Modeling Pointcuts

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science and Business Information Systems
University of Duisburg-Essen, Germany
{dstein | shanenbe | unlandR}@cs.uni-essen.de

Abstract

Modeling pointcuts, i.e., modeling the places where
crosscut and/or the conditions under which to ccassis
a principal task in aspect-oriented modeling. leigairly

Currently, aspect-oriented software development is
greatly advancing on the implementation level. Hasve
comprehensive design support is still in its infanc
Promising methodologies for requirements analysis,
architecture design, and graphical visualizatione a

independent design issue and can be accomplishectround (e.g., [13], [32], [35], [20], [30], [19]te); yet

separate from other modeling tasks such as modétiag
crosscutting effects. Modeling pointcuts is basjcabout
modeling selection queries. It requires novel miodgel

improvements are necessary to span the entire a@ftw
life cycle and to cope with multiple aspect-orighte
implementation techniques.

means. This paper gives a short overview on a new This paper deals with modeling and graphical

graphical approach to model pointcuts. It preseitts
semantics using OCL code. It presents its usedretrly
aspect phase, and it demonstrates its capabilities
capture the pointcut semantics of prevailing aspect
oriented programming techniques with help of exaspl

1. Introduction

Aspect-Oriented Software Development (AOSD) is
about encapsulating crosscutting concerns in aspantl
weaving these aspects together with other aspeuis a
basic functionalities to a final aspect-enhanceayam.

visualization of places and conditions of crossogtt
Defining places and conditions at/under which apeas
affects the final program turns out to be a critidesign
activity in AOSD. Pointcut design in aspect-orighte
architecture design is likewise crucial as intesfaesign
in conventional architecture design since both ispdice
connection points between different software astifaof
the architecture. Inaccurate pointcut definitionyntaus
easily require fundamental redesign of the aspedton
the architecture at a later stage in software dgveént.
Furthermore, lax definition of places and condisioof
crosscutting quickly designates much more partshe
final program than was intended. Such will severely

When designing aspects or aspect-oriented softwareobstruct reasoning on the crosscutting effects spieets

architectures, a principal task of aspect-orierseftware
developers is to investigate the relationships betw
aspects and their target artifacts. The softwareldper
needs to contemplate about the aspect's assertiadge

and, in the ultimate, lead to unpredictable sofewar
comportment. Hence, it is essential that softwasghers
are supported from the early stages of system wldnig
identifying and documenting (!) the places and dtorks

on the final program as well as on the places andat/under which an aspect crosscuts the final progra

conditions at/under which the assertions apply he t
program. Ultimately, the aspect-oriented weavel take
this information and enhance the final
accordingly. The key goal of aspect-oriented saféwa
development is to make reuse of aspects, i.e.scutting
concerns, as easy as adjusting places and corgitibn
crosscutting to new programs and/or new requiresnent
To achieve this goal, aspect-oriented designersingeq

means to specify such places and conditions oftrying

crosscutting from the early stages of architectlasign.

Our work is focused on the Unified Modeling
Language (UML) [28]. The UML is a powerful and

program broadly used modeling language for use case driven,

architecture oriented, iterative, and incrementdtware
development [12]. It may be used throughout thérent
software development process [18] and may be usthd w
different object-oriented implementation languages.
Hence, the UML already provides much of what we are
to achieve for aspect-oriented software
development. It appears very appealing to explt i
capabilities for aspect-oriented software modeling.

Aspect-oriented modeling using the UML has beenafne
the core subjects of the ongoing series of workshap
Aspect-Oriented Modeling [1] [2] [3] [4]. The frdu
discussions and important
workshops have strongly influenced this work.

In this paper, we borrow the terms “join point” and
“pointcut” from AspectJ [9] terminology. In diffenee to
AspectJ, however, we contemplate on “join points’ a

“hooks where enhancements may be added” (cf. [14])join points.

rather than as “principal points in the executioh a
program” (cf. [10]). That means, we consider “jpioint”
to refer to both points of crosscutting in the cohflow
as well as points of crosscutting in the classcttine. We
shall use the term “pointcut” to refer to a sefadh points
that possibly is attributed with conditions of csostting.
The remainder of this work is structured as follows

Section 2 discusses why pointcut modeling is ainditst
design issue and why it must be given special ¢&eedo
this while first looking at the general case in exdp
oriented requirement engineering [30]. Afterwardg

need to be synchronized first, and leave it toir tharty
to design the synchronization strategy. In a ti&de, we
have both a set of different synchronization sgiate and

insights given at thesea set of join point collections that designate awdito be

synchronized. Now, we are able to combine crossgutt
assertions and hooks of crosscutting in any marared,

thus we are set to realize any synchronizationireouent

by simple hooking the right strategy onto the right of

In conclusion, the separate treatmeht

crosscutting details and points of crosscutting isery

important issue to achieve incremental programnfaig

[38]). And after all that's what we're heading iforaspect-

oriented programming, too.

