5th International Workshop on
Aspect-Oriented Modeling

Dominik Steirt, J6rg Kienzl& Mohamed Kandé

1University of Duisburg-Essen, Schiutzenbahn 70, Di#5Essen, Germany
dstein@cs.uni-essen.de
2School of Computer Science, McGill University, Maral, QC H3A 2A7, Canada
Joerg.Kienzle@mcgill.ca
®Condris Technologies, Switzerland
Mohamed.Kande@condris.com

Abstract. This report summarizes the outcome of théMorkshop on Aspect-
Oriented Modeling (AOM) held in conjunction with e¢h7" International
Conference on the Unified Modeling Language — UM02 — in Lisbon,
Portugal. The workshop brought together researcheds practitioners from
two communities: aspect-oriented software developgr)@OSD) and software
model engineering. It provided a forum for discngsthe state of the art in
modeling crosscutting concerns at different stagjebe software development
process: requirements elicitation and analysistwewé architecture, detailed
design, and mapping to aspect-oriented programroovgstructs. This paper
gives an overview of the accepted submissions,sangmarizes the results of
the different discussion groups.

1 Introduction

This paper summarizes the outcome of tfeeBlition of the successful Aspect-
Oriented Modeling Workshop series. An overview dfialv happened at previous
editions of the workshop can be found at [12].

The workshop took place at the Vila Galé Opéra Hite isbon, Portugal, on
Monday, October 112004, as part of thé"International Conference on the Unified
Modeling Language — UML 2004 [1]. Participation weesed on the submission of a
position paper addressing aspect-oriented modédses. A total of 17 papers were
submitted and reviewed by the program committeeyfi8hich were accepted to the
workshop. In order to leave enough time for distussonly a one-and-a-half-hour
session was dedicated to presentations. Four pajeeschosen as representatives of
the workshop submissions, and intended to stimalateprovide provocative input to
the following discussion sessions. In the late nmysession, the attendees split into
three groups to independently discuss specifictgpresconcerning the eligibility of
concrete UML model elements to represent aspeeti&i concepts. From there, the
discussions quickly led to other topics. The reswait the discussion groups were
collected at the end of the workshop, and presesmeldre-discussed with the entirety

of the workshop participants. Finally, a catalogfi€uestions indented as an agenda
for future research was established.

The rest of this report is structured as followsct®n 2 gives an overview to the
accepted papers. Section 3 summarizes the resuhs discussion groups. Section 4
concludes the report and presents identified futesearch directions.

2 Overview of Accepted Position Papers

A total of 13 papers were accepted to the workgsep below). This section presents
a brief overview of the papers, organized accordinthe software development life
cycle phase they apply to. This structure shouldenibeasier for an interested reader
to identify the submissions that pertain to hier tesearch area.

Some of the papers deal with modeling of aspectthatrequirements phase:
Navarro et al. (8), for example, introduce a UML profile for ATRM [7], a
methodology that allows the concurrent definitioh requirements and software
architectures using both goal-oriented and aspeetted techniques. The profile
presented in the paper comes with a graphical inatahat helps visualizing goal
models. Within those goal models, candidate aspaite implicitly from goals that
participate in weaving relationshipSpies et al. (11) explain i* [13] ("eye-star"), an
early-requirements engineering technique develdpetfu. They describe how the
models being generated using this technique mandggped to "concern templates”
as introduced byrito and Moreira [2], thus allowing the identification of candidate
aspects.

One paper concentrated on domain models: In hisrp&eimann (12) claims that
domain models are inherently aspect free. He pigk€ommon usages of the term
"aspect" in modeling, and investigates their megnim software modeling: He
compares aspects to roles, discusses aspectsamgrdimensions, takes a look at
domain-specific aspects, and reasons on aspectoaéling. Finally, he provides a
proof of his claim with help of predicate logic.

