Roles From an Aspect-Oriented Per spective

Stefan Hanenberg
Dominik Stein
Rainer Unland

University of Duisburg-Essen
Essen, Germany
{shanenbe, dstein, unlandR}@cs.uni-essen.de

Abstract. Roles and aspects have become more and more papthe recent
past. Although similarities as well as differentese been often discussed in
literature, there is still no clear separation tesiw both approaches, nor a con-
vincing statement whether there is a differencala®ne reason for this confu-
sion is caused by the fact that there is a vaoétple systems as well as as-
pect-oriented systems which provide quite differsats of mechanisms for
similar concepts. This paper provides a unifiedwan aspect-oriented systems
based on design dimensions for aspect-orientedragstand maps the notion of
roles to such design dimensions. Based on this imgpthis paper argues that
role systems can be seen as a special kind of tagpented systems having
particular characteristics.

1 Introduction

Roles have been introduced in many different vésida support modern software
development [15]. Their ability to adapt the stuwet and behavior of objects de-
pending on a particular context gave rise to midtigtudies (e.g. [1], [9], [7], [16])
investigating how and in what extent roles comp@areaspects in Aspect-Oriented
Software Development (AOSD) [2], which — after-alare able to do the same thing:
Aspects in AOSD may enhance a given set of objedts additional features and
may influence their dynamic behavior. The compassare difficult to conduct,
though, since different implementations of botlersystems and aspect-oriented sys-
tems differed widely in their realization of thevéioned role or aspect concepts,
respectively. For example, in the aspect-orienteddy there exists a number of dif-
ferent interpretations of the join point concept aorresponding implementations
[7]. Likewise, there are several role systems thatize roles in different ways [15].
Hence, it is difficult to detect constitutional chateristics of either system type, and
to compare them to each other so that to comeareamingful conclusion.

In this paper, we present a comprehensive set si§delimensions that we have
developed for the assessment of aspect-orienteensysits goal is to permit the for-
mulation of qualified statements on the commoreditidifferences, and individual
capabilities of different aspect-oriented systelv& introduce the different design
dimension step by step and, afterwards, apply ttterole systems (as introduced in
[11] and [12]). In taking an aspect-oriented lodkde systems, we are able to iden-
tify in what respect role systems compare to aspeenhted systems, and why and

where there are differences.

The remainder of the paper is structured as folldwghe next section 2, a short
overview to roles is given with help of an examp\ter that (section 3), the various
design dimensions are introduced. In section 4map role systems to those design
dimensions. And finally, in section 5, we conclutle outcomes of our investigation.

2 Roles

Roles (cf. [11] and [12]) are (possibly temporari@ws on objects. They define extra
properties which are added to objects. These nalpepties can be regarded as sub-
jective extrinsicproperties of an object, which can be accessed fhe object's envi-
ronment just like the object's very ovimtrinsic properties. During its lifetime, an
object may adopt and abandon roles. In consequéliféerent role and role proper-
ties may be accessible at different points in tifaéhe same time, an object may play
different roles simultaneously.

One interesting property of roles (especially wioampared to aspect-oriented
programming) is their ability to change the behawiban object. While [3] refers to
this as an intrinsic feature of roles, [11] and][d@em this to be a special kind of role,
which they callmethod role A method role is a method (of a role) which isibo to
an intrinsic method of an object.

For example, Fig. 1 illustrates a person who hasjbks as a bartender. A job is
represented as a (temporal) role in this examptause persons usually do not keep
it for their whole lifetime. The person has a caupf intrinsic properties, such as the
name and the dqte of birtl —
which are not influencec [forefame—] [PhoneNumber_|

by any role. Furthermorelzu’g:‘:f . | [ncome l
-
though, the person hes =7 ! phoIneNurrbteer
1 e oynmen
other properties, such ¢ perso — method role
the telephone number ar bartende

the income, whose meat
ing depend on the role th
person is playing: In spar
time, the telephone nurr
ber should refer to the
person's private (intrinsic
telephone number. DurinFig. 1. Object person with two bartender roles

working time, the tele-

phone number should refer to the person's (extjirtsity telephone number (i.e. the
phone number of the bar where the person is workipgro cope with that situation,

method rolesare used: Depending on the context in which theptedne number is

requested, either the private number or the phangoer of the bar is returned.

