
Modeling Pointcuts

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science and Business Information Systems

University of Duisburg-Essen, Germany
{dstein | shanenbe | unlandR}@cs.uni-essen.de

Abstract

Modeling pointcuts, i.e., modeling the places where to
crosscut and/or the conditions under which to crosscut, is
a principal task in aspect-oriented modeling. It is a fairly
independent design issue and can be accomplished
separate from other modeling tasks such as modeling the
crosscutting effects. Modeling pointcuts is basically about
modeling selection queries. It requires novel modeling
means. This paper gives a short overview on a new
graphical approach to model pointcuts. It presents its
semantics using OCL code. It presents its use in the early
aspect phase, and it demonstrates its capabilities to
capture the pointcut semantics of prevailing aspect-
oriented programming techniques with help of examples.

1. Introduction

Aspect-Oriented Software Development (AOSD) is
about encapsulating crosscutting concerns in aspects, and
weaving these aspects together with other aspects and
basic functionalities to a final aspect-enhanced program.
When designing aspects or aspect-oriented software
architectures, a principal task of aspect-oriented software
developers is to investigate the relationships between
aspects and their target artifacts. The software developer
needs to contemplate about the aspect’s assertions made
on the final program as well as on the places and
conditions at/under which the assertions apply to the
program. Ultimately, the aspect-oriented weaver will take
this information and enhance the final program
accordingly. The key goal of aspect-oriented software
development is to make reuse of aspects, i.e., crosscutting
concerns, as easy as adjusting places and conditions of
crosscutting to new programs and/or new requirements.
To achieve this goal, aspect-oriented designers require
means to specify such places and conditions of
crosscutting from the early stages of architecture design.

Currently, aspect-oriented software development is
greatly advancing on the implementation level. However,
comprehensive design support is still in its infancy.
Promising methodologies for requirements analysis,
architecture design, and graphical visualizations are
around (e.g., [13], [32], [35], [20], [30], [19], etc.); yet
improvements are necessary to span the entire software
life cycle and to cope with multiple aspect-oriented
implementation techniques.

This paper deals with modeling and graphical
visualization of places and conditions of crosscutting.
Defining places and conditions at/under which an aspect
affects the final program turns out to be a critical design
activity in AOSD. Pointcut design in aspect-oriented
architecture design is likewise crucial as interface design
in conventional architecture design since both specify the
connection points between different software artifacts of
the architecture. Inaccurate pointcut definition may thus
easily require fundamental redesign of the aspect and/or
the architecture at a later stage in software development.
Furthermore, lax definition of places and conditions of
crosscutting quickly designates much more parts in the
final program than was intended. Such will severely
obstruct reasoning on the crosscutting effects of aspects
and, in the ultimate, lead to unpredictable software
comportment. Hence, it is essential that software designers
are supported from the early stages of system design in
identifying and documenting (!) the places and conditions
at/under which an aspect crosscuts the final program.

Our work is focused on the Unified Modeling
Language (UML) [28]. The UML is a powerful and
broadly used modeling language for use case driven,
architecture oriented, iterative, and incremental software
development [12]. It may be used throughout the entire
software development process [18] and may be used with
different object-oriented implementation languages.
Hence, the UML already provides much of what we are
trying to achieve for aspect-oriented software
development. It appears very appealing to exploit its
capabilities for aspect-oriented software modeling.

Aspect-oriented modeling using the UML has been one of
the core subjects of the ongoing series of workshops on
Aspect-Oriented Modeling [1] [2] [3] [4]. The fruitful
discussions and important insights given at these
workshops have strongly influenced this work.

In this paper, we borrow the terms “join point” and
“pointcut” from AspectJ [9] terminology. In difference to
AspectJ, however, we contemplate on “join points” as
“hooks where enhancements may be added” (cf. [14])
rather than as “principal points in the execution of a
program” (cf. [10]). That means, we consider “join point”
to refer to both points of crosscutting in the control flow
as well as points of crosscutting in the class structure. We
shall use the term “pointcut” to refer to a set of join points
that possibly is attributed with conditions of crosscutting.

The remainder of this work is structured as follows:
Section 2 discusses why pointcut modeling is a distinct
design issue and why it must be given special care. We do
this while first looking at the general case in aspect-
oriented requirement engineering [30]. Afterwards, we
reflect on the current aspect-oriented programming
techniques. Section 3 presents our approach to model
pointcuts. It describes the graphical means as well as their
semantics in terms of Object Constraint Language (OCL)
[37] expressions. Section 4 presents some related work.
Section 5 concludes the paper.