Other papers focus on the impact of aspect-orietatetthiques on the design phase
and the design process: For examplest al. (4) elucidate the necessity of having an
aspect-oriented design in order to achieve thebfelefits when it comes to (aspect-
oriented) programming. On the other hand, they tifletimitations in prevailing
aspect-oriented programming languages that impog®riant drawbacks on the
(aspect-oriented) design. Having said that, thescidee a development process that
copes with these problemBark andKang (9) present an approach to support design
phase performance simulation and analysis with bélaspect-oriented techniques.
They make use of separate models to specify the donctionality and the
performance requirements of a system, and map tbedistinct AspectJ [6] code
modules. By keeping performance specifications rmdpa from functional
specifications, they gain benefits in both the #pmmtion and the adaptation
("feedback") of the performance requiremertamalakar and Ghosh (3) illustrate
how the aspect-oriented modeling technique develdpeFrance et al. [3] can be
used to encapsulate middleware-specific functityal distinct design models.
Later, these models can be woven into models spegithe business functionality of

an arbitrary application, thus leading to a higheusability of the middleware-
specific design. The ideas are illustrated on a sasdy using CORBA.

Besides that, some papers were concerned with ehfication and testing of
aspect-oriented modelbtakajima and Tamai (7), for example, propose to use Alloy
[5], a lightweight formal specification languagedaanalysis tool, for the precise
description of models as well as their verificatidiney demonstrate the use of Alloy
— i.e., how to specify aspects and how to weaventhewith help of two examples,
logging and access contrdlessier et al. (13) present a formalized method, based on
static model analysis, for the early detection arfftict in aspect models. To do so,
they investigate the crosscutting relationshipsvben aspects and their base classes,
summarize the outcome in a table, and feed thecatell data to formal expressions.
That way they are able to detect possible conflinstshe ordering of aspects, in
transverse specifications, or accidental recurstm,

Multiple papers deal with modeling notatiolsrra et al. (1) investigate the UML
2.0 specification [10] in order to find suitablestdaction means for the representation
of aspect-oriented concepts. In particular, theglyme the new UML 2.0 elements
Ports and Connectors — in connection with the eglispecification of Interfaces,
Association Classes, and Components — and dishagseligibility to represent join
points, advice, introductions, etdan et al. (2) introduce a MOF [9] meta-model for
AspectJ — capturing the syntax and semantics df e&ds language constructs — in
order to allow the modeling of AspectJ programseylbive a detailed description of
each meta-class, its semantics, its attributesjedisas the associations it participates
in. Further, they provide a corresponding visugiima Muller (6) presents View
Components, an approach to compose generic viewelso@gach capturing a
particular functionality) to a given base model. Weints out the problems
encountered when using relationships to expresgaosition directives, and explains
why parameterization might overcome some of thasblems.Mahoney et al. (5)
focus on the specification of aspects using stdtarts. Using aspect-oriented
techniques, the authors show how to define abssttecharts that can later be
woven into other statecharts, thus making behaviodels reusable. Their approach
bases on the reinterpretation of certain eventmefstatechart in the other statecharts.
Reina et al. (10) inspect numerous existing aspect-oriented timagl@pproaches and
observe that most of them are closely related totiopdar aspect-oriented
programming platforms. They propose to rise thelle¥ abstraction of aspect models
to platform-independent models (PIMs) in the MoBelven Architecture (MDA) [8].

In order to express each aspect PIM most apprepyjatspect-specific profiles or
meta-model extensions should be used.

List of Position Papers

Q) Barra, E., Génova, G., Llorens, An Approach to Aspect Modeling with UML 2.0

(2) Han, Y., Kniesel, G., Cremers, A.B\ Meta Model and Modeling Notation for AspectJ

3) Kamalakar, B., Ghosh, SA Middleware Transparent Approach for Developing
CORBA-based Distributed Applications

(4) Li, J., Houmb, S.H., Kvale, A.AA Process to Combine AOM and AOP: A Proposal
Based on a Case Study

(5) Mahoney, M., Bader, A., Elrad, T., Aldawud, QJsing Aspects to Abstract and
Modularize Satecharts

(6) Muller, A., Reusing Functional Aspects. From Composition to Parameterization

) Nakajima, S., Tamai, TLightweight Formal Analysis of Aspect-Oriented Models

(8) Navarro, E., Letelier, P., Ramos, UML Visualization for an Aspect and Goal-
Oriented Approach

9) Park, D., Kang, S.Design Phase Analysis of Software Performance Using Aspect-
Oriented Programming

(10) Reina, A.M., Torres, J., Toro, Mseparating Concerns by Means of UML-Profiles and
Metamodelsin PIMs

