection criterion itself and thus may be contained
in another JPDD (e.g., for reuse of criteria specifications). JPDDs can be fully inte-
grated into the UML, making use of UML's modeling means and its meta model:
Structurally, JPDDs compare to UML templates of UML namespaces (cf. Fig. 2).
Note, though, that semantically JPDDs differ from conventional UML templates since
they render a "selection pattern" rather than a "generation pattern". This means in
particular that the parameters of JPDDs represent logical variables (which return val-
ues), while the parameters of a conventional UML template are fed with values. To

emphasize this difference in meaning visually, parameters of JPDDs are summarized
at the lower right corner of JPDDs – rather than at their upper right corner as with
conventional UML templates (see Fig. 4 in section 5 for an example).

In the following we present the core modeling means that may be used to specify
selection queries with help of JPDDs. We explain their graphical notation, and de-
scribe how they can be evaluated using OCL meta operations1. Such meta operations
are appended to UML's meta model classes (e.g., to classifiers, attributes, operations,
associations, messages, etc.). Note that not all meta operations are shown due to space
limitations. At last, we sketch how the meta operations are deployed in order to re-
trieve an actual set of matching model elements.

4.1 Classifier Selection

Looking at the selection semantics for classifiers, we may learn about the general se-
lection mechanism for all model elements: Principally, model elements are selected

1 We used OCL Checker, version 0.3 (http://www.klasse.nl/ocl/ocl-checker.html), to write the

OCL statements, and OCLE, version 2.02 (http://lci.cs.ubbcluj.ro/ocle), to typecheck them.

Namespace

Classifier Collaboration

ModelElement

namespace

ownedElement

template

templateParameter

Package

TemplateParameter

JPDD

SelectionCriterium

1..*
1..*

SelectionParameter

Fig. 2. Abstract syntax of JPDDs (top part) mapped to UML's meta model (bottom part) (cf.[26])

Table 1. OCL meta operation for matching classifiers (left part), and a sample class pattern that
could be passed as an argument (right part)

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- I. evaluate name pattern
if [...] -- given an identifier(see footnote 2)

self.matchesNamePattern(C.taggedValue->[...])
else -- default

self.matchesNamePattern(C.name)
endif

-- II. evaluate defined meta properties
and (self.isRoot = C.isRoot or C.isRoot = '')
and (self.isLeaf = C.isLeaf or C.isLeaf = '')
and (self.isAbstract = C.isAbstract or C.isAbstract = '')

-- III. evaluate attributes and operations
and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT))

or C.allAttributes->size() = 0)
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP))

or C.allOperations->size() = 0)

A sample class
pattern, which is
given an identifier
(?C):

 <?C>Con*

att2 : Integer [2!..100]

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

name pattern

expected features

identifier

based on the values of their meta attributes. In case of classifiers, these are the prop-
erties "isAbstract", "isLeaf", and "isRoot" (see Table 1, block II).

Besides that, model elements are selected based on their meta relationships to
composite model elements. In case of classifiers, for example, special regards must be
given to the features they must possess in order to be selected (see Table 1, block III).

At last, note that name matching of model elements is accomplished with help of
name patterns (see Table 1, block I). Name patterns may contain wildcards, e.g. "*",
in order to select groups of model elements based on lexical similarities. All element
names in a JPDD represent name patterns by default. In case an element needs to be
referenced within the JPDD (e.g., if it needs to be defined as a JPDD parameter), the
element may be given an identifier2. In diagrams, identifiers are enclosed into angle
brackets and are prepended by a question mark (see "<?C>Con*" in Table 1 for ex-
ample, or "<?c>cn", "<?c1>cn1", and "<?att>an" in Fig. 1 of section 2). They are
placed in front of the element they refer to.

Having explained these general selection principles, we concentrate on discussing
the particularities of other modeling means in the following.

4.2 Operation Selection

Special regards in operation selection must be given to the usage of wildcard ".." in
the operation's signature pattern. Wildcard ".." provides for the selection of operations
based on their structural arrangement – that is, based on the existence of particular
parameters, while others are disregarded.

