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Abstract. The need for querying software artifacts is a memerging design

issue in modern software development. Novel tealescsuch as Model-Driven
Architecture or Aspect-Oriented Software Developmbravily depend on

powerful designation means to allocate elemensoftware artifacts, which are
then either modified by transformation or enhanbgdveaving processes. In
this paper we present a new modeling notation épresenting queries using
the UML. We introduce special symbols for commotea#on purposes and
specify their OCL selection semantics, which mayexecuted on existing
UML models in order to allocate all selected moeleinents therein. By doing
so, we aim to give forth the advantages of moddiinguery design: Our query
models facilitate the specification of queries ipeledent from particular

programming languages, ease their comprehensidnsigport their validation

in a modeling context.

1 Introduction

Querying software artifacts is a new emerging desgsue in modern software
development. Novel software development techniquassh as Model-Driven
Architecture (MDA) [9] and Aspect-Oriented Softwabevelopment (AOSD) [6],
focus on the allocation of elements, which are thi#mer modified by transformation
(in MDA) or enhanced by weaving processes (in AQSDhe primary goal of these
approaches is to apply common refinements to melfints in target artifacts. At
the same time, refinements are kept separate fiemdints being affected in order to
allow reuse of refinements in different applicat@smains.

Prerequisite to querying software artifacts is #hdstence of accurate query
specification means since only accurate specificadf the selection criteria on target
elements may lead to desired results and avoidedigied effects. Accordingly, the
need for query specification means in MDA is masidd in the “MOF 2.0 Query /
Views / Transformation (QVT)” Request For PropodiFP) [10]. The RFP calls for
suggestions for a standard model transformatioguage. One part of the RFP
demands appropriate designation means to allocatielnelements in existing models
that will serve as sources to transformations. Mogtmissions to the RFP (e.g., [4],
[12], [1]) propose a textual language — in parécuthe Object Constraint Language
(OCL) [17] — in order to query existing user modeiowever, using a textual
language (like OCL) quickly leads to very complegpressions even when defining a



relatively small number of selection criteria. Hen@as query comprehension is
difficult, accurate query specification is not eemyd error-prone. We feel that a
graphical notation could help. However, no graphmdation is currently around that
assists the specification of selection queriesrmoge feasible manner.

In AOSD, the need of query specification means gaefrom the need to specify
sets of points in the target program (so-calledn"jpoints” [6]) at which aspect-
oriented refinement shall take place. In order ¢gighate such sets of join points,
aspect-oriented programming languages provide apeanstructs, called "crosscuts"
[3] (examples are "pointcuts" in Aspectd [7] ancaversal strategies" in Adaptive
Programming [8]). Crosscuts are usually express@mjuextual means. As with any
textual pattern description, crosscuts as well tendbe difficult to comprehend as
soon as they become more complex. Again we thiak ahgraphical notation could
help in understanding and specifying crosscuts. él@m although there are various
modeling approaches around to model aspect-oriesaéidiare (e.g., [2], [14], [5]),
they all lack a suitable notation to representcilas of join points graphically.

In conclusion, we think that there is a need fgeaeral graphical representation to
express selection queries on software artifactgtfervarious domains. Indeed, we
believe that such a suitable modeling notatiomdispensable for technologies like
MDA and AOSD to become popular software developieghniques. Such a
graphical visualization would facilitate the compeasion of selection queries, as
well as the estimation of where refinements acyutke place. It would assist the
software developer to communicate his/her idealieagues or to document design
decisions for maintainers and administrators. At,larovided with precise selection
semantic, the modeling notation would permit reaspron design decisions and
validation of final results.

In this paper, we present a novel modeling notafimn specifying selection
gueries: "Join Point Designation Diagrams" ("JPDDPDDs are special kinds of
diagrams that are used to visualize the selectiberia that elements must satisfy in
order to be selected by the query. The notatiobaised on the modeling means
provided by the Unified Modeling Language (UML) J1inaking its comprehension
easy and intuitive to a broad range of develop@ise modeling notation is
accompanied by a set of OCL operations that outligeallocation of elements in
existing models according to the specifications enad a JPDD. These OCL
operations allow for the validation of selectioregas in a modeling context.