(11) Spies, E., Ruger, J., Moreira, Asing i* to Identify Candidate Aspects

(12) Steimann, FWhy Most Domain Models are Aspect Free

(13) Tessier, F., Badri, L., Badri, MTowards a Formal Detection of Semantic Conflicts
Between Aspects: A Model-Based Approach

3 Resultsof Discussion Groups

A primary goal of the workshop was to provide atfolan for researchers to discuss
the impact of aspect-oriented software developrmensoftware model engineering,
and vice versa. Therefore, a major part of the wlook was spent debating on
important aspect-oriented modeling issues. In otdemaximize productivity, the
participants split into three discussion groupshea six to eight persons. The results
of the discussion are summarized in the followingsections.

3.1 Reasonsfor Aspect-Oriented Modeling

During the workshop, we observed that different tipgpants had different
motivations and expectations regarding the new afeaspect-oriented modeling.
One of the contributions of this workshop was teniify and discuss the benefits of
expressing aspects at software modeling level. Mamicipants agreed that aspect-
oriented modeling is important because it expressesscutting structures and
behavior at a higher level of abstraction than eispgented code. However, several
other interesting opinions were expressed. In @aer, people expect aspect-oriented
modeling to provide means for:

* Resolving conflicts in software models. The idea is to use aspects at modeling
level to allow designers detect and resolve casflat early stages of the
development process. Typically, code-level cordlitttat result from weaving
processes or aspect compositions should be detectédresolved at early
stages, not at execution time.

e Modeling reusable business rules. The idea is to express business rules as
aspects in software models that can be reused ddous systems, and at
different levels of abstraction.

* Model evolution and maintenance. Similar to programming level aspects,
modeling aspects need to provide mechanisms forutaoding crosscutting
concerns in software models in order to facilithteth the evolution and
maintenance of models.

» Expressing reusable functions. The idea is that aspects can be used to express
reusable functions, such as annotation diagrams fmrformance
measurements.

* Managing requirements. The idea is that requirements captured from wdiffe
stakeholders are naturally entangled; they showdekpressed as separate
aspects of the system at hand. People hope thaneidg aspect-oriented
modeling can help separate, combine and/or mareggérements.

To achieve these expectations much research neelle done. We hope that

submissions to future workshops will address sofitheabove issues.

3.2 Agpect-Oriented Modeling and Ter minology

At the workshop, one discussion dealt with the teabogy in aspect-oriented
modeling and its relation to the terminology in@dporiented programming. Some of
the participants thought that aspect-oriented sof#wdevelopment in general and
aspect-oriented modeling in particular could berfedim the definition of an aspect-
oriented vocabulary. Terms such as "aspect", 'jaimt" and "weaving" might have
similar, yet slightly different meanings at diffatdevels of software development —
similar to what happens in object-orientation: Highel analysis objects are not
identical to programming language-level objects.

Firstly, the definition of "aspect" from the progmming language-level was looked
at: an aspect at the programming language-lexehi®dularized implementation of a
concern that otherwise (in a non-aspect-orientgueémentation) would crosscut the
program structure (or its behavior). The two kegnents in this sentence are
"modularize™ and "crosscut". Most participants &grehat an aspect at the model-
level is a modularized model of a concern that mtige (in a non-aspect-oriented
model) would crosscut the main model structure. &oparticipants, however,
interpret the word "aspect" more like what othem#i &concern”, and hence believe
that especially at the early stages of softwareldgwnent there are no such things as
"crosscutting aspects"”. At that level, every condera first-class citizen, so to speak.
It was discovered that the particular conceptiotegpects” often differs considerably
depending on the abstraction level that researarersvorking on (cf. section 3.3, as
well).

Then the discussion moved on to try and definetéhe "join point”, which was
initially suggested to designate at modeling-laalkthose points at which models can
be merged / composed / woven together. Unfortupatee term "join point" was
deemed problematic, as it is coined by AspectJ,imgmwith a well-defined meaning
that may cause considerable misconception whenins@ modeling domain. "Join
points” in the modeling domain commonly refer tmare generalized concept, such
as "some points where aspects can hook onto" ample). The question arose
whether or not "join points" should be named défaly in the modeling domain to
highlight this distinction.

