UNIVERSITÄT

DUISBURG ESSEN

Design and Modeling Issues in AOSD: A Special Focus on Pointcuts

Dominik Stein University of Duisburg-Essen

Institute for Computer Science and Rusiness Information Systems Data Management Systems and Knowledge Representation

Prof Dr Rainer Unland Schützenhahn 70 D-45117 Essen Germany

Phone: +49 (0)201 / 183 - 4536. Fax: +49 (0)201 / 183 - 4460

Email: dstein@cs.uni-essen.de

Motivation

Need of Modeling Pointcuts

- >pointcut specifications in AOP tend to be very complex and are difficult to read
- >no graphical means are around to facilitate their understanding
- > such graphical means are needed for
- -teaching novices
- -communication among developers and users
- documentation for maintainers and administrators

Objectives

Pointcut Models Should...

- > graphically represent both sets of static join points and sets of dynamic join points
 - -graphical notations should provide uniform means to designate sets of join points of either conception
- >describe selection criteria on the direct context of (a set of) join points
 - -such selection criteria must be fulfilled for a given join point in order to belong to the pointcut
- >designate the parts of the crosscut environment being exposed to crosscutting behavior/structure
 - -those parts can be referenced by aspects to perform

Kev Features

Join Point Designation Diagrams...

- >describe selection patterns on join points
- >may specify both structural and behavioral selection criteria
- >may be used to designate both static and dynamic
- >may specify which parts of the join point's direct context are to be exposed
- > are based on UML to facilitate their understanding
- > are provided with selection semantics on UML
- >go beyond conventional selection means of prevailing AOP techniques

😾 Further Readings

References

- >http://dawis.informatik.uni-essen.de/site/staff/stein/
- >Stein, D., Hanenberg, S., Unland, R., Modeling Pointcuts, Early Aspects Workshop, AOSD 2004
- >Stein, D., Hanenberg, S., Unland, R., Issues on Representing Crosscutting Features, Workshop on Aspect-Oriented Modeling with UML, AOSD 2003
- >Stein, D., Hanenberg, S., Unland, R., A UML-based Aspect-Oriented Design Notation, Proc. of AOSD 2002

Overview to «Join Point Designation Diagrams» («JPDD»)

Integration into Theme/UML JPDDs detail bind relationships:

bind[<BookCopy, {meta: isQuery=false}>, <BookManager, updateStatus(), addView(), removeView()>

Integration into Our AODM

JPDDs detail stereotyped «pointcut» operations:

nointcut stateChanges(Subject s) {base = target(s) && call(void Button.click())} CrosscutMsg aodm pointcut Button CrosscutMsg <click()>

structural selection criteria CrosscutMsa CrosscutType • Generalization Selection Classifier Selection -boolean restriction join points and exposed entities indirect generalization multiplicity range restriction C behavioral selection criteria name pattern - boolean restriction С CrosscutType CrosscutType Message|Selection • {not} <Con*> • nature pattern С Attributes {not} att2 : String С {not} att2 : String att1 : Integer [2!..100] С att1: Integer [2!..100] Operations indirect specialization CrosscutMsa set*(val : *) <someOp exact multiplicity restriction get*(): Association Selection run(val1 : Integer. op1() vali · Real exact multiplicity restriction С CrosscutType valn : String) CrosscutMsg

Application in MDSOC with Hyper/J

expected features

JPDDs reflect on the "declarative completeness" of hyperslices in Hyper/J, and may specify structural requirements being imposed on join points:

Operations

set*(val · *

run(val1 : Integer, .

vali : Real, ..,

signature patterns

valn : String)

get*():

Remarks

- > Pointcut models select sets of join points only
- > Pointcut models do not state how to compose
- > Pointcut models may be used to model concern mappings

Application in Adaptive Programming

С

indirect association

В

boolean restriction

JPDDs may model traversal strategies in AP:

from Conglomerat

- Construction vertices are denicted as associated classes
- Alternation vertices would be denicted as super-classes
- > Repetition vertices would be depicted as multi-objects

Application in AOP with AspectJ

JPDDs may model pointcuts in AspectJ:

arbitrary control flow

<someOp *(..)>

preceeding control flow

> Runtime-system-dependent join points, such as method executions, class and object initializations, must be indicated

> Program-text-based join points, such as within and withincode, currently have no graphical representation

Technical Perspective

Pointcut Models Are...

- ≽a new diagram type
- >based on UML's current version 1.5
- >syntactically templates for namespaces or subtypes thereof (here, we use collaborations)
- >semantically new to the UML (as they describe selection patterns rather than production patterns)

Pointcut Models May Specify...

- >structural selection criteria on UML classifiers in a class-diagram-style
- >behavioral selection criteria on UML messages in an interaction-diagram-style

Abstract Syntax

(Adopted from UML's meta-model)

Selection Semantics

- >defined by means of special meta-operations on UML's meta-classes
- >selection is initiated by a special meta-operation on UML template parameters (see below)
- >selection is executed on namespaces (e.g. on models, packages, etc.)

context TemplateParameter matchingModelElements(Target : Namespace) : Set(ModelElements) post: result = Target.allContents->select(ME | if self.templateParameter.isOclKindOf(Classifier) then

ME.ocllsKindOf(Classifier) -- query UML Classifiers and ME.matchesClassifier (self.templateParameter) and ME.matchesRelationships (self.templateParameter)

if self.templateParameter.isOclKindOf(Message) then ME.ocllsKindOf(Message) -- query UML Messages and ME.matchesMessage (self.templateParameter) -- empty set

false

Remaining Issues

- >application to further AOP techniques
- >combination semantic of pointcut models
- > specialization semantic for pointcut models
- >implementation in prototype
- >relating pointcut models to crosscutting assertions