The remainder of this paper is structured as fddlot first, we emphasize the
urgency of having a common graphical notation faresent queries giving real-life
examples from the MDA and AOSD domains. After tiveg, introduce the selection
means that we have defined and specify their setecdemantics with the help of
OCL expressions. We further describe the generatagyof JPDDs in order to
elucidate the ways that our selection means mayctmbined. Finally, we
demonstrate the applicability of our diagrams bglgipg them to the examples given
in the problem statement. We conclude the papér avghort summary.

2 Problem Statement

In order to motivate the need to visualize quemcsjrations, we present three daily-
life sample implementations of queries as we caah fiiem in MDA and AOSD.



2.1 Query Specification in OCL

The first example shows an (excerpt from an) OCérgstatement as it may be used
in MDA transformations. The statement selects laléges which are nhamed "cn" and
that either have an attribute named "an" or — Bea#t — have an association to some
other class named "cnl" which in turn has an atteilmamed "an". The example is
adopted from [12]. There it is used within a tramsfation that translates classes into
tables. Fig. 1 shows a possible application areauoh a transformation: Imagine we
want to store all instances of "Person” in a dataltable together with the "Street"
the person lives on. In some cases (A), the deeetomay have decided to implement
"Street" as a direct attribute of "Person”. In otbases (B), they may have chosen to
associate class "Person" with another class "Agdtredich in turn includes the
attribute "Street". The query we specify here cexmth solutions.

->select(c: Class |
(c.name='cn’ and
c.allAttributes->exists(att | att.name="an") )
or (c.name='cn' and not
c.allAttributes->exists(att | att.name="an") and
c.oppositeAssociationEnds->exists(ae |
| et cl1: Class = ae.participant in
cl.name='cnl' and
cl.allAttributes->exists(att | att.name='an’) ) ) )

The example demonstrates the complexity that thetuaé notation of OCL
imposes on the developer when specifying or congreing a selection query:
He/she needs to be have a profound knowledge on prioperties (e.g.name or
participant ) of what elements (e.g., classes and associatinag)be constrained,
and how. Further, the precise way to refer to tlment's relationships to other
model elements must be well understood (e.g., bgguthe collection operation
->exists ~ on properties likeallAttributes or oppositeAssociationEnds ).
The assignment of variables (e.gl,) using thelet expression and the scoping of
variable names by means of brackets is anothecsairsignificant complexity. Last
but not least, the placement of Boolean operasocsticial to the selection result, and
therefore must be carefully investigated.

A Person B Person Address
[ Attributes —— — Attributes —— — Attributes ——
Street Street
— Operations: [~ Operations—— — Operations

Fig. 1. Application areas for the OCL query

2.2 Query Specification in AspectJ

The next example shows a "pointcut" as we can itind AspectJ [7]. Aspectd is a
very popular general-purpose aspect-oriented pnogriag language based on Java.
Its "pointcut” construct is used to designate ac@in of join points. A specialty of
AspectJ is to allow aspect-oriented refinements.,(icrosscutting) based on the
runtime context of join points.
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Fig. 2. Application area for the AspectJ pointcut

The sample pointcut shown here selects all thosssages as join point that
invoke (all ) method "search" on cldssDiseaseRepositoryDBMS" (taking an
integer value as parameter and returning an instaficclass "DiseaseType") that
come to pass within the control flowflow ) of any ¢) method called fromtifis )
clas$ "ServletEngine" on cladsListServlet" (or any of its subclasses)), taking
any number .( ) of parameters and returning any or nong return value. The
pointcut is adopted from an example in [13] andritsn purpose is to reduce loading
time of complex data objects ("DiseaseType") whenty gpartial information is
needed. Fig. 2 shows a possible scenario for ompkapointcut. In this scenario,
clas$ "ServletEngine" invokes method "service" on claskistDiseaseServlet",
which is a subclass of clds4.istServlet". After two hops via "DiseaseList" cin
"ConnPool", the message sequence ends invoking oshetlsearch" on class
"DiseaseRepositoryDBMS". At this point the seleaticriteria specified in the
pointcut are satisfied and message "search” iscatddiie list of selected join points.