Looking at current aspect-oriented programming
techniques we recognize that most of them commiiit
separation of concern. Aspect]), for example, pewid
advice to specify crosscutting code, and pointdats
specify where that code is to be introduced in® llhse
program. We may combine advice and pointcuts in
arbitrary manners: For example, we can specifyduica

reflect on the current aspect-oriented programming that hooks onto an "abstract pointcuts”, i.e., engets of
techniques. Section 3 presents our approach to Imodejoin points. That set can be filled by diverse sulies

pointcuts. It describes the graphical means asagetheir

semantics in terms of Object Constraint LanguaggéL(O
[37] expressions. Section 4 presents some relatatt. w
Section 5 concludes the paper.

2. Pointcut Specification as a Distinct Design
Issue

When looking at the specification of crosscutting
features in aspect-oriented software developmerd, w
identify the specification of the elements (Figure A)
that crosscut a given decomposition and the spatidin
of the set of join points (Figure 1, B) where that
crosscutting takes place to be two fairly independe
issues that can be seen as distinct design prob\&msio
this because we contemplate that the reasoninghen t
crosscutting assertions can be accomplished rowikig
where exactly that crosscutting assertions areieppb;
and vice versa, we suppose we can reflect on time jo
points at which crosscutting should occur whileleeting
what exactly is to be inserted at these points.

,/ spe<:|f|cat|0ns of >
crosscumng assertlon!—ﬂ\
,,,,,,,,,,, -A

deS|gnat|0n of >
join pomts L/

m—»(’ target model \:\,
__________ c-

Figure 1. Aspect orlented design issues (non—
UML diagram) (cf. [33])

In an aspect-oriented software framework, for eXamp
when we specify a particular synchronization sgpatee
do not want to determine yet which objects it stolie
applied to. Oppositely, we could identify the andathat

later-on for the crosscutting to take effect in tipld
concerns. On the other hand, we can specify pdmfast
and let subentities implement the crosscutting Wieha
that is to be executed at those pointcuts. In Hypd7],
hyperslices designate all model elements in a given
decomposition that belong to a particular concehis (
process is call "concern mapping"). Two hyperslices/

be composed by a hypermodule, which contains
correspondence rules that determine at what paires
hyperslices should be joined. Usually, we speche t
hyperslices first and use a hypermodule to join tanthe
other afterwards. We could, however, also assign th
composition of two concerns in advance and theieef
(or change) the hyperslices (or concern mappirgg)are

to be involved. That way we can substitute the
crosscutting details to be introduced to a paricybin
point according to our need and desire. In Adaptive
Programming [5], the affiliation between the spieaifion

of crosscutting details and the specification afsscutting
hooks is much stronger. However, even though waatan
change the one thing without adapting the othegptide
Programming distinguishes between traversal stiegeg
that specify the locations at which crosscuttingoigake
place and visitor methods that specify how thesatlons
are to be augmented.

Of course, even though we may reason on the
specification of crosscutting details (Figure 1,a%d the
specifications of the hooks (Figure 1, B) sepayatieére
certainly exist strong correlations between these t
issues. In particular, dependencies arise fromctiarge
of the latter to designate elements in the enviemnof

the crosscut decomposition (Figure 1, C) that @by
the former. Nevertheless, we will neglect thesed&iof
dependencies for now and concentrate on
specifications of the hooks, i.e., on the desigmatf join
points and of join conditions. For a closer elutima on
the dependencies between the specification of haaklls
the specification of crosscutting details, pleasterr to
[33].

3. Modeling Means for Pointcut Specification

On implementation level, join points represent “k®o
where enhancements may be adde(tf. [14]), e.g.,
classes or method calls. On modeling level, these |
points are rendered by model elements in modelay-itn
be a structural model describing a hierarchy o$sifeers

like ordinary UML collaborations). Recall, thougthat
the semantics of class diagrams and interactiograiias

thecontained in JPDDs is different from their convendl

variants as they specify a query on model elemextter
than the model elements themselves.