Table 2 gives a detailed description on how such structural arrangements are

2 In that case, the name pattern is stored (technically) in a special tagged value.

Table 2. OCL meta operation for matching parameter lists (left part), and a sample signature
pattern whose parameter list could be passed as an argument (right part)

context Operation def:
let ownPars : Sequence(Parameter) = self.parameter->asSequence()
let patternPars(par : Sequence(Parameter)) : Sequence(Parameter)

= par->reject(p | p.name = '..')
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter)

= ownPars->select(p |
patternPars(par)->exists(parp | p.matchesParameter(parp)))

context Operation def:
let matchesParameterList(par : Sequence(Parameter)) : Boolean
post: result = -- I. compare parameter order

matchesParameterOrder(matchingPars(par), patternPars(par))
-- II. compare first parameters

and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at(i)
.matchesParameter(par->at(i))

or Sequence{1..par->size()}->collect(j : Integer | j <= i
and par->at(j).name = '..')->size() <> 0)

-- III. compare last parameters
and Sequence{1..ownPars->size()}->forAll(i : Integer | ownPars->at(

ownPars->size() - i)
.matchesParameter(par->at(par->size() - i))

or Sequence{1..par->size()}->collect(j : Integer | j <= i
and par->at(par->size() - j).name = '..')->size() <> 0)

A sample signature
pattern (run), pro-
viding a sample
parameter list
({val1 : Integer, ..,
 vali : Real, ..,
 valn : String}):

<?C>Con*

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

signature patterns

name pattern

evaluated by means of an OCL expression: Meta operation "matchesParameterList"
compares (a) the overall order of parameters in the actual operation("self")'s parame-
ter list to the one being passed from the JPDD (Table 2, block I), as well as (b) the
partial order of parameters at the parameter lists' beginnings (Table 2, block II) and
their ends (Table 2, block III). For that purpose, the meta operation defines a couple
of sub-expressions: "ownPars" comprises all parameters of the actual operation
("self"); "patternPars" holds the parameters being passed from the JPDD, neglecting
all wildcarded parameters ".."; and "matchingPars" is a subset of "ownPars", contain-
ing only those parameters that have a matching counterpart in "patternPars".

The sub-expressions are used to compare the overall order of parameter lists with
help of meta operation "matchesParameterOrder" (not shown here). That operation
recursively iterates over "matchingPars" and "patternPars", verifying if (subsequences
of) the former contains all the elements belonging to (subsequences of) the latter. The
partial order is evaluated based on "ownPars" and the parameter list being passed
from the JPDD. Order evaluation stops (i.e., is always true) when the first wildcarded
parameter ".." is reached in the parameter list passed from the JPDD (see collect
statement at end of block II and III).

4.3 Relationship Selection

When selecting relationships, special regards must be given to indirect relationships.
Indirect relationships are a sophisticated means to constrain structural arrangements:
Indirect relationships may be used in JPDDs to indicate that a classifier does not need
to be directly connected to a particular parent, child, or associated classifier. This
means in case of associations, that the particular classifier must be reachable via the
designated association, but does not need to be a direct neighbor.

In diagrams, indirect relationships are rendered by a double-crossed line3. Table 3
(left part) states, for example, that there must be a navigable path from class "C" to
class "B" for the selection criterion to be fulfilled. The ends of that path must match
with the association ends of the indirect association. In case of indirect generaliza-
tions, the particular parent or child needs to reside somewhere in the inheritance tree,
but does not need to be a direct parent or child. For example, class "C" in Table 3
(right part) must be among the ancestors of class "B", and class "B" must be among
the descendants of class "C", for the selection criterion to be satisfied. The respective
OCL meta operations are omitted here due to space limitations. Please refer to [26]
for a detailed description.

3 Technically, indirect relationships are rendered by a special stereotype for associations or

generalizations, respectively. Query evaluation is based on the (non-)presence of that stereo-
type (cf. [26]).