pointcut aspectj_pc():

call(DiseaseType DiseaseRepositoryDBMS.search(int)) &&
cflow ( call(* ListServlet+.*(..)) && this(ServletEngine) )

This example points out the absolute need of b&ngliar with keywords (such
ascall andcflow ) and operators (like, *, and.. ) for the comprehension of
selection queries. In response to this indisperspl@requisite, we carefully related
our explanations in the previous paragraph to émmng and characters used in the
pointcut. However, in order to compose a new quénowing the meaning of
keywords and operators is not enough. Developert briaware of what arguments
may be specified within a particular statement lisascall andcflow ), and what
consequences these have. They need to know, fonpdeathat the selection of
call s can be further refined to operations having diqudar signature pattern, or
being invoked by certain instances (usingttiie construct). In the end, it requires
high analytical skills in order to combine thesatasments (by means of Boolean
operators) in such a way that only those join moare selected that we actually want
to crosscut.

2.3 Query Specification in Demeter /C++
Our last example is from the domain of Adaptive gPamnming [8]. The goal of

Adaptive Programming is to implement behavior in's&ructure-shy” way. That
means that methods should presume as little ashpsbhout the (class) structure

1i.e., an instance of that class/those classes



they are executed in. For that purpose, AdaptiagRmming makes use of special
kinds of crosscuts, so-called "traversal stratégies

The following traversal strategy is taken from [&].selects a path from class
"Conglomerate" to class "Salary" that passes cl@dficer", however, that does not
include an association (end) of name "subsidiari€ké strategy is part of a method
that sums up the salaries of "Officers" in the "@lomerate". Fig. 3 shows a possible
class hierarchy that the method can cope with.aldteal summation is accomplished
by visitor methods that are appended to the indadictclasses on the strategy path.
Note that according to the traversal strategy,ation does not consider officers
employed by the company's subsidiaries.

*from* Conglomerate
*bypassing* -> *,subsidiaries,*
*via* Officer
*to* Salary
Looking at this example, we are once again faceith wew keywords and new
operators whose meaning and consequences must beumderstood by the
developer. A major part of complexity arises frdra wvarious kinds of relationships —
denoted as construction, alternation, inheritaac®, repetition edges — that can be
specified in traversal strategies: Developers ngede aware of the distinctive
meaning of each of those edge types, and they raostmber their precise notation
(-, =>, >, and~>, respectively) in order not to designate the wrmeigtionship. At
last, they have to keep in mind what specific infation they may provide with each
relationship. For example, restrictions to thetrefeship labels may only be specified
for construction edges.

heac officers ) salan
Conglomerate Company x| Officer Salary
compan
subsidiarie| *
- . Share
Subsidiary Ordinary Holding

Fig. 3. Application area for the Demeter/C++ traversatstmy

2.4 Préiminary Conclusion

As a conclusion from the previous investigationg aitest textual notations to
leave developers stranded with a heavy load of texitp: Developers are required
to have a profound understanding about the usageyafords and operators in order
to specify queries properly. They must know whatperties of what elements they
may refer to, and how. Finally, they must have haghlytical capabilities in order to
assess the grouping of selection criteria as veethair semantic interdependencies,
so that they can estimate what elements will beadlgtretrieved.

Opposed to so much complexity, developers urgerallyfor a graphical notation
that help them with the composition and comprelmnsif selection queries. That
notation should give them a visual conception @& #election semantics they are
currently specifying using textual keywords. It glibfacilitate the specification of



selection criteria on elements and their properfiesthermore, it should depict the
grouping of such selection criteria and visualtzeittinterdependencies.

In order to come up with more concrete charactesighat our graphical notation
must possess, we revisit the examples of the puevéections and investigate what
different kinds of selections we have used: Fifsalh we may observe that — even
though each notation comes with its own, most iiddial syntax, keywords, and
operators — they are all concerned with the selactf (more or less) the same
program elements, namely classes and objects, lssvehe relationships between
them (i.e., association relationships, generabratirelationships, and call
dependencies). Further, we recognize that seledtsiamost always based on the
element names (only sometimes the elements nansenddenatter). Apart from that,
selection may be based on the element's strucanaposition; for example, based on
the (non-)existence of features in classes or cdrpaters in a parameter list. The last
observation we make is that selection of elemestsfien based on the general
context they reside in; meaning that query spetifims abstract from (a set of) direct
relationships between elements and merely cath@existence of paths.

