
Roles From an Aspect-Oriented Perspective

Stefan Hanenberg
Dominik Stein
Rainer Unland

University of Duisburg-Essen
Essen, Germany

{shanenbe, dstein, unlandR}@cs.uni-essen.de

Abstract. Roles and aspects have become more and more popular in the recent
past. Although similarities as well as differences have been often discussed in
literature, there is still no clear separation between both approaches, nor a con-
vincing statement whether there is a difference at all. One reason for this confu-
sion is caused by the fact that there is a variety of role systems as well as as-
pect-oriented systems which provide quite different sets of mechanisms for
similar concepts. This paper provides a unified view on aspect-oriented systems
based on design dimensions for aspect-oriented systems, and maps the notion of
roles to such design dimensions. Based on this mapping, this paper argues that
role systems can be seen as a special kind of aspect-oriented systems having
particular characteristics.

1 Introduction

Roles have been introduced in many different variants to support modern software
development [15]. Their ability to adapt the structure and behavior of objects de-
pending on a particular context gave rise to multiple studies (e.g. [1], [9], [7], [16])
investigating how and in what extent roles compare to aspects in Aspect-Oriented
Software Development (AOSD) [2], which – after all – are able to do the same thing:
Aspects in AOSD may enhance a given set of objects with additional features and
may influence their dynamic behavior. The comparisons are difficult to conduct,
though, since different implementations of both role systems and aspect-oriented sys-
tems differed widely in their realization of the envisioned role or aspect concepts,
respectively. For example, in the aspect-oriented world, there exists a number of dif-
ferent interpretations of the join point concept and corresponding implementations
[7]. Likewise, there are several role systems that realize roles in different ways [15].
Hence, it is difficult to detect constitutional characteristics of either system type, and
to compare them to each other so that to come to a meaningful conclusion.

In this paper, we present a comprehensive set of design dimensions that we have
developed for the assessment of aspect-oriented systems. Its goal is to permit the for-
mulation of qualified statements on the commonalities, differences, and individual
capabilities of different aspect-oriented systems. We introduce the different design
dimension step by step and, afterwards, apply them to role systems (as introduced in
[11] and [12]). In taking an aspect-oriented look at role systems, we are able to iden-
tify in what respect role systems compare to aspect-oriented systems, and why and

where there are differences.
The remainder of the paper is structured as follows: In the next section 2, a short

overview to roles is given with help of an example. After that (section 3), the various
design dimensions are introduced. In section 4, we map role systems to those design
dimensions. And finally, in section 5, we conclude the outcomes of our investigation.

2 Roles

Roles (cf. [11] and [12]) are (possibly temporary) views on objects. They define extra
properties which are added to objects. These role properties can be regarded as sub-
jective extrinsic properties of an object, which can be accessed from the object's envi-
ronment just like the object's very own intrinsic properties. During its lifetime, an
object may adopt and abandon roles. In consequence, different role and role proper-
ties may be accessible at different points in time. A the same time, an object may play
different roles simultaneously.

One interesting property of roles (especially when compared to aspect-oriented
programming) is their ability to change the behavior of an object. While [3] refers to
this as an intrinsic feature of roles, [11] and [12] deem this to be a special kind of role,
which they call method role: A method role is a method (of a role) which is bound to
an intrinsic method of an object.

For example, Fig. 1 illustrates a person who has two jobs as a bartender. A job is
represented as a (temporal) role in this example because persons usually do not keep
it for their whole lifetime. The person has a couple of intrinsic properties, such as the
name and the date of birth,
which are not influenced
by any role. Furthermore,
though, the person has
other properties, such as
the telephone number and
the income, whose mean-
ing depend on the role the
person is playing: In spare
time, the telephone num-
ber should refer to the
person's private (intrinsic)
telephone number. During
working time, the tele-
phone number should refer to the person's (extrinsic) duty telephone number (i.e. the
phone number of the bar where the person is working at). To cope with that situation,
method roles are used: Depending on the context in which the telephone number is
requested, either the private number or the phone number of the bar is returned.

