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Abstract. The need for querying software artifacts is a new emerging design
issue in modern software development. Novel techniques such as Model-Driven
Architecture or Aspect-Oriented Software Development heavily depend on
powerful designation means to allocate elements in software artifacts, which are
then either modified by transformation or enhanced by weaving processes. In
this paper we present a new modeling notation for representing queries using
the UML. We introduce special symbols for common selection purposes and
specify their OCL selection semantics, which may be executed on existing
UML models in order to allocate all selected model elements therein. By doing
so, we aim to give forth the advantages of modeling to query design: Our query
models facilitate the specification of queries independent from particular
programming languages, ease their comprehension, and support their validation
in a modeling context.

1 Introduction

Querying software artifacts is a new emerging design issue in modern software
development. Novel software development techniques, such as Model-Driven
Architecture (MDA) [9] and Aspect-Oriented Software Development (AOSD) [6],
focus on the allocation of elements, which are then either modified by transformation
(in MDA) or enhanced by weaving processes (in AOSD). The primary goal of these
approaches is to apply common refinements to multiple points in target artifacts. At
the same time, refinements are kept separate from the points being affected in order to
allow reuse of refinements in different application domains.

Prerequisite to querying software artifacts is the existence of accurate query
specification means since only accurate specification of the selection criteria on target
elements may lead to desired results and avoid unpredicted effects. Accordingly, the
need for query specification means in MDA is manifested in the “MOF 2.0 Query /
Views / Transformation (QVT)” Request For Proposal (RFP) [10]. The RFP calls for
suggestions for a standard model transformation language. One part of the RFP
demands appropriate designation means to allocate model elements in existing models
that will serve as sources to transformations. Most submissions to the RFP (e.g., [4],
[12], [1]) propose a textual language – in particular, the Object Constraint Language
(OCL) [17] – in order to query existing user models. However, using a textual
language (like OCL) quickly leads to very complex expressions even when defining a



relatively small number of selection criteria. Hence, as query comprehension is
difficult, accurate query specification is not easy and error-prone. We feel that a
graphical notation could help. However, no graphical notation is currently around that
assists the specification of selection queries in a more feasible manner.

In AOSD, the need of query specification means emerges from the need to specify
sets of points in the target program (so-called "join points" [6]) at which aspect-
oriented refinement shall take place. In order to designate such sets of join points,
aspect-oriented programming languages provide special constructs, called "crosscuts"
[3] (examples are "pointcuts" in AspectJ [7] and "traversal strategies" in Adaptive
Programming [8]). Crosscuts are usually expressed using textual means. As with any
textual pattern description, crosscuts as well tend to be difficult to comprehend as
soon as they become more complex. Again we think that a graphical notation could
help in understanding and specifying crosscuts. However, although there are various
modeling approaches around to model aspect-oriented software (e.g., [2], [14], [5]),
they all lack a suitable notation to represent selections of join points graphically.

In conclusion, we think that there is a need for a general graphical representation to
express selection queries on software artifacts for the various domains. Indeed, we
believe that such a suitable modeling notation is indispensable for technologies like
MDA and AOSD to become popular software developing techniques. Such a
graphical visualization would facilitate the comprehension of selection queries, as
well as the estimation of where refinements actually take place. It would assist the
software developer to communicate his/her ideas to colleagues or to document design
decisions for maintainers and administrators. At last, provided with precise selection
semantic, the modeling notation would permit reasoning on design decisions and
validation of final results.

In this paper, we present a novel modeling notation for specifying selection
queries: "Join Point Designation Diagrams" ("JPDD"). JPDDs are special kinds of
diagrams that are used to visualize the selection criteria that elements must satisfy in
order to be selected by the query. The notation is based on the modeling means
provided by the Unified Modeling Language (UML) [11], making its comprehension
easy and intuitive to a broad range of developers. The modeling notation is
accompanied by a set of OCL operations that outline the allocation of elements in
existing models according to the specifications made in a JPDD. These OCL
operations allow for the validation of selection queries in a modeling context.