Having identified these core objectives of a graphiquery language, we now
explain how we deal with these issues in our quesyels.

3 Modeding Selection Criteria

In this section we present the core modeling meandeveloped for the specification
of selection criteria in selection queries. We akpltheir graphical notation, describe
their objectives, and define their selection seimanising OCL meta-operations. Due
to space limitations, only important meta-operatiare shown.

Before discussing the modeling means in detaillikeeto emphasize some general
facts: Each model element is selected based owalbies of their meta-attributes. In
doing so, we extrapolate our observation that eles may be based on the value of
the element's meta-attribute "name"”, and allowcsieles based on the values of the
other meta-attributes, as well. Further, selecti@y be based on the model element's
meta-relationships to other elements. That way wogecwith the occasions when
elements need to be selected based on their s@baomposition. Evaluation of
meta-attributes and meta-relationships is accomgpdisby special OCL meta-
operations, which we append to various meta-class¢ise UML meta-model (see
Table 1 for an example). These OCL meta-operatmkes a selection criterion from a
JPDD as argument and compare it with an actual hedelment in a user model.

Within the meta-operations, name matching is gdiyesacomplished using name
patterns. Name patterns may contain wildcards, asch" and "?", in order to allow
the selection of groups of elements (of the sanpe)tyfollowing similar naming
conventions. Within a JPDD, each model elementsens considered to be a name
pattern by default. A name pattern may be giveidantifier in order to reference the
name pattern's occurrences at another place wittenJPDD. Graphically, such
identifiers are prepended by a question mark aaeaclosed by angle brackets. They
are placed in front of the name pattern whose oeoues they reference (see
"<?C>Con*" in Fig. 4 for an example). Technicalhgme patterns which are given an
identifier are stored in a special tagged valueer "namePattern”. Is such a tagged



value present, the OCL meta-operation evaluatetatigeed value for name matching
rather than the model element's proper name (siele Tablock |, for details).

A JPDD must always show all characteristics that eonsidered relevant for
selection. If any meta-attribute is not explicithgt to a value, or if any meta-
relationship is not explicitly defined to be presethey are regarded irrelevant for
selection (like the publicity specification in Fig, for example). In doing so, we
allow selections based only on partial informati@pecial treatment is necessary
whenever selection criteria are defined on valdesata-attributes that are mapped to
standard representations in diagrams. For exanglery class in a UML class
diagram is non-abstract by default — unless explictated otherwise. Without
additional means, it would not be possible to sattassifiers regardless of the value
of those meta-properties. To overcome this dilemthe, values of meta-attributes
may always be explicitly defined using standardst@int notation (see Fig. 4 for an
example).

3.1 Classifier Selection

To demonstrate the general facts mentioned abevesihave a look at the way that
classifier selections may be specified. Fig. 4 dispthe graphical means that we
provide for defining selection criteria on clagsifi. Table 1 details how such means
are evaluated on existing UML models using OCL egpions. As you can see, the
OCL meta-operation first evaluates the model eldlmerame (or the tagged value
"namePattern”, if present). Then, it compares tlsment's meta-attributes. And
finally, it considers the element's meta-relatiopstio other model elements.

When specifying selection criteria on classifieygecial regards must be given to
the features they must or must not possess. Astriited in Fig. 4 (see attribute
"att1l"), we can use the Boolean operator "{not}'cirder to require the non-existence
of a particular element for selection. Technicathe matching result is inverted by
the OCL meta-operation in that case (see [16]dahér details).