3 Design Dimensions of Aspect-Oriented Systems

In an aspect-oriented system, developers must be able to specify where an aspect

method role

bartender

person

phoneNumber

income

phoneNumber

income

bartender

employmentID

phoneNumber

income

employmentID

foreName

surName

dayOfBirth

Fig. 1. Object person with two bartender roles

tackles the base system and how the aspect adapts the base system. To specify the
"where", developers require features that allow the designation of (a set of) join points
to which the aspect should be woven to. To specify the “how”, developers require
features which permit to describe how exactly each of the chosen join points is to be
adapted. In brief, an aspect-oriented system needs to provide a join point representa-
tion of the base system, some language constructs that permit developers to select join
points, language constructs that permit developers to specify how selected join points
are to be adapted, and a weaver that composes the resulting system.

A join point representation is a specific view on the base system which is ex-
tracted directly from the base application. It is the task of an aspect-oriented system to
decompose the base application into a number of join points (see circles in Fig. 2). To
do so, an aspect-oriented system needs to determine what elements of the base appli-
cation actually represent join points. This decision is based on the aspect-oriented
system's join point model.

To select join points, aspect-oriented systems provide a selection language that
permits developers to address some of the join points the base system is decomposed
into (see triangles in Fig. 2). This implies that the system must equip join points with
a number of charac-
teristic marks or prop-
erties that developers
can refer to, and upon
which the aspect-
oriented system can
decide whether or not
a particular join point
is to be selected.
These characteristic
marks are extracted
from the base applica-
tion, and are part of
the join point repre-
sentation. We call the
extraction of such join
point properties join
point encoding.

Once join point se-
lections are specified,
developers need lan-
guage constructs that refer to a join point selection and that specify how the selected
join points are to be adapted. Such join point adaptations are illustrated by means of
hexagons in Fig. 2.

Finally, the aspect-oriented system needs to weave the resulting system. To do so,
the weaver takes the base system, its join point representation, as well as the user-
defined selections and adaptations, and composes the woven system1.

1 Note, the design dimensions for weavers (i.e. the techniques being used to compose aspects

with the base system) are beyond of the scope of this paper and are not explained in the fol-
lowing sections.

Base
application

Join Point
Representation

Join Point
Selection and

Adaptation

Decomposition

2. Composition (Weaving)

Woven Application

1.
based on
 - Join Point Model
 - Join Point Encoding

based on
 - Join Point Selection
 - Join Point Adaptation

Aspect Specification

Fig. 2. Schematic illustration of aspect-oriented systems [5]

3.1 Design Dimensions of Join Point Models

The notion of join point differs widely in different aspect-oriented systems. In this
section we illustrate two design dimensions, reflecting on the different interpretations
of the join point concept.

Level of Dynamicity: Static and Dynamic Join Points
Different aspect-oriented systems have different join point notions with respect to
their dynamicity. Systems like Hyper/J [14] or Sally [6] permit to select and adapt
elements which have a direct correspondence in the program code; systems like As-
pectJ [10] or AspectS [8] permit to select and adapt join points due to runtime-
specific information. Therefore, we distinguish between static join points and dy-
namic join points:
• Static join point: A static join point is a selectable and adaptable item that

represents an element in the base program’s code.
• Dynamic join point: A dynamic join point is a selectable and adaptable run-

time-element from the application’s execution context.
An example for a static join point is a method definition in Hyper/J or Sally; an ex-

ample for a dynamic join point is a method execution in AspectJ (when referred to by
means of dynamic pointcuts).

Level of Abstraction: Structural and Behavioral Join Points
Furthermore, the join point notions in different aspect-oriented systems differ with
respect to their level of abstraction. Systems like AspectJ or Sally permit to select and
adapt method calls, while systems like AspectS permit to select and adapt method
definitions. Accordingly, we distinguish between structural and behavioral join
points:
• Structural join point: A structural join point is a selectable and adaptable

element that represents a structural abstraction within the based application,
based on an abstraction provided by the underlying programming language.

• Behavioral join point: A behavioral join point is a selectable and adaptable
element in the application that represents a part of the application’s behavior,
which is encapsulated by corresponding structural building blocks.

Orthogonality of Level of Dynamicity and Level of Abstraction
The dimensions "level of abstraction" and "level of
dynamicity" can be applied independent of each other,
i.e. they are orthogonal. In consequence, join point
models can be divided along both dimensions at the
same time.