phoneNumber

enpl oyment | D

3 Design Dimensions of Aspect-Oriented Systems

In an aspect-oriented system, developers must ke tabspecifywhere an aspect

tackles the base system amolw the aspect adapts the base system. To specify the
"where", developers require features that allowdésignation of (a set of) join points

to which the aspect should be woven to. To spetiéy “how”, developers require
features which permit to describe how exactly eafcthe chosen join points is to be
adapted. In brief, an aspect-oriented system neegsovide a join point representa-
tion of the base system, some language consttatpérmit developers to select join
points, language constructs that permit develofespecify how selected join points
are to be adapted, and a weaver that composesghiimg system.

A join point representation is a specific view on the base system which is ex-
tracted directly from the base application. Ithe task of an aspect-oriented system to
decompose the base application into a number ofgoints (see circles in Fig. 2). To
do so, an aspect-oriented system needs to detemhiaeelements of the base appli-
cation actually represent join points. This decisis based on the aspect-oriented
system'goin point model.

To select join points, aspect-oriented systems ideoa selection language that
permits developers to address some of the jointpdire base system is decomposed
into (see triangles in Fig. 2). This implies thia¢ system must equip join points with
a number of charac-
teristic marks or prop: Base Aspect Specification
erties that developer _application
can refer to, and upo

Join Point
Selection A and

. Join Point :
WhICh the aspect- Representation Adaptation ©
oriented system cal 2 @ [D
deCIde, Whethe,r or _no 1. Decomposition 0‘66:’ ’_/,

a particular join point” basedon O AC—T T Z\@
H - Join Point Model O -1

IS to be Selec'_:e(_j - Join Point Encoding O O"/

These characteristi

marks are extracte 2. Composition (Weaving)
from the base app|ica - Join Point Selection

. - Join Point Adaptation
tion, and are part o

the join point repre- Woven Application

sentation. We call the
extraction of such join
point propertiesjoin
point encoding.
Iec?gr(\:se {;rlg ggler::tifiied Fig. 2. Schematic illustration of aspect-oriented systgshs
developers need lar.
guage constructs that refer to a join point sedactind that specify how the selected
join points are to be adapted. Syom point adaptations are illustrated by means of
hexagons in Fig. 2.

Finally, the aspect-oriented system needs to wHaveesulting system. To do so,
the weaver takes the base system, its join point represemtatis well as the user-
defined selections and adaptations, and composeasdben systein

1 Note, the design dimensions for weavers (i.e.téisbniques being used to compose aspects
with the base system) are beyond of the scopei®ptiper and are not explained in the fol-
lowing sections.

3.1 Design Dimensions of Join Point M odels

The notion of join point differs widely in differéraspect-oriented systems. In this
section we illustrate two design dimensions, réfitecon the different interpretations
of the join point concept.

Level of Dynamicity: Static and Dynamic Join Points
Different aspect-oriented systems have differemt jpoint notions with respect to
their dynamicity. Systems like Hyper/J [14] or $d6] permit to select and adapt
elements which have a direct correspondence iptbgram code; systems like As-
pectJ [10] or AspectS [8] permit to select and adam points due to runtime-
specific information. Therefore, we distinguish weén static join pointand dy-
namic join points:
» Static join point: A static join point is a selectable and adaptatadm that
represents an element in the base program’s code.
* Dynamicjoin point: A dynamic join point is a selectable and adaptabie
time-element from the application’s execution cahte
An example for a static join point is a method digion in Hyper/J or Sally; an ex-
ample for a dynamic join point is a method exeauiio Aspectd (when referred to by
means of dynamic pointcuts).

Level of Abstraction: Structural and Behavioral Join Points

Furthermore, the join point notions in differenipast-oriented systems differ with

respect to their level of abstraction. Systems AkpectJ or Sally permit to select and

adapt method calls, while systems like AspectS fietanselect and adapt method
definitions. Accordingly, we distinguish betweerrustural and behavioral join
points:

e Structural join point: A structural join point is a selectable and adhf#
element that represents a structural abstractiohinmthe based application,
based on an abstraction provided by the underlyingramming language.

» Behavioral join point: A behavioral join point is a selectable and adblat
element in the application that represents a datieoapplication’s behavior,
which is encapsulated by corresponding structwiédling blocks.