Likewise, the term "weaving" was put to questiond @pposed to "composition”.
"Composition" of models has been known in softwaiedeling for a long time, and
the knowledge gained in this area of research hpsaspect-oriented modeling
community to specify and assess the effects of HagEaving". However, it remains

unclear if both terms may be used as true synonymsyhether "weaving" is a
special kind of "composition".

Unfortunately, no general consensus was reachedrfgrof the terms "aspect”,
"join point", and "weaving". While one part of tparticipants believed that using an
aspect-oriented vocabulary throughout the softwdeeelopment life cycle would
benefit the aspect-oriented software developmentneonity, the other participants
deemed it too early to try and define these tem@doncise way.

3.3 Agpectsin the Modeling Process

During the discussion it became manifest that ie ttonventional software
development process — i.e., in requirements engimgeanalysis, design, and
implementation — different aspects appear in dffieiphases and on different levels
of abstraction. Requirement level aspects such a@stainability or reusability are
specified during early stages of software develagirfer example, while other issues
such as caching or synchronization seem to be rratif@ementation level aspects
that cannot easily be traced back to particulauireqnents in all cases. Finally, there
are concerns that are present throughout the estgitevare lifecycle, e.g., security,
persistence, or auditing, which are most likely take different forms during
development. At one level, they might be modeledaapects, i.e. their model
crosscuts the main model structure, but on othedehey do not.

It turns out that expectations for, and problemsaspect-oriented modeling often
differ considerably between development phasesadrstraction levels. Differences
exist, for example, in what should be modeled aaspect, what should be regarded
as a join point, how and when aspects should beposed with the primary model,
etc. Therefore, authors were asked to clearly atdiat which level of abstraction, or
phase of software lifecycle, their work is situatedrder to avoid misunderstandings
during the discussion.

3.4 Aspect-Oriented Modeling and UML Model Elements

One major issue in the discussion groups was toiddte to what extent existing
UML model elements are capable of expressing aspéatted concepts, and/or why
they fail to do so. The UML elements of interestevdJML classes, UML packages,
UML collaborations, UML use cases, UML template$/lU(2.0) components, ports
and connectors, OCL statements, as wellsais of UML diagrams (e.g., class
diagrams, collaboration diagrams, state charts).elhiese model elements were
collected from previous work on aspect-oriented efiod and current workshop
submissions, supplemented by brain storming in therning session of the
workshop, and then discussed by each individualgro

Everyone agreed that current UML model elementewleemed to lack important
characteristics of aspects:

The UML class construct provides a module for esafgiing state and behavior,
and therefore seems suitable to model an aspestraf classes, for instance, could
be used to encapsulate partial behavior, whichtikan be completed and reused in

subclasses. However the class construct alone issaufficient to model the
encapsulated behavior; additional UML diagrams saglstate diagrams or sequence
diagrams are needed. Also, a class cannot expqsiae interfaces, or join points, to
the rest of the system.

The new UML 2.0 component element offers that folsi to expose required
interfaces. This feature could be used to expjictclare a component’s join points
as part of its interface. This means, however, #spects can only hook onto such
declared join points, which makes it hard to hangitoreseen extensions.

UML sequence diagrams were briefly discussed régarthe new fragments
feature introduced in UML 2.0, which might makepitssible to declare potential
extension points.

UML templates allow a modeler to expose interfages] to reuse partial model
elements and configure them to his / her needsottinfately, standard UML
templates are not powerful enough. All currentlyokn approaches that use
templates to model aspects had to extend the téenplachanism and step outside the
UML.

Finally, UML packages were looked at. They are m@st general UML model
element, since they can contain any other diagiimy provide a nice means for
separating and grouping together all elements e@ldb a certain concern, and
therefore do a great job in modularizing an asp€heir capabilities, however, are
limited when trying to model the weaving, i.e. sliogvhow elements of an aspect
affect external entities.

To summarize, aspects in aspect-orientation werstified to meet much of the
characteristics of the previously mentioned UMLnaedats, such as:
* being the encapsulation of (some structural arfaébavioral) properties,
* Dbeing first-class entities that can exist on tl&in right,
* being instantiatable classifiers that can have ipialinstances, each having its
own state, etc.