Table 3. Sample relationship patterns for (indirect) relationships, which could be passed to a
meta operation as an argument (meta operations are omitted here; see [26] for further details)

C

B

[*]

indirect association

C

B

A

association name

[*]

C

B

indirect generalization

C

B

4.4 Multiplicity Restrictions

Special attention in association end selection must be paid to the association end's
multiplicity specification4: Multiplicity of an association end may declare exact upper
and/or lower limits; or it may designate the upper and/or lower bounds which the
multiplicity of an association end must not exceed or underrun (respectively). Being
able to declare exact limits and/or minimal and maximal bounds provides for further
flexibility in query specification based on structural arrangements.

Graphically, exact multiplicity bounds are indicated by exclamation marks5. The
lower multiplicity limit of association end "aRole" in Table 4, for example, denotes a
strict limit. Accordingly, association ends are only selected, if their lower multiplicity
limit equates "2". The upper multiplicity limit of "aRole", on the contrary, denotes a
maximum. Association ends are selected as long as their upper multiplicity limit does
not exceed "100".

4.5 Message Selection

Selection is not restrained to structural aspects of a UML model as they are specified
in UML class diagrams, for example. Selection criteria may as well involve behav-
ioral requirements as they are specified in UML interaction and collaboration dia-
grams. Table 5 shows the notational means to specify selection criteria on messages,
and how such criteria are evaluated by an OCL operation.

Messages are selected based on the action they invoke (Table 5, block I). In case of
operation call actions, signature patterns may be used to restrict the operation called.
Further, messages are selected based on their senders and receivers (Table 5, block
II). It is important to note that the OCL operation evaluates the senders' and receivers'
base classifiers rather than their role specifications. This is accomplished deeming
that selections should consider the full specification of classifiers rather than restricted

4 The same counts for the multiplicity specification of attributes (see sample classifier pattern in

Table 1 for an example).
5 Technically, fix upper and lower limits are specified as stereotypes of multiplicity ranges.

Table 4. OCL meta operation for matching association ends (left part), and a sample associa-
tion end pattern that could be passed as an argument (right part)

context AssociationEnd::
matchesAssociationEnd(ae : AssociationEnd) : Boolean
post: result = [...]
and ((if [...] -- exact limit -- evaluate multiplicity

self.multiplicity.range.lower = ae.multiplicity.range.lower
else -- minimum bound
 self.multiplicity.range.lower >= ae.multiplicity.range.lower
endif

and if [...] -- exact limit
self.multiplicity.range.upper = ae.multiplicity.range.upper

else -- maximum bound
self.multiplicity.range.upper <= ae.multiplicity.range.upper

endif)
or ae.multiplicity = '')

A sample associa-
tion pattern (A),
comprising a sam-
ple association end
pattern (aRole):

exact multiplicity
restriction

C

B

A

2!..100

multiplicity
range restriction

aRole

projections thereof. The same counts for the associations used for transmitting the
messages.

Lastly, messages may be selected based on their activator message, their predeces-
sor and successor messages, as well as based on the messages they are activating
themselves (Table 5, block III and IV). This is particularly useful to constrain the
(preceding) control flow in which selected messages may occur, as well as the (suc-
ceeding) control flow that selected messages may invoke. Message "someOp" in
Table 5, for example, must be activated in the control flow of message "op1", and
must in turn invoke message "op2".

Messages of special stereotype "indirect" can be used to indicate arbitrary control
flow that may occur between two successive messages. In diagrams, indirect mes-
sages are depicted as double-crossed arrows. Technically, indirect relationships are
rendered as special message stereotypes. The presence of that stereotype is checked
during query evaluation (see Table 5, block III and IV, for illustration). Evaluation of
indirect messages is accomplished in two steps: One step is concerned with finding
messages that comply to the sending context of the indirect message (i.e. sender role,
predecessors, successors, and activator messages); the other step deals with the identi-
fication of messages matching to the reception context of the indirect message (i.e.
receiver role and subsequently activated messages).