Both orthogonal dimensions are illustrated in Fig. 3.
Aspect-oriented systems do not necessarily need to
provide only one single point in the matrix. For exam-
ple, introductions in AspectJ are applied to static,
structural join points (type definitions), while call-
pointcuts in AspectJ refer to dynamic behavioral join
points.

dynamic
join points

static
join points d

yn
am

ic
it

y

level of abstraction

behavioral
join points

structural
join points

1

2

3

4

Fig. 3. Orthogonal dimensions
of join point models

3.2 Design Dimensions of Join Point Properties

Different aspect-oriented systems provide different properties for join points. In As-
pectJ, for example, method call join points can be selected based on the signature of
the called method, consisting of the method name, return type, and parameter types.
Hence, signature represents a property of a method call join point in AspectJ, while a
specific signature like void m() represents the value of that signature property for a
certain join point.

Level of Dynamicity: Static and Dynamic Properties
A fundamental difference between join point properties is their relationship to runtime
data in the base system. A property like this in AspectJ, for example, is based on
dynamic system information (or some portion of the program state [17]). A property
referring to some parameter of declaredMethod in Sally, on the other hand, is
based on static system information (i.e. information that is available at a static analy-
sis of the base application).
• Static join point property: A join point property is static if its values can be

directly derived from the base system’s code.
• Dynamic join point property: A join point property is dynamic if runtime-

specific information is needed in order to provide the corresponding values.

Directness of Property Correspondence: Direct and Abstract Property
Correspondence
The "directness of property correspondence" dimension distinguishes between prop-
erties that can be directly derived from the data available at the corresponding join
point, and those that require further computations. For example, the declared return
type of a method declaration join point represents a direct correspondence property
because the return type (or the name of the return type) directly appears in the source
code2. Other properties, such as "number of parameters", however, do not (literally)
appear in the source code; it must be computed from the method parameter list at the
corresponding method declaration join point. Accordingly, we distinguish:
• Direct property correspondence: A property has a direct correspondence if

the property can be directly derived from the data available at the corre-
sponding join point.

• Abstract property correspondence: A property
has an abstract correspondence if the property
does not directly represent some data available at
the corresponding join point. Additional compu-
tations by the aspect-oriented system are needed
in order to provide the corresponding property.

The dimensions "level of dynamicity" of join point
properties and "directness of property correspon-
dence" are orthogonal to each other (see Fig. 4).

2 Such properties are prerequisite for the term lexical crosscutting as introduced in [13] which

says that the join points […] consist of names that appear in the implementation […].

dynamic

static d
yn

am
ic

it
y

Level of correspondence
direct abstract

Fig. 4. Orthogonal dimensions
of join point properties

3.3 Design Dimensions of Properties Addressing

Having extracted join points and their properties from a base application, aspect-
oriented systems need to provide means to constrain the join point properties for ac-
tual selection. In the following, two (orthogonal) design dimensions are described that
categorize possible ways to do so (see Fig. 5).

Level of Dynamicity: Lexical and indirect addressing
In the most trivial case, the aspect-oriented system provides language constructs that
permit developers to specify the value of a certain property. This corresponds, for
example, to the specification of a class name within a type pattern in AspectJ. This
class name is lexically compared against all class names in the application, and all
matching classes are selected. This kind of join point selection is the most straight
forward way and all known aspect-oriented system provide it. Lexical crosscutting
[13] as well as enumeration-based crosscutting [4] are based on such an join point
property addressing.

In contrast to this, AspectJ allows to specify join point selections without referring
to the join point's properties in a lexical way by using the + operator. By doing so, it
is possible to select a join point based on the type relationship between a join point
property and another type. That is, there is no lexical correspondence between the
specified selection criteria and the matching property value.

Recognizing this substantial difference, we identify the "directness of value ad-
dressing" as a design dimension of join point selection language constructs and dis-
tinguish between lexical value addressing and indirect value addressing:
• Lexical value addressing: A language constructs for the selection of join

points provides a lexical value addressing if the developer needs to specify
the lexical characteristics of the property’s value.