Orthogonality of Level of Dynamicity and Level of Abstraction
The dimensions "level of abstractiomhd "level of
dynamicity" can be applied independent of each ott gynamic

i.e. they are orthogonal. In consequence, join tp onpoints | = @ ®
models can be divided along both dimensions at E
: static
same time. . . _ _ join points | 5 @ @
Both orthogonal dimensions are illustrated in Bg. level of abstraction
Aspect-oriented systems do not necessarily nee -
provide only one single point in the matrix. Foaex behavioral - structural
join points join points

ple, introductions in Aspect] are applied to sta
structural join points (type definitions), while lea Fig. 3. Orthogonal dimensions
pointcuts in Aspect] refer to dynamic behaviorat j of join point models

points.

3.2 Design Dimensions of Join Point Properties

Different aspect-oriented systems provide diffenemtperties for join points. In As-
pectJ, for example, method call join points carsélected based on the signature of
the called method, consisting of the method namterm type, and parameter types.
Hence signaturerepresents a property of a method call join pimirkspect], while a
specific signature likeoi d n() represents the value of that signature properta fo
certain join point.

Level of Dynamicity: Static and Dynamic Properties

A fundamental difference between join point projesrts their relationship to runtime

data in the base system. A property likei s in AspectJ, for example, is based on

dynamic system information (@ome portion of the program stdte7]). A property

referring to some parameter décl ar edMet hod in Sally, on the other hand, is

based on static system information (i.e. infornmatioat is available at a static analy-

sis of the base application).

e Staticjoin point property: A join point property is static if its values che
directly derived from the base system’s code.

» Dynamic join point property: A join point property is dynamic if runtime-
specific information is needed in order to provide corresponding values.

Directness of Property Correspondence: Direct and Abstract Property

Correspondence

The "directness of property correspondence" dineendistinguishes between prop-

erties that can be directly derived from the datailable at the corresponding join

point, and those that require further computatidrar. example, the declared return
type of a method declaration join point representdirect correspondence property
because the return type (or the name of the réype) directly appears in the source
codé. Other properties, such as "number of parametésiiever, do not (literally)
appear in the source code; it must be computed thenmethod parameter list at the
corresponding method declaration join point. Acaagty, we distinguish:

» Direct property correspondence: A property has a direct correspondence if
the property can be directly derived from the datailable at the corre-
sponding join point.

* Abstract property correspondence: A property
has an abstract correspondence if the prop ...
does not directly represent some data availabl
the corresponding join point. Additional comp
tations by the aspect-oriented system are nee static
in order to provide the corresponding property.

dynamicity

Level of correspondence_
direct abstract

The dimensions "level of dynamicity” of join poil _)
properties and “directness of property correspFig- 4. Orthogonal dimensions
dence" are orthogonal to each other (see Fig. 4). ofjoin point properties

2 Such properties are prerequisite for the thxical crosscutting as introduced in [13] which
says thathe join points [...] consist of names that appeathi@ implementation [...]

3.3 Design Dimensions of Properties Addressing

Having extracted join points and their propertiesnf a base application, aspect-
oriented systems need to provide means to condtraijoin point properties for ac-
tual selection. In the following, two (orthogondBsign dimensions are described that
categorize possible ways to do so (see Fig. 5).

Level of Dynamicity: Lexical and indirect addressing
In the most trivial case, the aspect-oriented sygteovides language constructs that
permit developers to specify the value of a certaioperty. This corresponds, for
example, to the specification of a class hame withitype pattern in AspectJ. This
class name is lexically compared against all cteesses in the application, and all
matching classes are selected. This kind of joimtpgelection is the most straight
forward way and all known aspect-oriented systeoviple it. Lexical crosscutting

[13] as well a=numeration-based crosscuttifd] are based on such an join point

property addressing.

In contrast to this, AspectJ allows to specify jpwint selections without referring
to the join point's properties in a lexical way Using the+ operator. By doing so, it
is possible to select a join point based on the tydationship between a join point
property and another type. That is, there is nicéxcorrespondence between the
specified selection criteria and the matching propealue.

Recognizing this substantial difference, we idgntlie "directness of value ad-
dressing“as a design dimension of join point selection lagguconstructs and dis-
tinguish between lexical value addressamgl indirect value addressing:

» Lexical value addressing: A language constructs for the selection of join
points provides a lexical value addressing if tlewedoper needs to specify
the lexical characteristics of the property’s value

* Indirect value addressing: A language construct for the selection of join
points provides an indirect value addressing if dexeloper may specify
characteristics of the property’s value in a notidal way.