Further, you can choose the multiplicity of atttidmito indicate exact upper and/or
lower limits or to designate upper and/or lower s which the multiplicity of an
attribute must not exceed or underrun (respectivdlige lower multiplicity limit of

Table 1. OCL meta-operation for matching classifiers

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- block I. evaluate name pattern
if C.taggedValue->exists(tv | tv.type.name = 'namePattern’) then

self. matchesNamePattern(C.taggedValue->select(tv |

tv.type.name = 'namePattern’).dataValue->asSequence()->at(1))

else

self.matchesNamePattern(C.name)
endif -- block II. evaluate meta-attributes
and (self.isRoot = C.isRoot or C.isRoot =")
and (self.isLeaf = C.isLeaf or C.isLeaf =")
and (self.isAbstract = C.isAbstract or C.isAbstract = ")

-- block Ill. evaluate meta-relationships

and (C.allAttributes->forAll(ATT | self.possessesMatchingAttribute(ATT))

or C.allAttributes->size() = 0)
and (C.allOperations->forAll(OP | self.possessesMatchingOperation(OP))

or C.allOperations->size() = 0)
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Fig. 4. Classifier selection

"att2" in Fig. 4, for example, is an exact lowenili (indicated by "I"). Attributes are
only selected, if their lower limit equates "2".& bpper multiplicity limit of "att2" in
Fig. 4 denotes an upper bound. Attributes are tld€ their upper multiplicity limit
does not exceed "100" (see Fig. 4, right part,efcamples). Technically, fix upper
and lower limits are indicated by special stereesypAttributes of stereotype "fixed-
LowerLimit" determine a fixed lower limit. Attribes of stereotype "fixedUpper-
Limit" determine a fixed upper limit (see [16] fdurther details). Graphically,
attributes of both stereotypes are indicated byeagmg an "!I" to the respective
multiplicity limit (see Fig. 4 for example).

Finally, operations are specified using signatuedtepns, which may contain
wildcard ".." in order to abstract from an arbifranumber of parameters in the
operation's parameter list (see Fig. 4 for an ex@mMatching is accomplished by
comparing the overall order of the parameters éndperation's parameter list, as well
as their particular order at the beginning andethe of the parameter list (see [16] for
further details on the OCL matching expressions).

3.2 Relationship Selection

As pointed out in section 2, the presence of mtstips and in particular the
existence of paths between elements plays an iaortle in selection queries. In
the following we present the graphical means wevigeo to deal with both
association, generalization, and specializatioati@iships and paths, respectively.

Association Selection. Fig. 5 depicts the graphical means we provide facgying
selections based on association relationships.eTaletails how such means may be
evaluated on existing UML models using OCL expi@ssi Note that, similar to
features, we may restrict the multiplicity of adstion ends and/or require an
association (endjot to be present (see Fig. 5, center part, for an pig@mSpecial
regards must be given to "indirect" associationsassociation paths. Graphically,



indirect associations are depicted as double-ctodises. Fig. 5, left part, for
example, signifies that there must be an assonigih from class "C" to class "AC".
Technically, indirect associations are indicatethgisa special stereotype "indirect”
(see Table 2 for details).

association nan  explicit multiplicity restriction matching class diagram
e \Le ] |[o] :
A [ A B A

*I [{not}
] | o] [re] KR
| 2
indirect associatic boolean restriction

Fig. 5. Association selection

Matching of paths essentially means comparing thds eof the path in a UML
model with the ends of the indirect associatiothim JPDD. Table 2 details how this
is accomplished using OCL expressions: OperatioditéctNeighbors" returns all
navigable association ends of a given associafperation "allindirectNeighbors"
returns all navigable association ends that arehedde via a given association.
Operation "possessesMatchingAssociation” then malses of this operation to
evaluate whether one of such association ends emtbl opposite association end of
the indirect association (see block I).