The remainder of this paper is structured as follows: At first, we emphasize the
urgency of having a common graphical notation to represent queries giving real-life
examples from the MDA and AOSD domains. After that, we introduce the selection
means that we have defined and specify their selection semantics with the help of
OCL expressions. We further describe the general syntax of JPDDs in order to
elucidate the ways that our selection means may be combined. Finally, we
demonstrate the applicability of our diagrams by applying them to the examples given
in the problem statement. We conclude the paper with a short summary.

2 Problem Statement

In order to motivate the need to visualize query specifications, we present three daily-
life sample implementations of queries as we can find them in MDA and AOSD.



2.1 Query Specification in OCL

The first example shows an (excerpt from an) OCL query statement as it may be used
in MDA transformations. The statement selects all classes which are named "cn" and
that either have an attribute named "an" or – in case not – have an association to some
other class named "cn1" which in turn has an attribute named "an". The example is
adopted from [12]. There it is used within a transformation that translates classes into
tables. Fig. 1 shows a possible application area for such a transformation: Imagine we
want to store all instances of "Person" in a database table together with the "Street"
the person lives on. In some cases (A), the developers may have decided to implement
"Street" as a direct attribute of "Person". In other cases (B), they may have chosen to
associate class "Person" with another class "Address" which in turn includes the
attribute "Street". The query we specify here covers both solutions.

->select(c: Class |
(c.name='cn' and
 c.allAttributes->exists(att | att.name='an') )

or (c.name='cn' and not
 c.allAttributes->exists(att | att.name='an') and
 c.oppositeAssociationEnds->exists(ae |

let c1 : Class = ae.participant in
c1.name='cn1' and
c1.allAttributes->exists(att | att.name='an') ) ) )

The example demonstrates the complexity that the textual notation of OCL
imposes on the developer when specifying or comprehending a selection query:
He/she needs to be have a profound knowledge on what properties (e.g., name or
participant ) of what elements (e.g., classes and associations) may be constrained,
and how. Further, the precise way to refer to the element's relationships to other
model elements must be well understood (e.g., by using the collection operation
->exists  on properties like allAttributes  or oppositeAssociationEnds ).
The assignment of variables (e.g., c1 ) using the let  expression and the scoping of
variable names by means of brackets is another source of significant complexity. Last
but not least, the placement of Boolean operators is crucial to the selection result, and
therefore must be carefully investigated.

2.2 Query Specification in AspectJ

The next example shows a "pointcut" as we can find it in AspectJ [7]. AspectJ is a
very popular general-purpose aspect-oriented programming language based on Java.
Its "pointcut" construct is used to designate a selection of join points. A specialty of
AspectJ is to allow aspect-oriented refinements (i.e., crosscutting) based on the
runtime context of join points.

Address
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 Operations

 Attributes
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 Operations

 Attributes
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 Operations

 Attributes

A B

Fig. 1. Application areas for the OCL query



The sample pointcut shown here selects all those messages as join point that
invoke (call ) method "search" on class1 "DiseaseRepositoryDBMS" (taking an
integer value as parameter and returning an instance of class "DiseaseType") that
come to pass within the control flow (cflow ) of any (* ) method called from (this )
class1 "ServletEngine" on class1 "ListServlet" (or any of its subclasses1 (+)), taking
any number (.. ) of parameters and returning any or none (* ) return value. The
pointcut is adopted from an example in [13] and its main purpose is to reduce loading
time of complex data objects ("DiseaseType") when only partial information is
needed. Fig. 2 shows a possible scenario for our sample pointcut. In this scenario,
class1 "ServletEngine" invokes method "service" on class1 "ListDiseaseServlet",
which is a subclass of class1 "ListServlet". After two hops via "DiseaseList" and
"ConnPool", the message sequence ends invoking method "search" on class1

"DiseaseRepositoryDBMS". At this point the selection criteria specified in the
pointcut are satisfied and message "search" is added to the list of selected join points.

pointcut aspectj_pc():
call(DiseaseType DiseaseRepositoryDBMS.search(int))  &&
cflow (call(* ListServlet+.*(..)) && this(ServletEngine) )