Table 5. OCL meta operation for matching (indirect) messages (left part), and a sample mes-
sage pattern that could be used as an argument (right part)

context Message::
matchesMessage(m : Message) : Boolean
post: result = -- I. evaluate action
self.action.matchesAction(m.action)

-- II. evaluate sender/receiver/...
and self.sender.base->exists(C |

C.matchesRelationships(m.sender) and
C.matchesClassifier(m.sender))

and self.receiver.base->exists(C |
C.matchesRelationships(m.receiver) and
C.matchesClassifier(m.receiver))

and self.communicationConnection.base
.matchesAssociation(m.communicationConnection)

A sample message
pattern (someOp*),
and an "indirect"
message symbol:

someOp*(..)
op1()

C B

activating control flow

signature pattern

activated control flow

op2()

-- III. evaluate activator
and ((if m.activator.stereotype->exists(st | st.name='indirect') then

self.activator.matchesReceptionContext(m.activator) and
self.allActivators->exists(M | M.matchesSendingContext(m.activator))
else

self.activator.matches(m.activator)
endif) or m.activator='')

-- IV. evaluate predecessors/successors/...
and (m.predecessor->forAll(p |

if p.stereotype->exists(st | st.name='indirect') then
self.predecessor->exists(P |

P.matchesSendingContext(p) and
P.allActivatedMessages->including(P)->exists(M |

M.matchesReceptionContext(p)))
else

self.predecessor->exists(P | P.matches(p))
endif) or m.predecessor->size()=0)

and (m.successor->forAll([...]) or m.successor->size()=0) -- analogously
and (m.activated->forAll([...]) or m.activated->size()=0) -- analogously

C

[...]

arbitrary control flow

4.6 Combination of Selection Criteria

By default, all selection criteria specified in a JPDD are implicitly combined with
"and". That is, all such selection criteria must be fulfilled by a given model element in
order to be selected by the query. In some cases, though, we may need to specify al-
ternative, exclusive, or mutual exclusive selection criteria. In order to render such
combinations of selection criteria, we may use constraint strings ("{or}", "{xor}", and
"{not}"). The corresponding OCL operations specify that either at least, or exactly,
one (respectively) of all model elements interrelated by such a constraint must comply
to the selection criteria; or it inverts the result of matching in case the model element
is constrained with "{not}". The OCL operations are omitted here due to space limi-
tations. Please refer to [24] for further illustrations.

4.7 Retrieving Matching Model Elements

Retrieval of actual model elements from user models is accomplished using the UML
meta model operations as they have been exemplified in the previous sections. A cor-
responding meta operation is specified for each UML meta model element (whose
instances may appear in class/object diagrams or in interaction diagrams, e.g. classifi-
ers, attributes, operations, associations, messages, etc.). In order to retrieve a set of
(matching) model elements, the meta operation successively invoke one another so

�

�

�

�

�

�

�

someJPDD

 ?cPattern

<?cPattern>...

someModel

A
B

C
D

E

Flet cPattern = self.templateParameter in
context TemplateParameter::
matchingModelElements(someModel : Namespace) : Set(ModelElement)

someModel.allContents->select(everyModelElement | oclIsKindOf(Classifier) and ...

possessesMatchingAttribute
(∀ cPattern.attPatterns)

possessesMatchingOperation
(∀ cPattern.opPatterns)

possessesMatchingAssociation
(∀ cPattern.assocPatterns)

possessesMatchingParent
(∀ cPattern.parentPatterns)

matchesAssociationEnd
(∀ assocPattern.assocEndPatterns)

matchesClassifier
(parentPattern) and
matchesRelationships
(parentPattern)

matchesClassifier
(assocEndPattern.participantPattern) and
matchesRelationships
(assocEndPattern.participantPattern)

matchesParameterList
(opPattern.parlistPattern)

[...]

matchesClassifier(cPattern) matchesRelationships(cPattern)

matchesParameter
(∀ parlistPattern.parPatterns)

--(every attribute)
matchesAttribute
(attPattern)

post: result =

… and --(that) … and --(that)

… and --(that) … and --(that)

… and --(that)… and --(that)

… and

… and --(every operation) … and --(every assocation)

… and --(every parent)

… and --(every parameter) … and --(every participant)

Fig. 3. Cascading evaluation of JPDDs (note that not all evaluation steps are shown)

that all selection criteria specified in the JPDD are evaluated (see Fig. 3). The meta
operations take a model element pattern from the JPDD as argument, and compare its
characteristics with an actual model element instance of a user model. Starting point
of evaluation is a return parameter of the JPDD. For each return parameter of a JPDD,
a set of matching elements in the given user model is retrieved.