Table 2. OCL meta-operation for matching association retethips

context Classifier::
possessesMatchingAssociation(a : Association, c : Classifier) : Boolean
post: result = -- block I. evaluate indirect neighbors
if a.stereotype->exists(st | st.name='indirect’) then
self.associations->exists(A | A.matchesAssociation(a) and
a.allConnections->select(ae | ae.participant = c)->forAll(ae |
A.allConnections->select(AE | AE.participant = self)
->exists(AE | AE.matchesAssociationEnd(ae) and
a.allConnections->select(ae | ae.participant <> c)
->forAll(ae2 | self.allindirectNeighbors(A)
->exists(AE2 | AE2.matchesAssociationEnd(ae2))))))
else -- block II. evaluate direct neighbors
self.associations->exists(A | A.matchesAssociation(a) and
a.allConnections->forAll(ae | A.allConnections
->exists(AE | AE.matchesAssociationEnd(ae))))
endif
context Classifier::
allindirectNeighbors(a : Association): Set(AssociationEnd)
post: result = self.indirectNeighbors(a)->union(
self.indirectNeighbors(a)
->collect(AE | AE.participant.allAssociations->reject(A | A = a)
->collect(A | AE.participant.allindirectNeighbors(A))))->asSet()
context Classifier::
indirectNeighbors(a : Association): Set(AssociationEnd)
post: result = self.allOppositeAssociationEnds
->select(AE | AE.association = a and AE.isNavigable)




Generalization and Specialization Selection. Fig. 6 depicts the graphical means we
provide for defining selection criteria on generation and specialization
relationships. Table 3 details how such means nmgMaluated on existing UML
models using OCL expressions. Note that, as witlo@ation relationships, we may
specify a generalization/specialization relatiopshiot to be present (see Fig. 6,
center part, for an example).

“ boolean restriction matching class diagram
A [ N
[ - o /\
c no
~ |

indirect generalization/
specialization

Fig. 6. Generalization selection

Special regards must be given to "indirect" gefatibn and specialization
relationships, or inheritance paths (see Fig. 6ap8ically, indirect generalizations
and specializations are depicted as double-crodsees. According to the
specification made in Fig. 6, left part, for examptlass "C" must have class "A"
among its ancestors in order to be selected, as ¢A" must have class "C" among
its descendants. Technically, inheritance pathsrepeesented as special stereotype
"indirect" of the generalization relationship. Tal¥ exemplifies how inheritance path
matching is accomplished in UML models in case mfganeralization relationship
(see block I).

Table 3. OCL meta-operation for matching generalizatioatiehships

context Classifier::
possessesMatchingParent(g : Generalization) : Boolean
post: result = -- block I. evaluate indirect parents
if g.stereotype->exists(st | st.name='indirect’) then
self.generalization->exists(G | G.matchesGeneralization(g) and
G.parent->union(G.parent.allParents)->exists(C |
C.matchesClassifier(g.parent) and
C.matchesRelationships(g.parent)))
else -- block II. evaluate direct parents
self.generalization->exists(G | G.matchesGeneralization(g) and
G.parent.matchesClassifier(g.parent) and
G.parent.matchesRelationships(g.parent))
endif

3.3 Message Selection

As demonstrated in section 2, selections are nofireed to the structural properties
of software artifacts, but may be based on thdiakbir, as well. In the following, we
describe the graphical means we provide to spetiéh selections. In doing so, we
concentrate on the symbols used in UML sequenagalias (i.e., messages).
Messages are selected based on the actions thegssmeiated with. Signhature
patterns may be used to restrict such actions Fége7, left part, for example).
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Fig. 7. Message selection

Besides that, messages may be selected based aoritnel flow they occur in or
which they invoke. Such control flow is sketchedngspredecessor and successor
messages, respectively: All messages complyingessage "?msgl” in Fig. 7, center
part, for example, must occur in the control flolvnoessage "opl". All messages
selected by message "?msg2" in Fig. 7, left paustrmvoke some message "op2".
Special regards must be given to "indirect" messagich may be used to indicate
an arbitrary control flow. Graphically, indirect ssages are depicted as double-
crossed arrows (see Fig. 7, center part, for ex@mpechnically, they are represented
as messages of the special stereotype "indireesst hut not least, it is important to
note that messages are selected based on the laasdiers of their sender and
receiver roles (rather than on the roles themsglvHss is accomplished deeming
that selections should execute on the full speatific of classifiers rather than on
restricted projections. The same is valid for thsogiations used for transmitting the
messages. See [16] for the precise OCL code useddssage matching.