This example points out the absolute need of being familiar with keywords (such
as call  and cflow ) and operators (like +, * , and .. ) for the comprehension of
selection queries. In response to this indispensable prerequisite, we carefully related
our explanations in the previous paragraph to the terms and characters used in the
pointcut. However, in order to compose a new query, knowing the meaning of
keywords and operators is not enough. Developers must be aware of what arguments
may be specified within a particular statement (such as call  and cflow ), and what
consequences these have. They need to know, for example, that the selection of
call s can be further refined to operations having a particular signature pattern, or
being invoked by certain instances (using the this  construct). In the end, it requires
high analytical skills in order to combine these statements (by means of Boolean
operators) in such a way that only those join points are selected that we actually want
to crosscut.

2.3 Query Specification in Demeter/C++

Our last example is from the domain of Adaptive Programming [8]. The goal of
Adaptive Programming is to implement behavior in a "structure-shy" way. That
means that methods should presume as little as possible about the (class) structure
                                                          
1 i.e., an instance of that class/those classes
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Fig. 2. Application area for the AspectJ pointcut



they are executed in. For that purpose, Adaptive Programming makes use of special
kinds of crosscuts, so-called "traversal strategies".

The following traversal strategy is taken from [8]. It selects a path from class
"Conglomerate" to class "Salary" that passes class "Officer", however, that does not
include an association (end) of name "subsidiaries". The strategy is part of a method
that sums up the salaries of "Officers" in the "Conglomerate". Fig. 3 shows a possible
class hierarchy that the method can cope with. The actual summation is accomplished
by visitor methods that are appended to the individual classes on the strategy path.
Note that according to the traversal strategy, calculation does not consider officers
employed by the company's subsidiaries.

*from* Conglomerate
*bypassing* -> *,subsidiaries,*
*via* Officer

*to* Salary

Looking at this example, we are once again faced with new keywords and new
operators whose meaning and consequences must be well understood by the
developer. A major part of complexity arises from the various kinds of relationships –
denoted as construction, alternation, inheritance, and repetition edges – that can be
specified in traversal strategies: Developers need to be aware of the distinctive
meaning of each of those edge types, and they must remember their precise notation
(-> , =>, :> , and ~>, respectively) in order not to designate the wrong relationship. At
last, they have to keep in mind what specific information they may provide with each
relationship. For example, restrictions to the relationship labels may only be specified
for construction edges.

2.4 Preliminary Conclusion

As a conclusion from the previous investigations, we attest textual notations to
leave developers stranded with a heavy load of complexity: Developers are required
to have a profound understanding about the usage of keywords and operators in order
to specify queries properly. They must know what properties of what elements they
may refer to, and how. Finally, they must have high analytical capabilities in order to
assess the grouping of selection criteria as well as their semantic interdependencies,
so that they can estimate what elements will be actually retrieved.

Opposed to so much complexity, developers urgently call for a graphical notation
that help them with the composition and comprehension of selection queries. That
notation should give them a visual conception of the selection semantics they are
currently specifying using textual keywords. It should facilitate the specification of

Conglomerate Company Officer Salary

Ordinary
Share

Holding

head officers salary
*

Subsidiary

subsidiaries*

company

Fig. 3. Application area for the Demeter/C++ traversal strategy



selection criteria on elements and their properties. Furthermore, it should depict the
grouping of such selection criteria and visualize their interdependencies.

In order to come up with more concrete characteristics that our graphical notation
must possess, we revisit the examples of the previous sections and investigate what
different kinds of selections we have used: First of all, we may observe that – even
though each notation comes with its own, most individual syntax, keywords, and
operators – they are all concerned with the selection of (more or less) the same
program elements, namely classes and objects, as well as the relationships between
them (i.e., association relationships, generalization relationships, and call
dependencies). Further, we recognize that selection is almost always based on the
element names (only sometimes the elements name does not matter). Apart from that,
selection may be based on the element's structural composition; for example, based on
the (non-)existence of features in classes or of parameters in a parameter list. The last
observation we make is that selection of elements is often based on the general
context they reside in; meaning that query specifications abstract from (a set of) direct
relationships between elements and merely call for the existence of paths.