The actual join points in a JPDD are modeled as
JPDD’s template parameters. JPDDs may designate bot
kinds of join points — i.e., UML Classifiers and UM
Messages — at the same time.

The semantic of JPDDs is specified by means of OCL
expressions: Each JPDD can be transformed into & OC
selection query picking out all model elements fram
given UML model that represent join points. ThosgLO
statements make use of various meta-operationswéat
have appended to the UML meta-classes. Note thadlho
OCL operations are shown here due to limitations in

or a behavioral model describing control flow. On space. Have a look at [6] to obtain the full OCldeo
implementation level, pointcuts characterize thetqof) In the following, we demonstrate with help of varso
hooks and/or (optional) conditions at/under which examples what JPDDs look like and how they canude p
crosscutting takes place. For modeling pointcuts onto use to model various kinds of pointcuts. Forheac
modeling level, we thus need a means to rendet afse example, we present the relevant OCL expressiaisatie

model elements together with a set of conditiomas$ thust
evaluate true for those model elements.

We choose UML Classifiers to represent join points
structural models, and UML Messages to represdnt jo
points in behavioral models. For the designatiorjodrf
points — i.e., UML Classifiers and UML Messages,
respectively — we introduce a new graphical meatied
“Join Point Designation Diagram” (JPDD). JPDDs
resemble UML collaboration templates, however ek
the generative semantics of templates. That is,D¥D
describe “selection patterns” rather than “generati
patterns”. They specify all properties a model &pm
(i.e., UML Classifier or UML Message) must provide
order to represent a join point (rather than thepprties
that will be added to or modified at those join mis).
These properties may be of structural or behaviaral.

Structural properties are defined by means of class

diagrams. Class diagrams may be used to modelwtalic
conditions of crosscutting, e.g., a particular deat or
relationship that must be present for a classitier
represent a join point. Behavioral properties asénéd
by means of interaction diagrams (i.e., sequenagrdims
or collaboration diagrams). Interaction diagrane ased,
for example, to model behavioral conditions of
crosscutting, e.g., that a particular message bristalled
within the control flow of some other message idewrto
represent a join point. JPDDs may contain bothsclas
diagrams and interaction diagrams in order to dlescr
structural and behavioral properties at the same fjust

1 Remember the difference we make here to join pdimtAspectJ
terminology, where join points represent “princippbints in the
executionof a program” (cf. [10]).

involved in matching UML Classifiers and UML
Messages with the selection pattern described3CD.

3.1. Pointcuts in the Early Aspects Stage

In the early aspect stage, JPDDs come in when vge ma
aspect-oriented requirements to an aspect-oriented
architecture. For example, Figure 2 shows two EEes
that model two requirements, one (aspectual)
synchronization requirement and some (core) funatity
requirement which needs to be synchronized. The
crosscutting relationship between one and the otiasr
already been identifiéd

When mapping the requirements to an architectuee, w
must determine how the software artifact realizthg

Synchronlzatlon <<C'°SSCUIS»’
>

«reallze» «reallzé»

«reflne»
i

«selects fromy»” “~o

\
\
\
S
\
\\X ————

/’ CrossculMsg \
‘/ Caller<*> | <set¥get>" | Callee<*>|
\ /
\ /

Figure 2. JPDDs in the early aspects stage

2 Note the subtle yet essential difference betweerpsscut»
relationships in aspect-oriented software developmand «extend»
relationships in use case driven software developrfoé. [32]).

aspectual requirement connects to the softwardaetrti
realizing the functional requirement. This is tlask of
JPDDs. In Figure 2, for example, the two software
artifacts are represented by collaborations. A JPBD
used to characterize the connection points at wttieh '
aspectual collaboration crosscuts the functional
collaboration. In doing so, the JPDD gives some emor
details on the «crosscut» relationship between ube
cases. The JPDD describes what is expected bysfiezia

or what is exposed to the aspect, from the target
environment so that it can accomplish its taska kense,
the JPDD specifies an aspect-specific view on #nget
artifact.

We can learn from the example in Figure 2 that the
synchronization aspect is concerned about synctrirmni
method calls (“CrosscutMsg”) from one entity (“Call)
to another entity (“Callee”), which are expected ke
some kinds of classifiers in the target artifaatrtier, we
can see that the aspect expects the methods’ nemes
begin with “set” or “get”. This name restriction yna
originate in a design decision on the aspectuather
functional requirement. For some (incomprehensible)
reason, for example, we could be required to djsish
between synchronized “setter” and unsynchronized
“putter” methods.