Closed and open value addressing

In AspectJ and Hyper/J, it is possible to use vaitds for addressing join point prop-
erties. Such wildcards permit to specify a valueadfertain join point property not
(necessarily) in its entirety, but (also) only iargs. This is particularly interesting
when base applications are based on a number ahgamnventions.

The characteristic of such an addressing in corsparto a pure enumeration of
properties is that it refers to an infinite setposibly matching join point properties:
Join points that are added to the system duringsysvolution can be taken care of.
With that in mind, we distinguish between closedugaaddressing@nd open value
addressing and call the design dimension the "cggnaof value addressing™:

» Closad value addressing: An aspect-oriented system provides a closed value
addressing if it allows to specify a finite setvalues for a given property, i.e.
it is known how many values match the selectiospatification time.

* Open value addressing: A join point selection language permits an open
value specification if it permits to specify animfe set of values for a given
property.

c
Indirect value 0 =
addressing 2 structural 5
£ o
8 <
lexical % f_“
value addressing S
Openness _ behavioral | '©
closed value open value 2 constructiveness
addressing addressing - - -
constructive destructive
Fig. 5. Orthogonal dimensions of Fig. 6. Orthogonal design dimensions of join
join point property addressing point adaptation

3.4 Design Dimensions of Join Point Adaptation

The design dimensions for join point models and jodint selections determine the
(characteristics of) elements that can be seleated(eventually) adapted. However,
they do not describe how the adaptation can beabytaccomplished. This section
describes three (orthogonal) design dimensionsgalohich join point adaptation

techniques can be classified (see Fig. 6).

Level of Adaptation: Structural and Behavioral Adaptation

The first dimension is based on the observatioh ititeoductions and advice in As-

pectJ, for example, differ substantially: Introdans are structural adaptations while

an advice is a behavior adaptation. Consequentyidentify the design dimension

"level of adaptation'and distinguish between structural join point adaphand be-

havioral join point adaptation.

e Structural join point adaptation: An aspect-oriented system provides
structural join point adaptations if there are ¢nngs that permit to change
the structure of the join points such constructsresto.

» Behavioral join point adaptation: An aspect-oriented system provides be-
havioral join point adaptations if there are comsts that permit to change the
behavior of the join point the construct referqudthout changing its struc-
tural appearance).

Level of Constructiveness: Constructive and Destructive Adaptation
Advice in Aspect] and bracket relationships in Hipeermit to change the behavior
at behavioral join points. This can be accomplisbech that the original join point
remains (potential) part of the system, and onbjitexhal behavior is executed before
or after the join point (e.g. by means of beforel after advice in AspectJ, or an
around advice with a call to proceed). On the offeerd, though, the adaptation at a
given join point may also lead to the definite epéion of that join point from the
system (e.g. by means of an around advice in A3pedthout a call to proceed).
Based on this observation, we identify the "cortdiveness of an adaptation$ a
separate design dimension for join point adaptati@nd distinguish betweese-
structive join point adaptaticand constructive join point adaptation:

» Destructive join point adaptation: An aspect-oriented system provides de-
structive join point adaptations if the adaptatietessarily replaces its join
point,i.e. the original join point is no longer (patial) part of the application.

» Constructive join point adaptation: An aspect-oriented system provides
constructive join point adaptations if the adaptatidoes not necessarily
change the original join point such that the jodinp has no longer the same
properties after weaving as it had before weaving.

Level of Join Point Abstraction: Variable and Fix Abstraction

Systems like AspectJ provide the ability to exposetext information (from the base
application) to the advice by means of pointcuapaters. That is, the context infor-
mation to be used within the join point adaptai®defined in the corresponding join
point selection (among others). Consequently, thta dvailable for adaptation at a
certain join point possibly varies from adaptatioradaptation.

This is unlike to systems like AspectS. Here, gaebthod execution) join point is
provided with a list representing the list of pastens being passed to the method.
Imagine now that a single adaptation needs to nefedwo method execution join
points with two different shadow join points, amat the adaptation needs to refer to
the first method’s first parameter and the secoerthod’s second parameter. Then, it
is up to the developer to select the appropriatarpater within the adaptation (rather
than within the selection).