Having identified these core objectives of a graphical query language, we now
explain how we deal with these issues in our query models.

3 Modeling Selection Criteria

In this section we present the core modeling means we developed for the specification
of selection criteria in selection queries. We explain their graphical notation, describe
their objectives, and define their selection semantics using OCL meta-operations. Due
to space limitations, only important meta-operations are shown.

Before discussing the modeling means in detail, we like to emphasize some general
facts: Each model element is selected based on the values of their meta-attributes. In
doing so, we extrapolate our observation that selections may be based on the value of
the element's meta-attribute "name", and allow selections based on the values of the
other meta-attributes, as well. Further, selection may be based on the model element's
meta-relationships to other elements. That way we cope with the occasions when
elements need to be selected based on their structural composition. Evaluation of
meta-attributes and meta-relationships is accomplished by special OCL meta-
operations, which we append to various meta-classes in the UML meta-model (see
Table 1 for an example). These OCL meta-operations take a selection criterion from a
JPDD as argument and compare it with an actual model element in a user model.

Within the meta-operations, name matching is generally accomplished using name
patterns. Name patterns may contain wildcards, such as "*" and "?", in order to allow
the selection of groups of elements (of the same type) following similar naming
conventions. Within a JPDD, each model element's name is considered to be a name
pattern by default. A name pattern may be given an identifier in order to reference the
name pattern's occurrences at another place within the JPDD. Graphically, such
identifiers are prepended by a question mark and are enclosed by angle brackets. They
are placed in front of the name pattern whose occurrences they reference (see
"<?C>Con*" in Fig. 4 for an example). Technically, name patterns which are given an
identifier are stored in a special tagged value, named "namePattern". Is such a tagged



value present, the OCL meta-operation evaluates the tagged value for name matching
rather than the model element's proper name (see Table 1, block I, for details).

A JPDD must always show all characteristics that are considered relevant for
selection. If any meta-attribute is not explicitly set to a value, or if any meta-
relationship is not explicitly defined to be present, they are regarded irrelevant for
selection (like the publicity specification in Fig. 4, for example). In doing so, we
allow selections based only on partial information. Special treatment is necessary
whenever selection criteria are defined on values of meta-attributes that are mapped to
standard representations in diagrams. For example, every class in a UML class
diagram is non-abstract by default – unless explicitly stated otherwise. Without
additional means, it would not be possible to select classifiers regardless of the value
of those meta-properties. To overcome this dilemma, the values of meta-attributes
may always be explicitly defined using standard constraint notation (see Fig. 4 for an
example).

3.1 Classifier Selection

To demonstrate the general facts mentioned above, let us have a look at the way that
classifier selections may be specified. Fig. 4 depicts the graphical means that we
provide for defining selection criteria on classifiers. Table 1 details how such means
are evaluated on existing UML models using OCL expressions. As you can see, the
OCL meta-operation first evaluates the model element's name (or the tagged value
"namePattern", if present). Then, it compares the element's meta-attributes. And
finally, it considers the element's meta-relationships to other model elements.

When specifying selection criteria on classifiers, special regards must be given to
the features they must or must not possess. As illustrated in Fig. 4 (see attribute
"att1"), we can use the Boolean operator "{not}" in order to require the non-existence
of a particular element for selection. Technically, the matching result is inverted by
the OCL meta-operation in that case (see [16] for further details).