In the following we explain further capabilities of
JPDDs to express views on the deployment environmenf "

or transmitting the messages.

of aspects and briefly sketch how they map to OCL In case the JPDD defines predecessors and/or an

expressions. For doing so, we chose to use exarfiplas . o . N
. . . activator to the crosscut message (like “Invokingbége
common aspect-oriented programming techniques to.

(,’/a_spectj_pc

SomeCaller ColoringClient

)
|
; . : |
H H T i
InvokingMs ' ! ! |
|
<> i | ;
- ! |
: j
T make*(..)> ! s

\Figure 3. An AspectJ pointcut as JPDD

“joinPointPattern” (which are enclosed by sharpchkeds
“<...>"; see Figure 3), the “joinPointPattern”sluea (e.g.,
“FigureElement Figure.make*(..)") is passed for ohétig
rather than the message’s name (e.g., “CrosscujMsg”
Then, the message’s sender and receiver are matched
This includes matching of their relationships (&&stion
roles, generalizations, etc.). After that, the akdons
used for transmitting the messages are compared.
Note that sender and receiver comparison
accomplished by matching the sender’s and recsivale
in the JPDD to the sender’s and receiveaseclassifiers
in the target model. This is because behavioral
crosscutting takes place in every target model whos
participants provide the set of features specifiedhe
JPDD — may they be explicitly required by meanghef
role specification in the collaboration, or imptigi
present by means of the base classifier specificati the
class hierarchy. The same counts for the assocfatieed

is

demonstrate the practical relevance of the desgnat in Figure 3), the message in the target model pustide
means in JPDDs.

3.2. Pointcuts in AspectJ

Figure 3 models the following AspectJ pointcut
(adopted from [21]):

poi ntcut aspectj_pc():

cfl owbel om(cal | (* ColoringCient.*(..))
&& this(SonmeCaller))

&& cal | (FigureEl ement Figure. make*(..))

It designates all messages that invoke a method
beginning with “make” on class “Figure” (returniran
instance of class “FigureElement”) from within ttentrol
flow of any method called on class “ColoringCliefitdm
class “SomecCaller” (returning any or none returfuea
The message being crosscut is rendered as template
parameter “CrosscutMsg”.

Table 1 gives a general description on how message
matching is accomplished — the depicted (meta-pijmer
“matchesMessage” is invoked on each message in the
UML model. At first, the messages’ hames are matctfe
the message in the JPDD is tagged with a

corresponding messages among its predecessors. The

Table 1. Matching messages in UML models

Context Message::
matchesMessage(m : Message) : Boolean
post: result = -- evaluate name pattern (‘'<...>’)
if m.taggedValue->includes(tv | tv.type.name =nfointPattern’)
then
selfmatchesNamePattefm.taggedValue->select(tv |
tv.type.name = ‘joinPointPattern’).dataValue->3t(1)
else
selfmatchesNamePattefim.name)
endif
-- evaluate sender/receiver/...
and self.sender.base->includes(C |
C.matchesRelationshifrm.sender) and
C.matchesClassifiém.sender))
and self.receiver.base->includes(C |
C.matchesRelationshifms.receiver) and
C.matchesClassifiém.receiver))
and self.communicationConnection.base
.matchesAssociati¢gm.communicationConnection)
-- evaluate predecessors/activator
and m.allPredecessors->union(m.activator)->rejezt(m
m2.stereotype->includes(st | st.name="indirectfprAll(m2 |
self.allPredecessors->includes(M |ivatchesMessa@®?)))
-- evaluate action
and self.actiomatchesActiofm.action)

precise position is not important. For message iadc
messages of stereotype ‘“indirect” (denoted by dsubl
striked-through lines; see Figure 3) are neglectdukir
only purpose in JPDDs is to indicate auxiliary coht
flow the predecessors may provoke.

Finally, the message’s actions are matched.

3.3. Traversal Strategies in Adaptive
Programming

Figure 4 models the following traversal strategy in
Adaptive Programming (adopted from [22], [23]):

*fronmt Congl oner at
bypassi ng -> * subsidiaries,*
via Officer *to* Salary

The traversal strategy starts at object Congloreanet
traverses a characterized path to object Salargtates
that on its way through the class hierarchy theetrsal
must pass object Officer. At the same, it requitieest

(denoted by double-striked-through lines; see igbr In
the former case, comparison is successful if thestfier
provides a matching association with matching datioa
ends. In the latter case, there must exist a naldgaath
from the current classifier to a classifier matchitihe
associate in the JPDD. The association ends athwhic
navigation starts and ends must match the assatiatids

of the association specified in the JPDD.