4 A Technical Perspective

Having specified the graphical notation and theimantics in the previous section,
we now want to describe briefly how those meansraegrated into the UML. Fig. 8
depicts the general syntax of a JPDD: It consiftatdeast one selection criterion,
some of which delineate selection parameters. ADJRIpresents a selection criterion
itself, and thus may be contained in another JPBM.( for reuse of criteria
specifications). Fig. 8 illustrates how we can nttag syntax of JPDDs to the general
syntax of UML namespace templates: In terms of WihéL meta-model, a JPDD
represents a (special stereotype of a) namespaih wiay contain several model
elements, each representing a selection critefibe. namespace is provided with a
set of template parameters that indicates the mel@dehents to be returned by the
qguery. We do not further restrict the particulandkiof namespace that a JPDD may
reify since different application domains may haliferent demands. Therefore,
JPDDs may be specified as classifier templatesatmmiation templates, or package
templates, etc. — whatever suits the needs ofdhtecplar query specification best.

It is important to note that JPDDs do not quite pbmwith the semantic of
conventional UML templates. In fact, the meaning®DDs is rather "inverse" to that
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Fig. 8. Abstract syntax of JPDDs, and its mapping to UMhé&ta-classes

of conventional UML templates: While conventionaMU templates are generally

used to instantiate multiple model elements frome a@wommon mould (or a

"generation pattern"), JPDDs are used to identifyr@del elements that share one
common shape (a "selection pattern"). Correspomgdingmplate parameters of
JPDDs are meant to return actual arguments rathem being bound to actual
arguments. To indicate this important difference nieaning visually, we place

template parameter boxes to the bottom right coofielPDDs (rather than to their
conventional position at the top right corner af tamplate). In the following section
we give examples of what a fully specified JPDDklotke.

5 Application to Software Development Techniques

In this section we demonstrate how our notation m&ayut to use in actual software
development techniques, namely in MDA and AOSD. dm so, we revisit the

examples given in section 2 and show how these Isagquery specifications can be
represented using JPDDs. We demonstrate the terleéit our modeling notation
yields to the comprehension of query specificatiand compare it to other possible
approaches to visualize selection queries.

5.1 Mode-Driven Architecture

It has been already mentioned that the need tafgpmodel queries in the field of
MDA is manifested in OMG's "MOF 2.0 QVT" RFP. Whifgost submissions to the
RFP are content with proposing textual notationgérticular OCL) to specify model
gueries, only one [12] comes up with a graphicptesentation. In the following we
compare that graphical notation with the one prieskhere. To do so, we make use
of the OCL selection statement described in se@i&n

Let us first have a look at the JPDD (see Figefl,part). The JPDD depicts three
classes (together with their features) and ondioelship. The elements are grouped
into two alternative selection patterns, which iaterconnected by a Boolean "{or}".



Attribute "?att" in the upper class of the rightestion pattern is annotated with a
Boolean "{not}", stating that no matching attributeust be present in the respective
classifier for the selection to succeed. Class saamg attributes names are specified
using name patterns (“cn", "cnl", and "an"), whigh given identifiers ("?c", "?c1",
and "?att"). Two of those identifiers ("?c" and tt?Pareappear in the template
parameter box of the query, meaning that the seleds supposed to return all
class/attribute-pairs that satisfy the specifidda®n criteria in the JPDD.

Fig. 9, right part, shows a graphical represermatié the same query using the
notation presented in [12]. The approach aims fme@eneral meta-model mappings
in MDA. Therefore, queries are defined in termsnuéta-model entities and meta-
model properties rather than in terms of user medsties and user model properties
(as in our approach). In consequence, the approactbe considered to be in parts
more general than ours: Its notation allows theci§igation of model queries for any
(MOF) meta-model and is not confined to the UML aaetodel. However, we think
that the gain of higher generality is at cost afido feasibility and readability: Users
have to learn and understand the meta-models treeyumawarely) working with
before they can write their model queries. Furtibe need to express selection
criteria in terms of meta-model entities may oftesd to unnecessary and distracting
noise in selection diagrams. For example, in ondedefine a simple association
between two classes, we need to draw three metainsodities (see Fig. 9, right
part). Apart from such pragmatic problems, the apph does not provide for the
selection based on indirect relationships and/areisignature patterns.