Fig. 3 exemplifies how the OCL meta operations work together in order to retrieve
a set of matching model elements for a classifier pattern ("?cPattern"). The selection
is initiated by a special meta operation "matchingModelElements", which is defined
in the context of the JPDD parameter and that returns the set of all model elements
matching to that parameter (i.e. to classifier pattern "?cPattern"; see � in Fig. 3). The
meta operation takes a UML model (or any other namespace, such as packages, col-
laborations, etc.) as an argument. The contents of that model (or namespace) are then
matched against the selection criteria outlined by the JPDD parameter (i.e. by classi-
fier pattern "?cPattern"), one by one (see � in Fig. 3). The model elements contained
in the model are selected if their meta attributes (in this case, "isAbstract", "isLeaf",
"isRoot", etc.) as well as their meta relationships (to other model elements, such as
attributes, operations, associations, and generalizations, etc.) comply to the ones de-
fined by classifier pattern "?cPattern" (cf. also section 4.1). This is checked with help
of operations "matchesClassifier" and "matchesRelationships" (see � in Fig. 3),
which in turn make use of operations "possessesMatchingAttribute", "possesses-
MatchingOperation", "possessesMatchingAssociation", and "possessesMatchingPar-
ent" (see � in Fig. 3) – and so forth. It is important to note that relationship matching
also involves matching the participating classifiers (see � in Fig. 3)6. That way,
evaluation cascades from selection criterion to selection criterion, assessing if all se-
lection criteria in the JPDD are fulfilled.

5 Example

With help of the notational means presented in the previous section, we now can de-
fine even complex selection queries without getting lost in its specification.

Fig. 4, for example, depicts a sample JPDD that selects all classifiers (identified
with "?C") (1) matching the name pattern "Con*"; (2) that do not have an attribute
matching "att1" of type "String"; (3) that do have an array attribute matching "att2" of
type "Integer" whose lower bound equates "2", and whose upper bound does not ex-
ceed "100"; (4) that either have an operation matching "set*", or an operation match-
ing "put*" (but not both) that both take one parameter of arbitrary type; (5) that have
an operation matching "get*" that returns an value of arbitrary type; (6) that have an
operation matching "run" that takes (at least) three parameters: (6a) the first parameter
in the operation's parameter list must be of type "Integer", (6b) the last parameter
must be of type "String"; (6c) besides that, the operation must take a third parameter
of type "Real" (no matter at which position in the operation's parameter list). Selected
classifiers must be (7) subtypes of "Collection"; (8) but not subtypes of "Array"; and
(9) they have to have an association to exactly one classifier matching "Database".

Furthermore, selected classifiers must possess an indirect association (i.e., a navi-
gable path) to a classifier (identified with "?Application") (1) matching "*"; (2) that

6 Likewise, attribute and operation matching involves matching of their type and parameter

types, respectively (not shown in Fig. 3).

has an attribute matching "att1" of type "String"; (3) and that has an operation
matching "do*" (identified with "?someOp"), which takes any number of parameters.
That operation must be invoked by some message (identified with "?someMsg"7) (3a)
which in turn invokes method "run" on the former classifier (identified with "?C") –
(3b) no matter when (see "iterating" double-crossed message in right part of Fig. 4) –
and (3c) using arbitrary values as parameters. While the left part of Fig. 4 is matched
against classifiers in class diagrams, the right part is compared to message specifica-
tions in interaction diagrams in which matching classifiers are involved.