• Indirect value addressing: A language construct for the selection of join
points provides an indirect value addressing if the developer may specify
characteristics of the property’s value in a non-lexical way.

Closed and open value addressing
In AspectJ and Hyper/J, it is possible to use wildcards for addressing join point prop-
erties. Such wildcards permit to specify a value of a certain join point property not
(necessarily) in its entirety, but (also) only in parts. This is particularly interesting
when base applications are based on a number of naming conventions.

The characteristic of such an addressing in comparison to a pure enumeration of
properties is that it refers to an infinite set of possibly matching join point properties:
Join points that are added to the system during system evolution can be taken care of.
With that in mind, we distinguish between closed value addressing and open value
addressing and call the design dimension the "openness of value addressing":
• Closed value addressing: An aspect-oriented system provides a closed value

addressing if it allows to specify a finite set of values for a given property, i.e.
it is known how many values match the selection at specification time.

• Open value addressing: A join point selection language permits an open
value specification if it permits to specify an infinite set of values for a given
property.

3.4 Design Dimensions of Join Point Adaptation

The design dimensions for join point models and join point selections determine the
(characteristics of) elements that can be selected and (eventually) adapted. However,
they do not describe how the adaptation can be actually accomplished. This section
describes three (orthogonal) design dimensions along which join point adaptation
techniques can be classified (see Fig. 6).

Level of Adaptation: Structural and Behavioral Adaptation
The first dimension is based on the observation that introductions and advice in As-
pectJ, for example, differ substantially: Introductions are structural adaptations while
an advice is a behavior adaptation. Consequently, we identify the design dimension
"level of adaptation" and distinguish between structural join point adaptation and be-
havioral join point adaptation.
• Structural join point adaptation: An aspect-oriented system provides

structural join point adaptations if there are constructs that permit to change
the structure of the join points such constructs refers to.

• Behavioral join point adaptation: An aspect-oriented system provides be-
havioral join point adaptations if there are constructs that permit to change the
behavior of the join point the construct refers to (without changing its struc-
tural appearance).

Level of Constructiveness: Constructive and Destructive Adaptation
Advice in AspectJ and bracket relationships in Hyper/J permit to change the behavior
at behavioral join points. This can be accomplished such that the original join point
remains (potential) part of the system, and only additional behavior is executed before
or after the join point (e.g. by means of before and after advice in AspectJ, or an
around advice with a call to proceed). On the other hand, though, the adaptation at a
given join point may also lead to the definite exemption of that join point from the
system (e.g. by means of an around advice in AspectJ, without a call to proceed).

Based on this observation, we identify the "constructiveness of an adaptation" as a
separate design dimension for join point adaptations, and distinguish between de-
structive join point adaptation and constructive join point adaptation:

closed value
addressing

open value
addressing

lexical
value addressing

Indirect value
addressing

d
ir

ec
tn

es
s

Openness

Fig. 5. Orthogonal dimensions of
join point property addressing

structural

behavioral

le
ve

l o
f

ad
ap

ta
ti

o
n

constructiveness
constructive destructive

join point abstraction

fix

variable

Fig. 6. Orthogonal design dimensions of join
point adaptation

• Destructive join point adaptation: An aspect-oriented system provides de-
structive join point adaptations if the adaptation necessarily replaces its join
point,i.e. the original join point is no longer (potential) part of the application.

• Constructive join point adaptation: An aspect-oriented system provides
constructive join point adaptations if the adaptation does not necessarily
change the original join point such that the join point has no longer the same
properties after weaving as it had before weaving.

Level of Join Point Abstraction: Variable and Fix Abstraction
Systems like AspectJ provide the ability to expose context information (from the base
application) to the advice by means of pointcut parameters. That is, the context infor-
mation to be used within the join point adaptation is defined in the corresponding join
point selection (among others). Consequently, the data available for adaptation at a
certain join point possibly varies from adaptation to adaptation.

This is unlike to systems like AspectS. Here, each (method execution) join point is
provided with a list representing the list of parameters being passed to the method.
Imagine now that a single adaptation needs to refer to two method execution join
points with two different shadow join points, and that the adaptation needs to refer to
the first method’s first parameter and the second method’s second parameter. Then, it
is up to the developer to select the appropriate parameter within the adaptation (rather
than within the selection).