Reflecting on this difference, we identify the "&\of join point abstractionas
another design dimension of aspect-oriented systanusdistinguish between fand
variable join point abstraction:

» Fix join point abstraction: An aspect-oriented system provides a fix join
point abstraction if the join point abstractiontstext is fix for all join points

» Variablejoin point adaptation: An aspect-oriented system provides a vari-
able join point abstraction if the developer cadividually specify what
context information the adaptation operates on.

4 Mapping Role Modelsto Design Dimensions

In order to regard role models from the aspectrteie perspective, we now map their
characteristics to the previously described dedigrensions.

4.1 Join Point M ode€l

In order to understand the join point model in re¥stems, it is necessary to discuss
the different selectable and adaptable elementdénsystems:

First, roles can be applied (or "bound") to obje@tse role enhances the interface
of the object which it is applied to. Consequendly,object represents a join point for
roles. In class-based languages, objects reprdgramicandstructuraljoin points.

Second, method roles are defined for particulathoed of the objects which the
role is applied to. Such methods also represtmnttural join points. Since method
roles adapt only methods of objects (which they aplied to), method-roles also
refer todynamicstructural join points.

4.2 Join Point Propertiesand Property Addressing

Join point properties in role systems are, firsalyfthe target objects to which a par-
ticular role is applied. Furthermore, the targethod is characterized by its method
signature.

The target object is obviously dynamicproperty which has direct correspon-
dence The property is being addresdesically as the value of the property has to be
specified directly, i.e. the very object has todedivered. Beyond that, the property is
being addressed in apenway as roles can be applied to arbitrary objects.

The way of how signatures are represented depanoisgly on the underlying
object-oriented language: On the one hand, all knobject-oriented languages iden-
tify methods by name. Such a name can be direehved from the application’s
source code. Consequently, the method namesiatiz property with adirect corre-
spondenceOn the other hand, typed languages might prosulditional properties
for signatures that refer to the parameter typektha return type, for example. In
case, method roles require a static matching aimater and return types defined in
the target and role method, there is a (structupedperty referring to the declared
parameter types, and a property referring to tlodaded return type. Again, both such
properties arstatic properties with airect correspondence

In the role model as introduced in [11] and [12] eéements of the signature need
to be addressed inlexical way. Furthermore, each property needs to be spddif a
closedway.

4.3 Join Point Adaptation

The two ways of adapting join points are roles thelves and method roles defined
within roles.

Roles define a number of new members for objecty tire applied to. Conse-
guently, roles (containing at least one memberyesgntstructural adaptations of
objects. From the role model introduced in secpit is not clear whether roles can
override methods, i.e. whether a method definetimia role (no method role!) could
override a method already existent in the bouneaibjln case this is not possible,
each method defined in a role is a pooastructivejoin point adaptation. In respect
to its join point abstraction the context of a ridedetermined by the complete join
point — the way of how a target object is selealeds not change the context in
which the adaptation occurs. Consequently, roles la#ix join point abstraction.

Method roles represent another kind of adaptatioit: ("heir underlying join
points are method definitions (of the bound objelect)contrast to ordinary members
defined within roles, method roles do not changedhject’s structure — they rather
adapt the behavior of a certain method. Consequeatinethod role is bhehavioral
adaptation of the dynamic structural method dedinifoin point.

The adaptation of the original method could be trontve as well as destructive:
In case the method role refers to the original methhe adaptation onstructivein
case the method role does not refer to the origimethod, the adaptation @estruc-
tive. In respect to the join point abstraction, metholds have the same context as
their join point — they have the same parametéesy tefer to the same object, and
they have an additional element in the context iwefers to the role itself. Conse-
quently, a method role does not have a contexhdéfby the corresponding selec-
tion. Hence, a method role hafixajoin point abstraction (too).

5 Redated Work

[9] investigates different ways how roles can b@lamented with aspects. Several
options are discussed: The first option is to defiole members in an aspect, which
are then statically introduced to a class (thisiéetp a violation of role dynamicity,
though). Another possibility is to use aspects talify the behavior of already exis-
tent members of objects. In its ultimate, this nefrat all role members are statically
implemented in an object, and dynamic aspectsdeptrany access to "invalid" role
members (and/or adapt any access to "valid" rolmibees in a role-specific way).
Apart from that, all role members can be encapsdlat an aspect (i.e. an aspect in-
stance), which maintains the role relationshipshifects as well as the role context
(this enables role multiplicity, in particular).rflly, aspects can be used to "glue"
objects to "role objects” (i.e. regular objectd fhagplement the role members).