Having found actual model elements that comply to these selection criteria, the
JPDD returns the resulting model elements via its template parameters "?C", "?Appli-
cation", and "?someMsg".

6 Related Work

MDA is closely related to the research field of graph transformations [21]. In both
domains, we are concerned with the specification of model (or graph) transformations
and – consequently – with the specification of model (or graph) queries. From that
perspective, JPDDs compare to the left-hand side (LHS) of production rules as we
find them in graph rewrite systems such as PROGRES [23] or AGG [27]. JPDDs dif-
fer from LHS specified in PROGRES in their way to specify constraints on
(class/object) node attributes. In PROGRES, such constraints are either specified us-
ing textual descriptions, or they are attached to the (class/object) node which they
apply to by means of a hollow fat arrow. Both representations differ considerably
from the class/object notation as it is known from the UML. AGG does a better job in
that respect, since attributes are listed within a special attribute compartment inside
the node. On the other hand, though, AGG does not provide for the specification of
paths (e.g., indirect associations) between (class/object) nodes – such as PROGRES
and JPDDs do. The specification means of path expressions in PROGRES go beyond
those of JPDDs: PROGRES gives developers fine-grained control over the evaluation
process of path expressions (by providing conditional and iterative path expressions).

7 Note how the identifier of the message is separated from the identifier of the operation (which

is being called) by means of a colon.

sample_model_query

 ?C
 ?Application
 ?someMsg

1!
Database

<?C>Con*

{not} att1 : String
att2 : Integer [2!..100]

set* (val : *)
put*(par : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes
<?Application>*

att1 : String

<?someOp>do* (..)

 Operations

 Attributes

{xor}

Collection Array

[*] [*] {not}

[*]

run(..)

<?Application>* <?C>Con*

[]

<?someMsg> :
<?someOp>do* (..)

*

Fig. 4. A sample JPDD

Furthermore, it permits the specification of optional nodes. Selection criteria specified
in JPDDs, on the contrary, must be satisfied as a whole; and their evaluation process
is invariable as determined by the OCL statements presented in this paper8.

Apart from the transformation approaches originating in the field of graph trans-
formations, there are a couple of notations around that are explicitly dedicated to the
field of MDA, e.g., the QVT approach presented in [20], or MOLA [10]. The major
problem with these transformation languages is that they specify model queries in
terms of meta model entities. While this may be more convenient when referring to
meta properties that have a standard representation in UML diagrams, it severely hin-
ders the overall comprehension of the queries. Apart form that, JPDDs facilitate the
reuse of model queries since they consider model queries as first-class entities9 which
may be involved in multiple transformations.

Considering that most submissions to OMG's QVT RFP propose to use OCL as a
query language, JPDDs also relate to existing approaches for the visualization of OCL
expressions in general, such as Constraint Diagrams [11] or Visual OCL [4] [12].
Constraint Diagrams represent a graphical notation to specify invariants on objects
and their associations (i.e., links) depending on the state they are in. In consequence
to its strict focus on runtime constraints, the notation does not provide for the specifi-
cation of model element queries, though. In particular, no means are provided to des-
ignate model elements that serve as sources for transformations. Further, the notation
is not concerned with the specification of structural selection constraints, such as ex-
istence of particular features. Visual OCL is a graphical notation to express OCL con-
straints. It provides graphical symbols for all OCL keywords, in particular for the
"select" statement as we need it for model element selection in MDA. However,
similar to the MDA transformation approaches mentioned above, Visual OCL does
not provide for the specification of model element queries in terms of user model en-
tities. In consequence, users are confronted with the full load of OCL complexity – in
particular when specification of indirect relationships (see section 4.3) is necessary.

The idea of specifying queries in terms of user model entities we borrowed from
the approach of Query-By-Example (QBE) [30], which is a common query technique
in the database domain: We specify sample model entities, having sample properties,
and determine how selected model elements must relate to such samples. We make
use of "operator" symbols (such as wildcards, exclamation marks, and double-crossed
lines and arrows) to differentiate whether selected model elements must match the
samples exactly, or with a permissible degree of deviation (e.g., names may be ren-
dered with help of patterns, and/or multiplicity boundaries may be specified to denote
minimum and maximum values rather than perfect matches).