Reflecting on this difference, we identify the "level of join point abstraction" as
another design dimension of aspect-oriented systems, and distinguish between fix and
variable join point abstraction:
• Fix join point abstraction: An aspect-oriented system provides a fix join

point abstraction if the join point abstraction’s context is fix for all join points
• Variable join point adaptation: An aspect-oriented system provides a vari-

able join point abstraction if the developer can individually specify what
context information the adaptation operates on.

4 Mapping Role Models to Design Dimensions

In order to regard role models from the aspect-oriented perspective, we now map their
characteristics to the previously described design dimensions.

4.1 Join Point Model

In order to understand the join point model in role systems, it is necessary to discuss
the different selectable and adaptable elements in role systems:

First, roles can be applied (or "bound") to objects. The role enhances the interface
of the object which it is applied to. Consequently, an object represents a join point for
roles. In class-based languages, objects represent dynamic and structural join points.

Second, method roles are defined for particular methods of the objects which the
role is applied to. Such methods also represent structural join points. Since method
roles adapt only methods of objects (which they are applied to), method-roles also
refer to dynamic structural join points.

4.2 Join Point Properties and Property Addressing

Join point properties in role systems are, first of all, the target objects to which a par-
ticular role is applied. Furthermore, the target method is characterized by its method
signature.

The target object is obviously a dynamic property which has a direct correspon-
dence. The property is being addressed lexically as the value of the property has to be
specified directly, i.e. the very object has to be delivered. Beyond that, the property is
being addressed in an open way as roles can be applied to arbitrary objects.

The way of how signatures are represented depends strongly on the underlying
object-oriented language: On the one hand, all known object-oriented languages iden-
tify methods by name. Such a name can be directly derived from the application’s
source code. Consequently, the method name is a static property with a direct corre-
spondence. On the other hand, typed languages might provide additional properties
for signatures that refer to the parameter types and the return type, for example. In
case, method roles require a static matching of parameter and return types defined in
the target and role method, there is a (structured) property referring to the declared
parameter types, and a property referring to the declared return type. Again, both such
properties are static properties with a direct correspondence.

In the role model as introduced in [11] and [12], all elements of the signature need
to be addressed in a lexical way. Furthermore, each property needs to be specified in a
closed way.

4.3 Join Point Adaptation

The two ways of adapting join points are roles themselves and method roles defined
within roles.

Roles define a number of new members for objects they are applied to. Conse-
quently, roles (containing at least one member) represent structural adaptations of
objects. From the role model introduced in section 2, it is not clear whether roles can
override methods, i.e. whether a method defined within a role (no method role!) could
override a method already existent in the bound object. In case this is not possible,
each method defined in a role is a pure constructive join point adaptation. In respect
to its join point abstraction the context of a role is determined by the complete join
point – the way of how a target object is selected does not change the context in
which the adaptation occurs. Consequently, roles have a fix join point abstraction.

Method roles represent another kind of adaptation unit: Their underlying join
points are method definitions (of the bound object). In contrast to ordinary members
defined within roles, method roles do not change the object’s structure – they rather
adapt the behavior of a certain method. Consequently, a method role is a behavioral
adaptation of the dynamic structural method definition join point.

The adaptation of the original method could be constructive as well as destructive:
In case the method role refers to the original method, the adaptation is constructive; in
case the method role does not refer to the original method, the adaptation is destruc-
tive. In respect to the join point abstraction, method roles have the same context as
their join point – they have the same parameters, they refer to the same object, and
they have an additional element in the context which refers to the role itself. Conse-
quently, a method role does not have a context defined by the corresponding selec-
tion. Hence, a method role has a fix join point abstraction (too).

5 Related Work

[9] investigates different ways how roles can be implemented with aspects. Several
options are discussed: The first option is to define role members in an aspect, which
are then statically introduced to a class (this leads to a violation of role dynamicity,
though). Another possibility is to use aspects to modify the behavior of already exis-
tent members of objects. In its ultimate, this means that all role members are statically
implemented in an object, and dynamic aspects intercept any access to "invalid" role
members (and/or adapt any access to "valid" role members in a role-specific way).
Apart from that, all role members can be encapsulated in an aspect (i.e. an aspect in-
stance), which maintains the role relationships to objects as well as the role context
(this enables role multiplicity, in particular). Finally, aspects can be used to "glue"
objects to "role objects" (i.e. regular objects that implement the role members).