Although the work presented in [9] unveils sometef core characteristics of as-
pect-oriented systems, it deems aspect-orientéabidie a promising yet complemen-
tary technique to implement role models rather ttmme a software development
approach on its own. Consequently, it does notetoptate on the similarities and
differences between the conceptual ideas of agpesited systems and role systems,
and focuses on implementation concerns only.

One of the first comparisons of the conceptualsdefaaspect-oriented systems and
role systems has been conducted in [7]. The apprdadves a couple of conceptual
characteristics of aspects by investigating promtireespect-oriented programming
languages (i.e. AspectJ and HypeBistributed Effect{aspects may affect multiple
objects at the same tim&ardinality (aspect methods, e.g. advice, may be applied to
multiple methods)Context Dependendaspects may affect objects and actions de-
pending on a certain context, e.g. depending orcétier of a method invocation),
Deployment(aspects are applied to objects indirectly in g join point selec-
tions).

These characteristics are compared to the condephaaacteristics of roles as
mentioned in [11] and [12}Visibility (roles can restrict the visibility and access to
objects),Dependencyroles cannot exist without their affiliated o€ Identity (an
object and its role can be manipulated and viewedre entity) Dynamicity (roles
can be added and removed during an object's ligtiMultiplicity (an object can
have more than one instance of the same role adaime time)Abstractivity (roles
can be classified and organized in generalizati@haggregation hierarchiegxten-
sion only(a role can only add further properties to th@iodl object and cannot re-
move any).

Fundamental differences have been identified vapect to thédentity andMul-
tiplicity of roles: Aspects do not have to be instantiatedefery object they are ap-
plied to. Furthermore, the same aspect may infleenaltiple objects at the same
time. Hence, aspects and objects usually do nat fosingle entity. Apart from that,
the same aspect is usually not applied to the s#bjext multiple times (even tough
this would be technically possible). On the othand, roles differ from aspects with
respect to theibDistributed Effect{unlike aspects, roles affect a single object pnly
Cardinality (a role method is usually assigned to a singlehotet(of the affiliated
object)), Context Dependencfroles usually do not affect objects dependingaon
varying contexd, Deploymeni(roles are affiliated to objects directly by enuatang

3 Although it should be mentioned that Kristensemnoiduces the (conceptual) notionlafcal-

their names).

The outcomes of [7] are elucidating yet somewhah@t The main problem is
that only implementation-specific details of pautar aspect-oriented systems (i.e., of
Aspectd and Hyper/J) are considered. Thereforeptiteomes cannot be considered
to represent conceptual foundations for aspectsaapéct-oriented systems in gen-
eral. The dimensions presented in this paper, ecdntrary, can be used as a general
gauge to assess the conceptual differences ofasbéspect-oriented systems. In [5],
we demonstrate how different aspect-oriented systerap to these design dimen-
sions. Furthermore, we elucidated how the dimemssgam help in identifying aspect-
oriented systems that could be candidates for my@eimentation of a particular
problem.

6 Conclusion

In this paper, we have presented a number of (gathal) design dimensions that we
have derived for the assessment of different aspéemnted systems. These dimen-
sions have been identified by investigating théedénces and commonalities of dif-
ferent existing aspect-oriented systems. The dilnagasnclude characteristics of the
join point model, the join point properties, thénjpoint property addressing, as well
as the join point adaptation. Then, we have takexteasystems (the one introduced in
[11] and [12]) and mapped it against the designedisions. In doing so, the differ-
ence of this role system compared to other (pdatirwaspect-oriented systems be-
come manifest:

The role system described in [11] and [12] compaeegother) aspect-oriented
systems in that it provides join points which cansklected and adapted, and in that it
provides the language constructs to actually d@.soit allows the selection of join
points by addressing particular join point progestiand it allows the adaptation of
the selected join points). Differences become neshiin the precise capabilities of
the role system to select and adapt join pointgdriicular, the join point selection
capabilities are rather limited: For example, ihdg possible to apply method roles to
an arbitrary set of target methods inagpenway. In consequence, the role system is
rather inflexible against system evolution. Likesyi¢he role system does not provide
capabilities toabstract over the join points' context, such as method rpatars —
which, for example, is possible in Aspect] using dhgs pointcut designator. In
consequence, developers have no means to narromuthber of parameters at dif-
ferent method definition join points to those whae of actual interest.