Further, you can choose the multiplicity of attributes to indicate exact upper and/or
lower limits or to designate upper and/or lower bounds which the multiplicity of an
attribute must not exceed or underrun (respectively). The lower multiplicity limit of

Table 1. OCL meta-operation for matching classifiers

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- block I. evaluate name pattern
if C.taggedValue->exists(tv | tv.type.name = 'namePattern') then

self.matchesNamePattern(C.taggedValue->select(tv |
tv.type.name = 'namePattern').dataValue->asSequence()->at(1))

else
self.matchesNamePattern(C.name)

endif -- block II. evaluate meta-attributes
and (self.isRoot = C.isRoot or C.isRoot = '')
and (self.isLeaf = C.isLeaf or C.isLeaf = '')
and (self.isAbstract = C.isAbstract or C.isAbstract = '')

-- block III. evaluate meta-relationships
and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT))

or C.allAttributes->size() = 0)
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP))

or C.allOperations->size() = 0)



"att2" in Fig. 4, for example, is an exact lower limit (indicated by "!"). Attributes are
only selected, if their lower limit equates "2". The upper multiplicity limit of "att2" in
Fig. 4 denotes an upper bound. Attributes are selected if their upper multiplicity limit
does not exceed "100" (see Fig. 4, right part, for examples). Technically, fix upper
and lower limits are indicated by special stereotypes: Attributes of stereotype "fixed-
LowerLimit" determine a fixed lower limit. Attributes of stereotype "fixedUpper-
Limit" determine a fixed upper limit (see [16] for further details). Graphically,
attributes of both stereotypes are indicated by appending an "!" to the respective
multiplicity limit (see Fig. 4 for example).

Finally, operations are specified using signature patterns, which may contain
wildcard ".." in order to abstract from an arbitrary number of parameters in the
operation's parameter list (see Fig. 4 for an example). Matching is accomplished by
comparing the overall order of the parameters in the operation's parameter list, as well
as their particular order at the beginning and the end of the parameter list (see [16] for
further details on the OCL matching expressions).

3.2 Relationship Selection

As pointed out in section 2, the presence of relationships and in particular the
existence of paths between elements plays an important role in selection queries. In
the following we present the graphical means we provide to deal with both
association, generalization, and specialization relationships and paths, respectively.

Association Selection. Fig. 5 depicts the graphical means we provide for specifying
selections based on association relationships. Table 2 details how such means may be
evaluated on existing UML models using OCL expressions. Note that, similar to
features, we may restrict the multiplicity of association ends and/or require an
association (end) not to be present (see Fig. 5, center part, for an example). Special
regards must be given to "indirect" associations, or association paths. Graphically,

<?C>Con*
{ self.isAbstract = ''}

{not} att1 : String
att2 : Integer [2!..100]

set*(val : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

name pattern

expected features

meta-constraint

multiplicity range
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exact multiplicity
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signature patterns

NoMatch

att1 : String
att2 : Integer [3..103]
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 valn : String)

 Operations
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att3 : String

setAtt3(val : String)
getAtt3() : String
run(val1 : Integer,
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 valn : String)
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Fig. 4. Classifier selection



indirect associations are depicted as double-crossed lines. Fig. 5, left part, for
example, signifies that there must be an association path from class "C" to class "AC".
Technically, indirect associations are indicated using a special stereotype "indirect"
(see Table 2 for details).

Matching of paths essentially means comparing the ends of the path in a UML
model with the ends of the indirect association in the JPDD. Table 2 details how this
is accomplished using OCL expressions: Operation "indirectNeighbors" returns all
navigable association ends of a given association. Operation "allIndirectNeighbors"
returns all navigable association ends that are reachable via a given association.
Operation "possessesMatchingAssociation" then makes use of this operation to
evaluate whether one of such association ends matches the opposite association end of
the indirect association (see block I).

D

{not}

indirect association

explicit multiplicity restriction

C

AC

[*]
A

C

A

*!

boolean restriction

AC

D

B

association name

C

D

A

AC

matching class diagram

B
21

Fig. 5. Association selection

Table 2. OCL meta-operation for matching association relationships

context Classifier::
possessesMatchingAssociation(a : Association, c : Classifier) : Boolean
post: result = -- block I. evaluate indirect neighbors
if a.stereotype->exists(st | st.name='indirect') then

self.associations->exists(A | A.matchesAssociation(a) and
a.allConnections->select(ae | ae.participant = c)->forAll(ae |
   A.allConnections->select(AE | AE.participant = self)

->exists(AE | AE.matchesAssociationEnd(ae) and
      a.allConnections->select(ae | ae.participant <> c)