For example, the bottom left association in Figdre
denotes a navigation path starting with an assooia&nd
whose participant is of type Conglomerate. Andritie
with an association end whose name must not be
“subsidiaries” — no matter of the type of its papant.
From the participant, however, there must be agadole
path that ends with an association end whose [gtitis
of type Salary (bottom right association in Figdje

3.4. Composition Rules on Declaratively
Complete Hyperslices in Hyper/J

traversal must not pass an association end named Composition rules in Hyper/J specify how the eletsen

“subsidiaries”.

iConglomerate

(,/ traversal_startegy

[]

r
! subsidiarie: *
[..] {not} [..]

) Figure 4. Traversal strategies as JPDD

In a UML model, the classifiers being traversed are
identified with help of the (meta-)operation shown
Table 2. The operation analyzes if a classifiersspeses
(a set of) associations matching to the ones spdcih
the JPDD. The operation distinguishes between atand
associations and associations of stereotype “iaotlire

Table 2. Matching associations in UML models

Context Classifier::
possessesMatchingAssociation(a
Boolean
post: result = -- evaluate indirect neighbours
if a.stereotype->includes(st | st.name='"indir¢b&h
self.associations->includes(A | A.matchesAssoaidipand
a.allConnections->select(ae | ae.participant =fa)AH(ae |
A.allConnections->select(AE | AE.participantetfs
->includes(AE | ABmatchesAssociationE(ak) and
a.allConnections->select(ae | ae.participant)
->forAll(ae2 | selfallindirectNeighborgA)
->includes(AE2 | AE2natchesAssociationE(ak2))))))
-- evaluate direct neighbours
self.associations->includes(A |mMatchesAssociati¢a) and
a.allConnections->forAll(ae | A.allConnections
->includes(AE | ABmatchesAssociationE(ak))))

: Association, dasdfier) :

else

endif

of one hyperslice are to be composed with the ai¢snef
another hyperslice. For that purpose, compositigiasr
designate the join points in each hyperslice. Likew
JPDDs are capable to designate model elements from
UML models. While doing so, JPDDs may also refi@at
the “declarative completeness” constraint in Hygebh
Hyper/J, each hyperslice needs to be “declaratively
complete” (cf. [36]). That means that each hypeesli
declares the structural properties it expects tprogided

by another hyperslice. We can use JPDDs to mods# su
structural requirements.

Employee
[Attributes
t Operations—————

name
0 Research Tracked

position() L Attributes F Attributes
pay() F Operations———— |- Operations———
position() position()
pay() pay()
Regular
[Attributes
t Operations—————
position()
pay()

Figure 5. A payroll hyperslice (cf. [29])

For example, let's imagine a payroll hyperslicettha
implements “position()” and “pay()” operations oauf
classes “Employees”, “Research”, “Tracked”,
“Regular” (see Figure 5). For their execution,
hyperslice requires the presence of a “name()” l&ded
as abstract in Figure 5), whose implementation nhest
provided by some other hyperslice — e.g., a pemdonn
hyperslice (the example is adopted from [29]).

and
the

iCrosscutTypeA
iCrosscutTypeB

e . iCrosscutTypeC
/ payrolls_requirements (CrosscutTypeD

N Dogttututuguuqniit A rifeyt PR R
| - 1

| CrosscutTypeA 1
—’—l_‘ ;
i

<Employee>
CrosscutTypeB CrosscutTypeC

| F Attributes
i L. Operations

! <Research> <Tracked>
|
| /\

name()
i
CrosscutTypeD i
<Regular> |
/

Figure 6. Specifying structural
requirements in JPDDs

are tagged with a “joinPointPattern” (which are lesed
by sharp brackets “<..>"; see Figure 6),
“joinPointPattern™s value (i.e., “Employee”, “Remeh”,
“Tracked”, or “Regular”) is passed for matching het
than the classifiers’ names (e.g., “CrosscutType#t,).
Apart from their names, the classifier's meta-prtips
must match (“isRoot”, “isLeaf”, “isAbstract”). Akt, the
classifiers’ features, i.e., attributes and methodse
compared. A classifier must possess all attribates all
methods being defined as structural requirementhén
JPDD (like operation “name()” in Figure 6, for exale)
in order to be selected as join point.

the

Figure 6 depicts a sample JPDD which designates the pyriher, classifiers must possess all relationstiips

join points in the personnel hyperslice and spesifi

associations, generalizations, and specializatitivag, are

structural requirements being imposed on those joingefined in the JPDD (like the inheritance relattdps in

points. Table 3 and Table 4 describe the (metaradions
for locating join points in UML models according tioe
specifications made in the JPDD.