2. Pointcut Specification as a Distinct Design
Issue

When looking at the specification of crosscutting
features in aspect-oriented software development, we
identify the specification of the elements (Figure 1, A)
that crosscut a given decomposition and the specification
of the set of join points (Figure 1, B) where that
crosscutting takes place to be two fairly independent
issues that can be seen as distinct design problems. We do
this because we contemplate that the reasoning on the
crosscutting assertions can be accomplished not knowing
where exactly that crosscutting assertions are applied to;
and vice versa, we suppose we can reflect on the join
points at which crosscutting should occur while neglecting
what exactly is to be inserted at these points.

In an aspect-oriented software framework, for example,
when we specify a particular synchronization strategy we
do not want to determine yet which objects it should be
applied to. Oppositely, we could identify the actions that

need to be synchronized first, and leave it to a third party
to design the synchronization strategy. In a third case, we
have both a set of different synchronization strategies and
a set of join point collections that designate actions to be
synchronized. Now, we are able to combine crosscutting
assertions and hooks of crosscutting in any manner, and
thus we are set to realize any synchronization requirement
by simple hooking the right strategy onto the right set of
join points. In conclusion, the separate treatment of
crosscutting details and points of crosscutting is a very
important issue to achieve incremental programming (cf.
[38]). And after all that's what we're heading for in aspect-
oriented programming, too.

Looking at current aspect-oriented programming
techniques we recognize that most of them commit to this
separation of concern. AspectJ, for example, provides
advice to specify crosscutting code, and pointcuts to
specify where that code is to be introduced into the base
program. We may combine advice and pointcuts in
arbitrary manners: For example, we can specify an advice
that hooks onto an "abstract pointcuts", i.e., empty sets of
join points. That set can be filled by diverse subentities
later-on for the crosscutting to take effect in multiple
concerns. On the other hand, we can specify pointcuts first
and let subentities implement the crosscutting behavior
that is to be executed at those pointcuts. In Hyper/J [17],
hyperslices designate all model elements in a given
decomposition that belong to a particular concern (this
process is call "concern mapping"). Two hyperslices may
be composed by a hypermodule, which contains
correspondence rules that determine at what points the
hyperslices should be joined. Usually, we specify the
hyperslices first and use a hypermodule to join one to the
other afterwards. We could, however, also assign the
composition of two concerns in advance and then define
(or change) the hyperslices (or concern mappings) that are
to be involved. That way we can substitute the
crosscutting details to be introduced to a particular join
point according to our need and desire. In Adaptive
Programming [5], the affiliation between the specification
of crosscutting details and the specification of crosscutting
hooks is much stronger. However, even though we cannot
change the one thing without adapting the other, Adaptive
Programming distinguishes between traversal strategies
that specify the locations at which crosscutting is to take
place and visitor methods that specify how these locations
are to be augmented.

Of course, even though we may reason on the
specification of crosscutting details (Figure 1, A) and the
specifications of the hooks (Figure 1, B) separately there
certainly exist strong correlations between these two
issues. In particular, dependencies arise from the charge
of the latter to designate elements in the environment of

specifications of
crosscutting assertions

designation of
join points target model

A B C

Figure 1. Aspect-oriented design issues (non-
UML diagram) (cf. [33])

the crosscut decomposition (Figure 1, C) that are used by
the former. Nevertheless, we will neglect these kinds of
dependencies for now and concentrate on the
specifications of the hooks, i.e., on the designation of join
points and of join conditions. For a closer elucidation on
the dependencies between the specification of hooks and
the specification of crosscutting details, please refer to
[33].

3. Modeling Means for Pointcut Specification

On implementation level, join points represent “hooks
where enhancements may be added”1 (cf. [14]), e.g.,
classes or method calls. On modeling level, these join
points are rendered by model elements in models – may it
be a structural model describing a hierarchy of classifiers
or a behavioral model describing control flow. On
implementation level, pointcuts characterize the (sets of)
hooks and/or (optional) conditions at/under which
crosscutting takes place. For modeling pointcuts on
modeling level, we thus need a means to render a set of
model elements together with a set of conditions that must
evaluate true for those model elements.