->forAll(ae2 | self.allIndirectNeighbors(A)
->exists(AE2 | AE2.matchesAssociationEnd(ae2))))))

else -- block II. evaluate direct neighbors
self.associations->exists(A | A.matchesAssociation(a) and
a.allConnections->forAll(ae | A.allConnections

->exists(AE | AE.matchesAssociationEnd(ae))))
endif
context Classifier::
allIndirectNeighbors(a : Association): Set(AssociationEnd)
post: result = self.indirectNeighbors(a)->union(

self.indirectNeighbors(a)
->collect(AE | AE.participant.allAssociations->reject(A | A = a)
->collect(A | AE.participant.allIndirectNeighbors(A))))->asSet()

context Classifier::
indirectNeighbors(a : Association): Set(AssociationEnd)
post: result = self.allOppositeAssociationEnds

->select(AE | AE.association = a and AE.isNavigable)



Generalization and Specialization Selection. Fig. 6 depicts the graphical means we
provide for defining selection criteria on generalization and specialization
relationships. Table 3 details how such means may be evaluated on existing UML
models using OCL expressions. Note that, as with association relationships, we may
specify a generalization/specialization relationships not to be present (see Fig. 6,
center part, for an example).

Special regards must be given to "indirect" generalization and specialization
relationships, or inheritance paths (see Fig. 6). Graphically, indirect generalizations
and specializations are depicted as double-crossed lines. According to the
specification made in Fig. 6, left part, for example, class "C" must have class "A"
among its ancestors in order to be selected, and class "A" must have class "C" among
its descendants. Technically, inheritance paths are represented as special stereotype
"indirect" of the generalization relationship. Table 3 exemplifies how inheritance path
matching is accomplished in UML models in case of an generalization relationship
(see block I).

3.3 Message Selection

As demonstrated in section 2, selections are not confined to the structural properties
of software artifacts, but may be based on their behavior, as well. In the following, we
describe the graphical means we provide to specify such selections. In doing so, we
concentrate on the symbols used in UML sequence diagrams (i.e., messages).

Messages are selected based on the actions they are associated with. Signature
patterns may be used to restrict such actions (see Fig. 7, left part, for example).

PII

[*]

A

C

PI

C {not}

C
indirect generalization/ 

specialization

boolean restriction

PI

C

A

matching class diagram

Fig. 6. Generalization selection

Table 3. OCL meta-operation for matching generalization relationships

context Classifier::
possessesMatchingParent(g : Generalization) : Boolean
post: result = -- block I. evaluate indirect parents
if g.stereotype->exists(st | st.name='indirect') then

self.generalization->exists(G | G.matchesGeneralization(g) and
G.parent->union(G.parent.allParents)->exists(C |

C.matchesClassifier(g.parent) and
C.matchesRelationships(g.parent)))

else -- block II. evaluate direct parents
self.generalization->exists(G | G.matchesGeneralization(g) and

G.parent.matchesClassifier(g.parent) and
G.parent.matchesRelationships(g.parent))

endif



Besides that, messages may be selected based on the control flow they occur in or
which they invoke. Such control flow is sketched using predecessor and successor
messages, respectively: All messages complying to message "?msg1" in Fig. 7, center
part, for example, must occur in the control flow of message "op1". All messages
selected by message "?msg2" in Fig. 7, left part, must invoke some message "op2".
Special regards must be given to "indirect" messages, which may be used to indicate
an arbitrary control flow. Graphically, indirect messages are depicted as double-
crossed arrows (see Fig. 7, center part, for example). Technically, they are represented
as messages of the special stereotype "indirect". Last but not least, it is important to
note that messages are selected based on the base classifiers of their sender and
receiver roles (rather than on the roles themselves). This is accomplished deeming
that selections should execute on the full specification of classifiers rather than on
restricted projections. The same is valid for the associations used for transmitting the
messages. See [16] for the precise OCL code used for message matching.