As already mentioned above and discussed in [26], AOSD is another application
area for JPDDs. Here, JPDD are used to visualize selections of join points, i.e., they
render those points in program code, or program execution, that are to be enhanced by
an aspect. In [25], we demonstrate by example how JPDDs may be used to model join
point selections in popular aspect-oriented programming languages. In particular, we
describe how JPDDs may be used to represent pointcuts in AspectJ [2], traversal
strategies in Adaptive Programming [13], or concern mappings in Hyper/J [29].

8 Note that we abstract from evaluation problems of OCL expressions, such as the calculation

of transitive closures (cf. [22]), for example. We consider these problems to be OCL-specific
rather than JPDD-specific.

9 i.e., as an autonomous entity that can exist without further reference to any other entities

7 Conclusion

In this paper, we presented a graphical notation to specify model queries on UML
models. We identified model queries to be prerequisites to model transformations as
they are specified in the Model-Driven Architecture (MDA). We demonstrated that
even simple query specifications tend to become excessive and complex when using a
textual notation. Aiming to overcome this quandary, we introduced Join Point Desig-
nation Diagrams (JPDD) to specify and represent model queries graphically. We ex-
plained their abstract syntax, as well as the graphical means to specify the queries'
selection criteria. We specified OCL operations for the evaluation of such selection
criteria on actual user model elements. We exemplified the use of JPDDs using a
complex model query, demonstrating that even then the query specification remains
comprehensible.

The particular focus of this work has been on providing graphical means for the
specification of model element queries based on lexical similarity (e.g., based on
name and signature patterns) and structural arrangements (e.g., based on indirect rela-
tionships). We extrapolated the need of such selection means from the area of Aspect-
Oriented Software Development (AOSD), where JPDDs were originally developed
for. We think that mapping our graphical means to OCL expressions can assist devel-
opers in both AOSD and MDA when specifying and modeling selections. In particu-
lar, this allows seamless integration of our JPDDs with various submissions to the
MOF QVT RFP, which are proposing to use OCL as a model query language. It is
important to note, though, that JPDDs are not capable – and not intended – to repre-
sent OCL expressions in the general case. Further, it must be stated that JPDDs may
specify only selections on model elements of a kind. It is not possible, for example, to
collectively select UML model elements of different types into the same parameter
(e.g., classes and associations, or all model elements contained in a model). Instead, a
parameter must be defined for each model element type to be selected.

We think, however, that this limitation is more than outranged by the benefits of
specifying model queries in terms of user models, rather than meta models, in order to
facilitate their specification and comprehension to the user. In this paper, we have
concentrated on a query language for the UML. We advocate for the development of
further user model-based query languages in other modeling and domain-specific lan-
guages as well. That way, transformations may be specified as simple as relating one
user-model-based query to another user-model-based query – for the sake of feasibil-
ity and comprehensibility to the user.

References

[1] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen Technologies Corp, Revised Submis-
sion for MOF 2.0 Query / Views / Transformations RFP, 18. Aug. 2003

[2] AspectJ Team, The AspectJ Programming Guide, http://dev.eclipse.org/viewcvs/ index-
tech.cgi/~checkout~/aspectj-home/doc/progguide/index.html, Jan. 2004

[3] Assmann, U. (ed.), Proc. of MDAFA 2004 (Linköping, Sweden, Jun. 2004),
http://www.ida.liu.se/~henla/mdafa2004

[4] Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G., A Visualization of OCL Using
Collaborations, in: Proc. of UML 2001 (Toronto, Canada, Oct. 2001), LNCS 2185, pp.
257-271

[5] CBOP, DSTC, IBM, Revised Submission for MOF 2.0 Query / Views / Transformations
RFP, 18. Aug. 2003 (http://www.dstc.edu.au/pegamento/publications/ad-03-08-03.pdf)

[6] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook on Graph
Grammars, Vol. 2: Applications, Languages, and Tools, World Scientific, River Edge,
NJ, 1999