The observations made in this paper are not netlgsganeralizable to all role
systems. Other role system implementations maynfii other quadrants of the de-
scribed design dimensions. Consequently, they coanp®re or less to other par-
ticular aspect-oriented systems. Thanks to thegdedimensions presented in this
paper, we have now a gauge at hand that allowssarcestimation of the similarities
and the differences between two arbitrary systarmasnfatter if they are called "role-
oriented" or "aspect-oriented").

ity, according to which a role is available only ircertain context. Within this context,
though, roles act context-insensitive, e.g. dodigtinguish between different callers.

References

[1]
(2]
(3]
[4]
5]
(6]
[7]
(8]
9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

Bardou, D.,Roles, Subjects and Aspects: How do they relaispect Oriented Pro-
gramming Workshop (AOP) at ECOOP '98, BrusselsgiBeti, July 21, 1998

Filman, R.,Elrad, T., Clarke, S.Aksit, M., Aspect-Oriented Software Developn,
Addison-Wesley, 2004

Gottlob, G.,Schrefl, M.,Rdck, B.,Extending Object-Oriented Systems with F,
ACM Transactions on Information Systems, Vol. 14, R, July 1996, pp. 268-296
Gybels, K., Brichau, JArranging Language Features for More Robust Pateased
Crosscutsin: Proc. of AOSD 2003, Boston, MA, ACM, pp. 60-6

Hanenberg, S., Stein, CUnland, R.,Eine Taxonomiefir aspektorientierteSystem,
in: Proc. of SE'05, Essen, Germany, LNI 64 Gl 2G1b,167-178

Hanenberg, S., Unland, RRarametric Introductionsin: Proc. of AOSD 2003, Bos-
ton, MA, ACM, pp. 80-89

Hanenberg, S., Unland, RRoles and Aspects: Similarities, Differences, agyde®
getic Potentiglin: Proc. of OOIS'02, Montpellier, France, LNC&8, pp. 507-520
Hirschfeld, R.,AspectS - Aspect-Oriented Programming with Sg, in: Proc. o
NODE'02, Erfurt, Germany, LNCS 2591, pp. 216-232

Kendall, E.A.,Role Model Designs and Implementations with Aspgefited Pro-
gramming in: Proc. of OOPSLA'99, Denver, CO, SIGPLAN Netc34(10), pp. 353-
369

Kiczales, G., Hilsdale, E., Hugunin, J., Kerst®., Palm, J., Griswold, W. GAn
Overview ofAspect, in: Proc. of ECOOP'01, Budapest, Hungary, LNCS 207z
327-353

Kristensen, B.B.Object-Oriented Modeling with Ro, in: Proc. of OOIS'95, Dubli
Ireland, Springer, 1995, pp. 57-71

Kristensen, B.B., @sterbye, KRoles: Conceptual Abstraction Theory & Practical
Language Issuedn: Proc. of TAPOS, Vol. 2, No. 3, 1996, pp. 14&0

Lieberherr, K., Lorenz, D., Mezini, MProgramming with Aspectual Compong,
Northeastern University, TR NU-CCS-99-01, Bostor,M999

Ossher, H., Tarr, PUsing multidimensional separation of concerns gghape
evolving softwareCommunication of the ACM, 44 (10), 2001, pp. 4B8-5

Steimann, F.On the representation of roles in object-oriented @onceptual model-
ling, Data & Knowledge Engineering, 35 (1), 2000, pp-186

Steimann, F.Why most domain models are aspect, Aspect-Oriented Modelir
Workshop (AOM) at UML'04, Lisbon, Portugal, Octolddlr, 2004

Wand, M., Kiczales, G., Dutchyn, CA Semantics for Advice and Dynamic .
Points in AspectOriented ProgrammindVorkshop on Foundations Of Aspect-
Oriented Languages (FOAL) at AOSD'02, Enschede,Nétberlands, April 22, 2002