Although the work presented in [9] unveils some of the core characteristics of as-
pect-oriented systems, it deems aspect-orientation to be a promising yet complemen-
tary technique to implement role models rather than to be a software development
approach on its own. Consequently, it does not contemplate on the similarities and
differences between the conceptual ideas of aspect-oriented systems and role systems,
and focuses on implementation concerns only.

One of the first comparisons of the conceptual ideas of aspect-oriented systems and
role systems has been conducted in [7]. The approach derives a couple of conceptual
characteristics of aspects by investigating prominent aspect-oriented programming
languages (i.e. AspectJ and HyperJ): Distributed Effects (aspects may affect multiple
objects at the same time), Cardinality (aspect methods, e.g. advice, may be applied to
multiple methods), Context Dependency (aspects may affect objects and actions de-
pending on a certain context, e.g. depending on the caller of a method invocation),
Deployment (aspects are applied to objects indirectly in terms of join point selec-
tions).

These characteristics are compared to the conceptual characteristics of roles as
mentioned in [11] and [12]: Visibility (roles can restrict the visibility and access to
objects), Dependency (roles cannot exist without their affiliated objects), Identity (an
object and its role can be manipulated and viewed as one entity), Dynamicity (roles
can be added and removed during an object's lifetime), Multiplicity (an object can
have more than one instance of the same role at the same time), Abstractivity (roles
can be classified and organized in generalization and aggregation hierarchies), Exten-
sion only (a role can only add further properties to the original object and cannot re-
move any).

Fundamental differences have been identified with respect to the Identity and Mul-
tiplicity of roles: Aspects do not have to be instantiated for every object they are ap-
plied to. Furthermore, the same aspect may influence multiple objects at the same
time. Hence, aspects and objects usually do not form a single entity. Apart from that,
the same aspect is usually not applied to the same object multiple times (even tough
this would be technically possible). On the other hand, roles differ from aspects with
respect to their Distributed Effects (unlike aspects, roles affect a single object only),
Cardinality (a role method is usually assigned to a single method (of the affiliated
object)), Context Dependency (roles usually do not affect objects depending on a
varying context3), Deployment (roles are affiliated to objects directly by enumerating

3 Although it should be mentioned that Kristensen introduces the (conceptual) notion of Local-

their names).
The outcomes of [7] are elucidating yet somewhat ad-hoc. The main problem is

that only implementation-specific details of particular aspect-oriented systems (i.e., of
AspectJ and Hyper/J) are considered. Therefore, the outcomes cannot be considered
to represent conceptual foundations for aspects and aspect-oriented systems in gen-
eral. The dimensions presented in this paper, on the contrary, can be used as a general
gauge to assess the conceptual differences of arbitrary aspect-oriented systems. In [5],
we demonstrate how different aspect-oriented systems map to these design dimen-
sions. Furthermore, we elucidated how the dimensions can help in identifying aspect-
oriented systems that could be candidates for the implementation of a particular
problem.

6 Conclusion

In this paper, we have presented a number of (orthogonal) design dimensions that we
have derived for the assessment of different aspect-oriented systems. These dimen-
sions have been identified by investigating the differences and commonalities of dif-
ferent existing aspect-oriented systems. The dimensions include characteristics of the
join point model, the join point properties, the join point property addressing, as well
as the join point adaptation. Then, we have taken a role systems (the one introduced in
[11] and [12]) and mapped it against the design dimensions. In doing so, the differ-
ence of this role system compared to other (particular) aspect-oriented systems be-
come manifest:

The role system described in [11] and [12] compares to (other) aspect-oriented
systems in that it provides join points which can be selected and adapted, and in that it
provides the language constructs to actually do so (i.e. it allows the selection of join
points by addressing particular join point properties, and it allows the adaptation of
the selected join points). Differences become manifest in the precise capabilities of
the role system to select and adapt join points. In particular, the join point selection
capabilities are rather limited: For example, it is not possible to apply method roles to
an arbitrary set of target methods in an open way. In consequence, the role system is
rather inflexible against system evolution. Likewise, the role system does not provide
capabilities to abstract over the join points' context, such as method parameters –
which, for example, is possible in AspectJ using the args pointcut designator. In
consequence, developers have no means to narrow the number of parameters at dif-
ferent method definition join points to those which are of actual interest.