4 A Technical Perspective

Having specified the graphical notation and their semantics in the previous section,
we now want to describe briefly how those means are integrated into the UML. Fig. 8
depicts the general syntax of a JPDD: It consists of at least one selection criterion,
some of which delineate selection parameters. A JPDD represents a selection criterion
itself, and thus may be contained in another JPDD (e.g., for reuse of criteria
specifications). Fig. 8 illustrates how we can map the syntax of JPDDs to the general
syntax of UML namespace templates: In terms of the UML meta-model, a JPDD
represents a (special stereotype of a) namespace which may contain several model
elements, each representing a selection criterion. The namespace is provided with a
set of template parameters that indicates the model elements to be returned by the
query. We do not further restrict the particular kind of namespace that a JPDD may
reify since different application domains may have different demands. Therefore,
JPDDs may be specified as classifier templates, collaboration templates, or package
templates, etc. – whatever suits the needs of the particular query specification best.

It is important to note that JPDDs do not quite comply with the semantic of
conventional UML templates. In fact, the meaning of JPDDs is rather "inverse" to that

C
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of conventional UML templates: While conventional UML templates are generally
used to instantiate multiple model elements from one common mould (or a
"generation pattern"), JPDDs are used to identify all model elements that share one
common shape (a "selection pattern"). Correspondingly, template parameters of
JPDDs are meant to return actual arguments rather than being bound to actual
arguments. To indicate this important difference in meaning visually, we place
template parameter boxes to the bottom right corner of JPDDs (rather than to their
conventional position at the top right corner of the template). In the following section
we give examples of what a fully specified JPDD looks like.

5 Application to Software Development Techniques

In this section we demonstrate how our notation may be put to use in actual software
development techniques, namely in MDA and AOSD. To do so, we revisit the
examples given in section 2 and show how these sample query specifications can be
represented using JPDDs. We demonstrate the benefits that our modeling notation
yields to the comprehension of query specifications and compare it to other possible
approaches to visualize selection queries.

5.1 Model-Driven Architecture

It has been already mentioned that the need to specify model queries in the field of
MDA is manifested in OMG's "MOF 2.0 QVT" RFP. While most submissions to the
RFP are content with proposing textual notations (in particular OCL) to specify model
queries, only one [12] comes up with a graphical representation. In the following we
compare that graphical notation with the one presented here. To do so, we make use
of the OCL selection statement described in section 2.1.

Let us first have a look at the JPDD (see Fig. 9, left part). The JPDD depicts three
classes (together with their features) and one relationship. The elements are grouped
into two alternative selection patterns, which are interconnected by a Boolean "{or}".

Namespace

Classifier Collaboration

ModelElement

namespace

ownedElement

template

templateParameter

Package

TemplateParameter

«stereotype»
JPDD

«stereotype»
SelectionCriterium

1..*
1..* «stereotype»

SelectionParameter

Fig. 8. Abstract syntax of JPDDs, and its mapping to UML's meta-classes



Attribute "?att" in the upper class of the right selection pattern is annotated with a
Boolean "{not}", stating that no matching attribute must be present in the respective
classifier for the selection to succeed. Class names and attributes names are specified
using name patterns ("cn", "cn1", and "an"), which are given identifiers ("?c", "?c1",
and "?att"). Two of those identifiers ("?c" and "?att") reappear in the template
parameter box of the query, meaning that the selection is supposed to return all
class/attribute-pairs that satisfy the specified selection criteria in the JPDD.

Fig. 9, right part, shows a graphical representation of the same query using the
notation presented in [12]. The approach aims to define general meta-model mappings
in MDA. Therefore, queries are defined in terms of meta-model entities and meta-
model properties rather than in terms of user model entities and user model properties
(as in our approach). In consequence, the approach can be considered to be in parts
more general than ours: Its notation allows the specification of model queries for any
(MOF) meta-model and is not confined to the UML meta-model. However, we think
that the gain of higher generality is at cost of lower feasibility and readability: Users
have to learn and understand the meta-models they are (unawarely) working with
before they can write their model queries. Further, the need to express selection
criteria in terms of meta-model entities may often lead to unnecessary and distracting
noise in selection diagrams. For example, in order to define a simple association
between two classes, we need to draw three meta-model entities (see Fig. 9, right
part). Apart from such pragmatic problems, the approach does not provide for the
selection based on indirect relationships and/or name/signature patterns.