Figure 6 depicts a JPDD that selects four clagses f
the personnel hyperslice as join points (“Employee”
“Research”, “Tracked”, and “Regular”). These clasaee
meant to be augmented by the payroll hyperslicéendur
composition. Besides designating the hyperslices j
points, though, the JPDD in Figure 6 specifies @pt® of
structural requirements that those join points nfulgl.

At first, it requires class “Employee” to providen a
operation “name()”. Further, it requires class “€ash”
and “Tracked” to be subclasses of class “Employee”,
while class “Regular” in turn must be a subclasglags
“Tracked”. Composition may only take place if these
constraints are satisfied.

Table 3. Matching classifiers in UML models

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- evaluate name pattern
if C.taggedValue->includes(tv | tv.type.name =nfwintPattern")
then

selfmatchesNamePatte{@.taggedValue->select(tv |

tv.type.name = ‘joinPointPattern’).dataValue->at(1)

else

selfmatchesNamePattef@.name)
endif

-- evaluate defined meta-properties
and (self.isRoot = C.isRoot or C.isRoot = ")
and (self.isLeaf = C.isLeaf or C.isLeaf =")
and (self.isAbstract = C.isAbstract or C.isAbstrac)
-- evaluate attributes and operations

and (C.feature->select(f | f.ocllsKindOf(Attribute)forAll(ATT |

selfpossessesMatchingAttrib (& T))

or C.feature->select(f | f.ocllsKindOf(Attributeysize = 0)
and (C.feature->select(f | f.ocllsKindOf(OperatiprjorAll(OP |

self possessesMatchingOperat{@P))

or C.feature->select(f | f.oclisKindOf(Operatiorgize = 0)

Figure 6, for example) in order to be selected @B |
point. Matching of relationships is accomplished &y
second (meta-)operation for associations, genatalirs,
and specializations separately (see Table 4).

Table 4. Matching relationships in UML models

context Classifier:
matchesRelationships(B : Classifier) : Boolean
post: result = -- evaluate relationships
(B.parent->forAll(P |
selfpossessesMatchingParénj)
and (B.child->forAll(CH |
selfpossessesMatchingChieH))
and (B.associations->forAll(A |
self possessesMatchingAssociatjianself))
or B.associations->size = 0)

or B.parent->size = 0)

or B.child->size = 0)

4. Related and Future Work

A couple of other approaches deal with modeling
pointcuts using OCL, UML, and even MDA:

[31] makes use of OCL code [27] to bind elements
form an application models to “hot spots” in aspect
oriented frameworks. In doing so, they select model
elements that are to be enhanced like we do. Unlge
however, they define the enhancements in the sa@le O
statement which hinders reuse of the query spatiific.
Specifying enhancements is not duty of JPDDs.

A more sophisticated approach is described in [15]
which presents a domain-specific extension to ti@& O
for the specification of crosscutting constraint®
particular, it introduces reflective operators tdvance
selection of model elements. Again, though, sedecti
gueries and modification assignments are instantly
coupled together, and so, reuse of queries isossiple.

[34] [16] chooses to use UML Action Semantics [28]
to define model transformations and OCL [37] toress

Table 3 describes how join points are selected fromselection criterions for those transformations. A®ries

UML models. Join point selection is accomplished by
name matching. If the classifier specificationshia JPDD

are hard-coded into transformations, they cannot be
reused in a different context.

[24] discusses how Model-Driven Architecture (MDA) (denoted by double-striked-through lines; see igdy
[25] may support aspect-oriented modeling. It poiotit but to generalization and specialization relatigpshas
that a pointcut can be expressed as a query omodel. well (denoted by double-striked-through lines wittilow
We share that conception and have defined a gralphic arrow heads; see Figure 7 right side). Using tnist®l in
notation to define such queries. We see anotherJPDDs signifies that a given classifier must prevah
application area of our approach in connection wlité ancestor or a descendant, respectively, that matttiee
Query View Transformation Language (QVT) [26] which specification of the JPDD.
is currently under review by the OMG: JPDDs can be Besides that the notation provides for the spesific
used as a graphical query language to select modebf operations using wildcards “*” and “..” in their
elements from UML models that are subject to parameter list (see Figure 7 left side for an exXamp
transformations. Further, we allow the specification of multiplicitanges