The observations made in this paper are not necessarily generalizable to all role
systems. Other role system implementations may fill into other quadrants of the de-
scribed design dimensions. Consequently, they compare more or less to other par-
ticular aspect-oriented systems. Thanks to the design dimensions presented in this
paper, we have now a gauge at hand that allows a closer estimation of the similarities
and the differences between two arbitrary systems (no matter if they are called "role-
oriented" or "aspect-oriented").

ity, according to which a role is available only in a certain context. Within this context,
though, roles act context-insensitive, e.g. do not distinguish between different callers.

References

[1] Bardou, D., Roles, Subjects and Aspects: How do they relate?, Aspect Oriented Pro-
gramming Workshop (AOP) at ECOOP '98, Brussels, Belgium, July 21, 1998

[2] Filman, R., Elrad, T., Clarke, S., Aksit, M., Aspect-Oriented Software Development,
Addison-Wesley, 2004

[3] Gottlob, G., Schrefl, M., Röck, B., Extending Object-Oriented Systems with Roles,
ACM Transactions on Information Systems, Vol. 14, No. 3, July 1996, pp. 268-296

[4] Gybels, K., Brichau, J., Arranging Language Features for More Robust Pattern-based
Crosscuts, in: Proc. of AOSD 2003, Boston, MA, ACM, pp. 60-69

[5] Hanenberg, S., Stein, D., Unland, R., Eine Taxonomie für aspektorientierte Systeme,
in: Proc. of SE'05, Essen, Germany, LNI 64 GI 2005, pp. 167-178

[6] Hanenberg, S., Unland, R., Parametric Introductions, in: Proc. of AOSD 2003, Bos-
ton, MA, ACM, pp. 80-89

[7] Hanenberg, S., Unland, R., Roles and Aspects: Similarities, Differences, and Syner-
getic Potential, in: Proc. of OOIS'02, Montpellier, France, LNCS 2425, pp. 507-520

[8] Hirschfeld, R., AspectS - Aspect-Oriented Programming with Squeak, in: Proc. of
NODE'02, Erfurt, Germany, LNCS 2591, pp. 216-232

[9] Kendall, E.A., Role Model Designs and Implementations with Aspect-oriented Pro-
gramming, in: Proc. of OOPSLA'99, Denver, CO, SIGPLAN Notices 34(10), pp. 353-
369

[10] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W. G., An
Overview of AspectJ, in: Proc. of ECOOP'01, Budapest, Hungary, LNCS 2072, pp.
327-353

[11] Kristensen, B.B., Object-Oriented Modeling with Roles, in: Proc. of OOIS'95, Dublin,
Ireland, Springer, 1995, pp. 57-71

[12] Kristensen, B.B., Østerbye, K., Roles: Conceptual Abstraction Theory & Practical
Language Issues, in: Proc. of TAPOS, Vol. 2, No. 3, 1996, pp. 143-160

[13] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual Components,
Northeastern University, TR NU-CCS-99-01, Boston, MA, 1999

[14] Ossher, H., Tarr, P., Using multidimensional separation of concerns to (re)shape
evolving software, Communication of the ACM, 44 (10), 2001, pp. 43-50

[15] Steimann, F., On the representation of roles in object-oriented and conceptual model-
ling, Data & Knowledge Engineering, 35 (1), 2000, pp. 83-106

[16] Steimann, F., Why most domain models are aspect free, Aspect-Oriented Modeling
Workshop (AOM) at UML'04, Lisbon, Portugal, October 11, 2004

[17] Wand, M., Kiczales, G., Dutchyn, C., A Semantics for Advice and Dynamic Join
Points in AspectOriented Programming, Workshop on Foundations Of Aspect-
Oriented Languages (FOAL) at AOSD'02, Enschede, The Netherlands, April 22, 2002