However, essential differences between aspectspacéorientation and existing
model elements in the UML were identified as wé&lor example, aspects were
identified to:

< provide introspection capabilities (e.g. pointcudsid intercession capabilities

(e.g. pieces of advice or introductions)

< provide a mechanism to define (extrinsic) propertieother elements

< break encapsulation of other elements, etc.

Concerning the introspection capabilities of aspegossible solutions were
sketched during the discussion: Pointcuts, suclina&spect] for example, were
identified as declarative expressions of introspactThese expressions could be
looked at agpatterns that are matched against the elements of the bgstem.
Looking for ways to express patterns in the UMLe tharticipants identified UML
templates and the Object Constraint Language (O@k) possible solutions.
Adaptations to these approaches were deemed necedsaigh, as UML templates
are designed to generate — rather than match —Iratedeents, while the OCL is not
capable of expressing timely patterns (such astddrmy AspectJ'sflow construct),

for example. Possible help on how to deal withadsprection capabilities on the
modeling level could also be found in the MOF sfie&fion, as it already contains
reflective capabilities.

In conclusion, the discussed ideas were deemeck tetith very immature, and
therefore need to be further investigated. Findipgropriate modeling solutions that
can address all issues mentioned above was coedidabject for future research.

3.5 Agpect-Oriented M odeling and Weaving of Models

Another important discussion topic dealt with theestion how to weave models, and
what model elements should serve as join pointgehreral, weaving on the modeling
level was deemed to be more powerful than weavimghe implementation level:
Firstly, weaving on the modeling level can use amydel element as join point
(rather than being restricted to some Join Poind®l@s in Aspectd, for example).
Secondly, weaving on the modeling-level brings etpeentation to just any
platform, and hence makes aspect-oriented developnedependent of the
availability of an aspect-oriented compiler for theogramming language used for
implementation.

A general problem of weaving pertains to the cdress of models. Since aspects
break up encapsulation of the primary model elementaving is most likely to
change their semantics. Therefore, means must bedfoo identify and resolve
weaving conflicts, and research in validation astihg of woven models is essential.

Besides that, parallels between weaving of modetspect-oriented modeling and
the transformation of models in the Model-Drivenclitecture (MDA) have been
pointed out. In a MDA context, weaving was considketo be a horizontal model
transformation — rather than a vertical model tfamsation (which was considered to
represent a refinement). The Query View Transfoionaf{QVT) language was
deemed to bring much benefit to the specificatibweaving.

Another matter of interest was to identify the pdimthe software development
process when an aspect is woven with the resteofrtbdel (e.g., at the requirements
elicitation phase, during the design phase, orumil the implementation phase).
Currently there seems to be no general rule thé¢raénes the ideal time for
weaving. Some aspects might be woven at an easlyestsome aspects only at
implementation-time, depending on the kind of asped the specific application is
applies to. The workshop participants expresseddimre to find more general
criteria, or heuristics, that would provide a guida that helps developers to
determine when weaving of which aspects shoulddoeraplished, at what point in
time, and in what order.

Finally, the issue of symmetric models vs. asymimetiodels was raised [4]. In an
asymmetric model, there exists a base model ofylseem under development that
captures its main functionality. At weave time, e&xsg get woven into the base model,
and hence the weaving transformation is asymmelnicsymmetric models, no
distinction is made among different models becanfs¢he concern they address.
There is no base, and hence the weaving transfamiatsymmetric.

Not much time was spent on discussing these twoetaptut it seems like the
differences are similar to the ones identifiedhet programming language level, for

example when comparing Aspect] [6] to Hyper/J [Ije asymmetric model is
easier to work with on a conceptual level. It siifigs identifying aspects since they
crosscut the base model. Also, the asymmetric moaelbe seen as an add-on to
standard object-oriented modeling. The symmetriclehds appealing because of its
simplicity, but might require a complete rethinkiofjthe way we do modeling.

4 Concluding Remarks and Outlook

The purpose of this papernst to provide a complete and widely accepted opimion
aspect-oriented modeling of all the authors, omgns, and workshop participants.
Our intention is to give an essential input forufet research on aspect-oriented
modeling, pointing thus researchers to current lprob and possible matters of
interest. To do so, the authors' goal was to drdull gicture of all topics that have
been discussed at the workshop.