Besides that we see complementary contributioruof o for attributes (see Figure 7 left side). Class#fier
work to existing aspect-oriented modeling and desig representing join points must provide a matchirigbatte
approaches, for example [13], [32], and [19], whiabk whose multiplicity resides in the range specifigd the
graphical means to specify selection queries. Meee@s JPDD (e.g., “[2..100]"). An exclamation mark derste
JPDDs map onto OCL expressions, our approach can bdixed lower or upper bound (e.g., “2!"). Pleaseereo [6]
seamlessly integrated into [16] and [15]. From gsin for the corresponding OCL code.

parameterized OCL (meta-)operations, we even gain
greater flexibility because we may feed the opersti
with different JPDDs at a time.

Future work will involve investigations on how to
specify selection queries in the context of aspeented
modeling with state charts [8] or activity diagrafid].
Further, JPDDs are to be integrated into a UML ifgof
for aspect-oriented modeling (cf. [7]) in orderadvance
its application in the aspect-oriented software
development process.

5. Conclusion — Going Beyond

In this paper we have exemplified the need forimist
modeling means for the specifications of pointcus,,
the specification of places and conditions at/unaleich
crosscutting takes place. We presented a graphica
notation that suits this purpose, and we have elfatp
its use and semantics when designing a synchraorizat
requirement in an aspect-oriented manner as wellitis
help of examples from different aspect-oriented
implementation techniques.

C<Con*>
Attributes
attl : Integer [2!..100]
Operations
set*(val : *)
get*() : *
run(vall : Integer, ..,
vali : Real, ..,
valn : String

Figure 7. Going beyond in
aspect-oriented modeling

Yet, note that the capabilities of our modelingatioin
go beyond the designation means of current aspect
oriented implementation techniques and allow adednc
aspect-oriented modeling. The stereotype “indireft
example, is not limited to association relationship

Provided with these novel modeling means, software
designers are capable to design pointcuts in whuehy
ways. Being implementation language independerd, th
modeling notation allows design of pointcuts in thery
early stages of software development, e.g., when
designing connection points in aspect-orientedwso
architectures. Further, aspect-oriented softwaveldpers
may fully concentrate on design first, and finathn map
their design to whatever aspect-oriented programmin
language seems best suited.

6. References

[1] 1 Workshop on Aspect-Oriented Modeling, at AOSD'02
(Enschede, The Netherlands, Apr. 2002),
http://Igl.epfl.ch/workshops/aosd-uml/index.html

{2] 2" Workshop on Aspect-Oriented Modeling, at UML'02
(Dresden, Germany, Sep. 2002),
http://Iglwww.epfl.ch/workshops/uml2002/

[3] 3" Workshop on Aspect-Oriented Modeling, at AOSD'03
(Boston, MA, Mar. 2003),
http://Iglwww.epfl.ch/workshops/aosd2003/

[4] 4™ Workshop on Aspect-Oriented Modeling, at UML'03

(San Francisco, CA, Oct. 2003),
http://www.csam.iit.edu/~oaldawud/AOM/
[5] Adaptive Programming,

http://www.ccs.neu.edu/research/demeter/

[6] Addendum to Stein, D., Hanenberg, S., Unland,Apect-
Oriented Modeling in the Light of MDA, submitted tihe
Special Issue of Science of Computer Programmirige(ier)
on Model Driven Architecture: Foundations and Apations,
http://dawis.informatik.uni-essen.de/site/stafifste

[7] Aldawud, O., Bader, A., Elrad, TUML Profile for Aspect-
Oriented Software Developmen8® AOM Workshop at
AOSD'03 (Boston, MA, Mar. 2003)

[8] Aldawud, O., Bader, A., Elrad, T.Weaving with
Statecharts 13 AOM Workshop at AOSD'02 (Enschede, The
Netherlands, Apr. 2002)

[9] Aspect], http://www.aspectj.org

[10] Aspect] Team,The Aspect] Programming Guijde
http://dev.eclipse.org/viewcvs/indextech.cgi/~clmdk/aspectj-
home/doc/progguide/index.html, Jan. 2004

[11] Barros, J.P., Gomes, L.Towards the Support for
Crosscutting Concerns in Activity Diagrams: A Gragah
Approach 4" AOM Workshop at UML'03, (San Francisco, CA,
Oct. 2003)

[12] Booch, G., Jacobson, I., Rumbaugh, The Unified
Modeling Language User GuideAddison Wesley, Reading,
MA, 1999