5.2 Agpect-Oriented Softwar e Development

In AOSD, a major design issue is where and whenapply crosscutting
enhancements implemented by aspects. Aspect-atigotegramming techniques
provide various textual means to define the cood#tiunder which crosscutting has
to take place. Even though various aspect-oriemedeling approaches are around
[2] [14] [5], none of them presents a solution épresent such conditions graphically.
By means of JPDDs, we now have a graphical notatiohand to visualize the
criteria under which a join point is to be enhanbgdan aspect. To demonstrate this,

- ol . -
7 oo quey N c: Class att: Attribute
/ N\ name="cn name="an
! <?cen oo <?c>cn !
! [ Attributes {OI’} I Attributes ! {OI’}
|| <?att>an {not} <?att>an| ! -
i | . X
| Operations. - Operations H % Att”lilﬂte
! ' name="cn name="an
i l :
] 1
: _ ?cl>cnl i AssociationEnd Association
1 I Attributes H [
! 1
| ool I
:\ | operations ! AssociationEnd
\\ //I
\, .
. A cl: Class att: Attribute
B i i name="cnl name="an
at !

Fig. 9. Representation of the OCL query (from section.2.#jt part: Using a JPDDRight
part: Using the notation presented in [12]



we exemplify in the following how JPDDs may be ugedrepresent pointcuts in
AspectJ. We are using the example given in se&igin

/ aspectj_pc h \
* * <P* L K *ox * : Disease A
ListServiet ServletEngine RepositoryDBM S

>

- <?jp>search(*:int) g !
<o L DiseaseTyp 'LJ

____________________________________________________________________

Fig. 10. Representation of the AspectJ query (from se@i@h using a JPDD

To visualize the pointcut, we draw a JPDD consistifi two parts (see Fig. 10),
one specifying the behavioral selection criterightr part) and one specifying the
structural constraints (left part). The parts amkdd to each other via identifier "?s".
According to the structural constraints, "?s" refar all children of "ListServlet". In
the behavioral part, "?s" is then used to portraprarol flow from a "ServiletEngine"
to one of its children. That control flow must go, passing any arbitrary number of
messages, until an invocation of operation "seaocha "DiseaseRepositoryDBMS™
(taking any integer value as parameter and retgrairiDiseaseType") is reached.
This is the point that the AspectJ pointcut is ©iggal to retrieve. Therefore, it is
given an identifier "?jp", and is placed in the IP®template parameter box.

6 Summary and Future Work

In this paper, we presented a graphical notationdéfine query models. The
specification of queries is a new emerging desggué. Queries lie at the heart of
novel techniques such as MDA or AOSD. Despite flaat, though, no suitable
graphical notation is around to our knowledge thatports the definition of selection
gueries. An appropriate query modeling languag®isidered indispensable, though,
for techniques like MDA and AOSD to allow them tecome widespread. Software
developers demand programming language-indepemdeaéling facilities that ease
their comprehension on where (MDA- and AO-) refirens actually take place.

In this paper, we have identified frequent selectiateria in query specifications
on software artifacts. We presented a comprehemssivef easy to use, yet powerful
modeling means to specify such selection critemia selection queries. We
supplemented them with precise OCL semantics thatle executed on existing
UML models in order to allocate model elements iingesuch criteria. At last, we
proved the applicability of our notations with @ifént programming languages using
daily-life examples as we can find them in MDA ax@SD.

To the best of our knowledge, our modeling notatiwrithe first approach that
provides an essential set of modeling means foexpdicit design of queries based

2 A visualization of the Demeter/C++ traversal st presented in section 2.3 is omitted here
due to space limitations. Please refer to [15hfgraphical representation.



on the UML. The major advantage of adopting UMLxéstng modeling means is
that query models are easy to write and easy terstahd by a broad community of
software developers. They do not need to learnnamedeling language, nor do they
need to deal with the meta-model (as in other agres) in order to define query
models.

In order to advance the support for software dge® in designing queries to a
further extent, the following issues are focusutife work: The capabilities allowing
the composition of new selection queries from é@xistones — like, for example,
query aggregations or query specializations — rbesimproved. Further, suitable
abstraction means must be found that enable sdftwiavelopers to reason on
selection queries (and their relationships to eatler) without bothering about the
exact details.
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