5.2 Aspect-Oriented Software Development

In AOSD, a major design issue is where and when to apply crosscutting
enhancements implemented by aspects. Aspect-oriented programming techniques
provide various textual means to define the conditions under which crosscutting has
to take place. Even though various aspect-oriented modeling approaches are around
[2] [14] [5], none of them presents a solution to represent such conditions graphically.
By means of JPDDs, we now have a graphical notation at hand to visualize the
criteria under which a join point is to be enhanced by an aspect. To demonstrate this,

{or}

ocl_query

 ?c
 ?att

<?c>cn

<?att>an
 Operations

 Attributes

<?c1>cn1

<?att>an
 Operations

 Attributes

<?c>cn

{not} <?att>an
 Operations

 Attributes

c: Class
name="cn"

att: Attribute
name="an"

{or}

AssociationEnd

AssociationEnd

Association

c: Class
name="cn"

c1: Class
name="cn1"

att: Attribute
name="an"

Attribute
name="an"

Fig. 9. Representation of the OCL query (from section 2.1). Left part: Using a JPDD. Right
part: Using the notation presented in [12]



we exemplify in the following how JPDDs may be used to represent pointcuts in
AspectJ. We are using the example given in section 2.22:

To visualize the pointcut, we draw a JPDD consisting of two parts (see Fig. 10),
one specifying the behavioral selection criteria (right part) and one specifying the
structural constraints (left part). The parts are linked to each other via identifier "?s".
According to the structural constraints, "?s" refers to all children of "ListServlet". In
the behavioral part, "?s" is then used to portray a control flow from a "ServletEngine"
to one of its children. That control flow must go on, passing any arbitrary number of
messages, until an invocation of operation "search" on a "DiseaseRepositoryDBMS"
(taking any integer value as parameter and returning a "DiseaseType") is reached.
This is the point that the AspectJ pointcut is supposed to retrieve. Therefore, it is
given an identifier "?jp", and is placed in the JPDD's template parameter box.

6 Summary and Future Work

In this paper, we presented a graphical notation to define query models. The
specification of queries is a new emerging design issue. Queries lie at the heart of
novel techniques such as MDA or AOSD. Despite that fact, though, no suitable
graphical notation is around to our knowledge that supports the definition of selection
queries. An appropriate query modeling language is considered indispensable, though,
for techniques like MDA and AOSD to allow them to become widespread. Software
developers demand programming language-independent modeling facilities that ease
their comprehension on where (MDA- and AO-) refinements actually take place.

In this paper, we have identified frequent selection criteria in query specifications
on software artifacts. We presented a comprehensive set of easy to use, yet powerful
modeling means to specify such selection criteria in selection queries. We
supplemented them with precise OCL semantics that can be executed on existing
UML models in order to allocate model elements meeting such criteria. At last, we
proved the applicability of our notations with different programming languages using
daily-life examples as we can find them in MDA and AOSD.

To the best of our knowledge, our modeling notation is the first approach that
provides an essential set of modeling means for the explicit design of queries based
                                                          
2 A visualization of the Demeter/C++ traversal strategy presented in section 2.3 is omitted here

due to space limitations. Please refer to [15] for a graphical representation.
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Fig. 10. Representation of the AspectJ query (from section 2.2) using a JPDD



on the UML. The major advantage of adopting UML's existing modeling means is
that query models are easy to write and easy to understand by a broad community of
software developers. They do not need to learn a new modeling language, nor do they
need to deal with the meta-model (as in other approaches) in order to define query
models.

In order to advance the support for software developers in designing queries to a
further extent, the following issues are focus of future work: The capabilities allowing
the composition of new selection queries from existing ones – like, for example,
query aggregations or query specializations – must be improved. Further, suitable
abstraction means must be found that enable software developers to reason on
selection queries (and their relationships to each other) without bothering about the
exact details.
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