[13] Clarke, S., Walker, R.JComposition Patterns: An
Approach to Designing Reusable AspeaisProc. of ICSE '01
(Toronto, Canada, May 2001), ACM, 5-14

[14] Elrad, T., Aksit, M., Kiczales, G., LieberheiK., Ossher,
H., Discussing Aspects of Aspect-Oriented Programming
ACM Communications, Vol. 44(10), Oct. 2001, pp. 33-

[15] Gray, J., Bapty, T., Neema, S., Schmidt, D@&bkhale, A.,
Natarajan, B.,An Approach for Supporting Aspect-Oriented
Domain Modeling in: Proc. of GPCE '03 (Erfurt, Germany,
Sep. 2003), Springer, pp. 151-170

[16] Ho, W.M., Jézéquel, J.-M., Pennaneac’h, FouRéau, N.,
A Toolkit for Weaving Aspect Oriented UML Desigins Proc.
of AOSD '02 (Enschede, The Netherlands, Apr. 2008M,
pp. 99-105

[17] Hyper/J, http://www.alphaworks.ibm.com/techpleyj

[18] Jacobson, I, Booch, G., Rumbaugh, The Unified
Software Development Procegsidison Wesley, Reading, MA,
1999

[19] Kandé, M.M., PhD Thesis, EPFL, Lausanne, Sya€63
[20] Katara, M., Katz, ShArchitectural Views of Aspecti:
Proc. of AOSD’03 (Boston, MA, Mar. 2003), ACM, pp-10

[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kerst M., Palm,
J., Griswold, W.G., Getting Started with AspectJACM
Communications, Vol. 44(10), Oct. 2001, pp. 59-65

[22] Lieberherr, K.,Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patter@WS Publishing
Company, Boston, 1996

[23] Lieberherr, K., Orleans, D., Ovlinger, Aspect-Oriented
Programming with Adaptive MethgddCM Communications,
Vol. 44(10), Oct. 2001, pp. 39-41

[24] Mellor, St., On A Framework for Aspect-Oriented
Modeling 4" AOM Workshop at UML'03, (San Francisco, CA,
Oct. 2003)

[25] Object Management Group (OMGYIDA Guide Version
1.0, May 2003

[26] Object Management Group (OM@equest for Proposal:
MOF 2.0 Query / Views / Transformations RFpr. 2002

[27] OMG, Response to the UML 2.0 OCL RFRevised
Submission, Version 1.6, January 2003

[28] OMG, Unified Modeling Language Specificatiodersion
1.5, Mar. 2003

[29] Ossher, H., Tarr, PUsing Multi-Dimensional Separation
of Concerns to (Re)Shape evolving Softwame: ACM
Communications, Vol. 44(10), Oct. 2001, pp. 43-50

[30] Rashid, A., Moreira, A., Aradjo, JModularisation and
Composition of Aspectual Requiremenits Proc. of AOSD’03
(Boston, MA, Mar. 2003), ACM, pp. 11-20

[31] Rausch, A., Rumpe, B., Hoogendoorn, Aspect-Oriented
Framework Modeling 4" AOM Workshop at UML'03, (San
Francisco, CA, Oct. 2003)

[32] Stein, D., Hanenberg, St., Unland, R, UML-based
Aspect-Oriented Design Notation For Aspecid: Proc. of
AOSD '02 (Enschede, The Netherlands, Apr. 2002)MAGp.
106-112

[33] Stein, D., Hanenberg, St., Unland, Rissues on
Representing Crosscutting Feature®® AOM Workshop at
AOSD'03 (Boston, MA, Mar. 2003)

[34] Sunyé, G., Pennaneac’h, F., Ho, W.-M., Le Gem A,
Jézéquel, J.-M.Using UML Action Semantics for Executable
Modeling and Beyondin: Proc. of CAISE'01l (Interlaken,
Switzerland, Jun. 2001), Springer, pp.433-447

[35] Sutton, St., Rouvellou, IModeling of Software Concerns
in Cosmosin: Proc. of AOSD '02 (Enschede, The Netherlands,
Apr. 2002), ACM, pp. 127-133

[36] Tarr, P., Ossher, HHyper/J User and Installation Manual
IBM Corp., 2000

[37] Warmer, J., Kleppe, AThe Object Constraint Language:
Precise Modelling with UMLAddison-Wesley, 1998

[38] Wegner, P., Zdonik, S.]nheritance as Incremental
Modification Mechanism or What Like is and Isn'ke.iin:
Proc. of ECOOP'88 (Oslo, Norway, Aug. 1988), pp.795