[7] Filman, R., Elrad, T., Clarke, S., Aksit, M., (eds.), Aspect-Oriented Software Develop-
ment, Addison-Wesley, 2005

[8] Gybels, K., Brichau, J., Arranging language features for more robust pattern-based
crosscuts, in: Proc. of AOSD'03 (Boston, MA, Mar. 2003), ACM, pp. 60-69

[9] Interactive Objects Software, Project Technology, Revised Submission for MOF 2.0
Query / Views / Transformations RFP, 18. Aug. 2003

[10] Kalnins, A., Barzdins, J., Celms, E., Model Transformation Language MOLA, in: [3], pp.
14-28

[11] Kent, S., Constraint Diagrams: Visualizing Assertions in Object-Oriented Models, in:
Proc. of OOPSLA 1997 (Atlanta, Georgia, Oct. 1997), ACM pp. 327-341

[12] Kiesner, Chr., Taentzer, G., Winkelmann, J., Visual OCL: A Visual Notation of the Ob-
ject Constraint Language, TR 2002/23, Technical University Berlin, 2002

[13] Lieberherr, K., Adaptive Object-Oriented Software: The Demeter Method with Propaga-
tion Patterns, PWS Publishing Company, Boston, 1996

[14] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual Components, TR
NU-CCS-99-01, Northeastern University, 1999

[15] Masuhara, H., Kiczales, G., Dutchyn, Chr., A Compilation and Optimization Model for
Aspect-Oriented Programs, in: Proc. of CC 2003 (Warsaw, Poland, Apr. 2003), LNCS
2622, pp. 46-60

[16] OMG, MDA Guide Version 1.0, OMG, 1. May 2003 (omg/2003-05-01)
[17] OMG, Request for Proposal: MOF 2.0 Query / Views / Transformations RFP, 2002

(OMG Document ad/2002-04-10)
[18] OMG, UML 2.0 OCL Specification, Final Adopted Specification, 2003 (OMG Document

pct/03-10-14)
[19] OMG, Unified Modeling Language Specification, Version 1.5, March 2003 (OMG

Document: formal/03-03-01)
[20] QVT-Partners, Revised Submission for MOF 2.0 Query / Views / Transformations RFP,

18. August 2003 (http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf)
[21] Rozenberg, G. (ed.), Handbook of Graph Grammars and Computing by Graph Trans-

formation, Vol. 1: Foundations, World Scientific Publishing, River Edge, NJ, 1997
[22] Schürr, A., Adding Graph Transformation Concepts to UML's Constraint Language

OCL, Electronic Notes in Theoretical Computer Science Vol. 44(4), Elsevier, 2001
[23] Schürr, A., Winter, A., Zündorf, A., PROGRES: Language and Environment, in: [6], pp.

487-550
[24] Stein, D., Hanenberg, St., Unland, R., A Graphical Notation to Specify Model Queries

for MDA Transformations on UML Models, in: [3], pp. 60-74
[25] Stein, D., Hanenberg, St., Unland, R., Modeling Pointcuts, Early Aspect Workshop,

AOSD '04 (Lancaster, UK, Mar. 2004)
[26] Stein, D., Hanenberg, St., Unland, R., Query Models, in: Proc. of UML 2004 (Lisbon,

Portugal, Oct. 2004), LNCS 3273, pp. 98-112
[27] Taentzer, G., Ermel, C., Rudolf, M., The AGG Approach: Language and Environment,

in: [6], pp. 551-603
[28] Tarr, P., Ossher, H., Harrison, W., Sutton Jr., St., N Degrees of Separation: Multi-

Dimensional Separation of Concerns, in: Proc. of ICSE 1999 (Los Angeles, CA, May
1999), ACM, pp. 107-119

[29] Tarr, P., Ossher, H., Hyper/J User and Installation Manual, IBM Corp., 2000
[30] Zloof, M., Query-by-Example: A Data Base Language, IBM Systems Journal, Vol.

16(4), 1977, pp. 324-343