There are several active research groups in thecaspiented community and the
software model engineering community working onotieéical and practical aspect-
oriented modeling issues. However, as the workshegussions have shown, there is
still lots of interesting work to be done to malspect-oriented modeling cover the
whole software development lifecycle. In particulae need to make use of a widely
accepted vocabulary; to provide well-defined madglelements for "aspects"”; to
define a standardized way of identifying "join pisih and supporting "weaving"
mechanisms, while allowing modelers to evaluate walilate alternative aspect-
oriented designs. Workshops such as this one @napmajor role in addressing the
above modeling issues.

At the end of the workshop, the participants wesked to provide a list of
important questions to be looked at in a near &tlihey will be considered when
establishing the agenda for envisioned successtksiops. The identified questions
were:

« What is the benefit of using aspect-oriented mod&iWhat are the reasons for

using it in the context of each software developnpiase?

* What prior art applies to aspect-oriented modeliifrat can be learned from
its origins, e.g. object-oriented abstraction meddras, model composition and
transformation, and techniques using reflection?

e How can modeling notations visualize aspect-specjgeculiarities? For
example, how can we depict aspect-oriented intii8pe and intercession
capabilities?

Acknowledgements

We'd like to thank everybody who helped to makes tiorkshop a success: In
particular, the members of the organization consmittvho could not make it to the
workshop, i.e., Faisal Akkawi, Omar Aldawud, Gra8goch, Tzilla Elrad and Jeff
Gray; the members of the program committee, Mehihait, Atef Bader, Siobhan

Clarke, Bill Harrison, Hoda Hosny, Karl LieberheRgri Tarr and Aida Zakaria.
Finally, we would like to thank all the submittensd participants.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]
(10]

(11]

(12]

(13]

Baar, Th., Strohmeier, A., Moreira, A., Melld@t., Proc. of International Conference
on the Unified Modeling Language 2004, Lisbon, Bgal, October 10-15, 2004

Brito, ., Moreira, A., Integrating the NFR Framework in a RE Model, Early-Aspects
Workshop at % International Conference on Aspect-Oriented SafwRevelopment
2004, Lancaster, UK, March 22, 2004

France, R., Kim, D.K., Georg, G., Ghosh, 8n Aspect-Oriented Approach to Design
Modeling, in: IEE Proc. — Software, Special Issue on E#&dpects: Aspect-Oriented
Requirements Engineering and Architecture Desigappear in 2004

Harrison, W., Ossher, H., Tarr, PAsymmetrically vs. Symmetrically Organized
Paradigmes for Software Composition, TR RC22685, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, December 2002

Jackson, D., Shlyakhter, I., Sridharan, M.Micromodularity Mechanism, in: Proc. of
9" International Symposium on Foundations of SoftwBregineering 2001, Vienna,
Austria, September 10-14, 2001, pp. 62-73

Kiczales, G., Hilsdale, E., Hugunin, J., Kerstévl., Palm, J., Griswold, W.G.An
Overview of Aspect], in: Proc. of the 1% European Conference on Object-Oriented
Programming 2001, Budapest, Hungary, June 18-221,3fp. 327-353

Navarro, E., Ramos, |., Pérez, Software Requirements for Architectured Systems, in:
Proc. of 11 International Conference on Requirements Engingefi003, Monterey,
CA, September 8-12, 2003, pp. 356-366

OMG, MDA Guide, Version 1.0, OMG Document omg/2003-05-01, May200

OMG, MOF 2.0 Core Final Adopted Specification, OMG Document ptc/03-10-04

OMG, UML 2.0 Infrastructure Specification, UML 2.0 Superstructure Specification,
OMG Documents pct/03-09-15 and ptc/03-08-02

Tarr, P., Ossher, H., Sutton, Slyper/J: Multi-Dimensional Separation of Concerns for
Java, in: Proc. of the 24 International Conference on Software Engineerif§22
Orlando, Florida, May 19-25, 2002, pp. 689-690

The 5" International Workshop on Aspect-Oriented Modeling, Homepage, List of
Position Papers, and Schedule, http://www.cs.iit-edaldawud/AOM/index.htm

Yu, E., Modeling Strategic Relationships for Process Reengineering, PhD Thesis,
DKBS-TR-94-6, Department of Computer Science, Ursiig of Toronto, 1995