We choose UML Classifiers to represent join points in
structural models, and UML Messages to represent join
points in behavioral models. For the designation of join
points – i.e., UML Classifiers and UML Messages,
respectively – we introduce a new graphical means called
“Join Point Designation Diagram” (JPDD). JPDDs
resemble UML collaboration templates, however they lack
the generative semantics of templates. That is, JPDDs
describe “selection patterns” rather than “generation
patterns”. They specify all properties a model element
(i.e., UML Classifier or UML Message) must provide in
order to represent a join point (rather than the properties
that will be added to or modified at those join points).
These properties may be of structural or behavioral kind.

Structural properties are defined by means of class
diagrams. Class diagrams may be used to model structural
conditions of crosscutting, e.g., a particular feature or
relationship that must be present for a classifier to
represent a join point. Behavioral properties are defined
by means of interaction diagrams (i.e., sequence diagrams
or collaboration diagrams). Interaction diagrams are used,
for example, to model behavioral conditions of
crosscutting, e.g., that a particular message must be called
within the control flow of some other message in order to
represent a join point. JPDDs may contain both class
diagrams and interaction diagrams in order to describe
structural and behavioral properties at the same time (just

1 Remember the difference we make here to join points in AspectJ

terminology, where join points represent “principal points in the
execution of a program” (cf. [10]).

like ordinary UML collaborations). Recall, though, that
the semantics of class diagrams and interaction diagrams
contained in JPDDs is different from their conventional
variants as they specify a query on model elements rather
than the model elements themselves.

The actual join points in a JPDD are modeled as
JPDD’s template parameters. JPDDs may designate both
kinds of join points – i.e., UML Classifiers and UML
Messages – at the same time.

The semantic of JPDDs is specified by means of OCL
expressions: Each JPDD can be transformed into a OCL
selection query picking out all model elements from a
given UML model that represent join points. Those OCL
statements make use of various meta-operations that we
have appended to the UML meta-classes. Note that not all
OCL operations are shown here due to limitations in
space. Have a look at [6] to obtain the full OCL code.

In the following, we demonstrate with help of various
examples what JPDDs look like and how they can be put
to use to model various kinds of pointcuts. For each
example, we present the relevant OCL expressions that are
involved in matching UML Classifiers and UML
Messages with the selection pattern described by a JPDD.

3.1. Pointcuts in the Early Aspects Stage

In the early aspect stage, JPDDs come in when we map
aspect-oriented requirements to an aspect-oriented
architecture. For example, Figure 2 shows two use cases
that model two requirements, one (aspectual)
synchronization requirement and some (core) functionality
requirement which needs to be synchronized. The
crosscutting relationship between one and the other has
already been identified2.

When mapping the requirements to an architecture, we
must determine how the software artifact realizing the

2 Note the subtle yet essential difference between «crosscut»

relationships in aspect-oriented software development and «extend»
relationships in use case driven software development (cf. [32]).

JPDD CrosscutMsg

Sync_Aspect

«applies to»

Target_Func

«selects from»

Synchronization Functionality
«crosscuts»

«realize» «realize»

CrosscutMsg
<set*|get*> Callee<*>Caller<*>

«refine»

Figure 2. JPDDs in the early aspects stage

aspectual requirement connects to the software artifact
realizing the functional requirement. This is the task of
JPDDs. In Figure 2, for example, the two software
artifacts are represented by collaborations. A JPDD is
used to characterize the connection points at which the
aspectual collaboration crosscuts the functional
collaboration. In doing so, the JPDD gives some more
details on the «crosscut» relationship between the use
cases. The JPDD describes what is expected by the aspect,
or what is exposed to the aspect, from the target
environment so that it can accomplish its task. In a sense,
the JPDD specifies an aspect-specific view on the target
artifact.

We can learn from the example in Figure 2 that the
synchronization aspect is concerned about synchronizing
method calls (“CrosscutMsg”) from one entity (“Caller”)
to another entity (“Callee”), which are expected to be
some kinds of classifiers in the target artifact. Further, we
can see that the aspect expects the methods’ names to
begin with “set” or “get”. This name restriction may
originate in a design decision on the aspectual or the
functional requirement. For some (incomprehensible)
reason, for example, we could be required to distinguish
between synchronized “setter” and unsynchronized
“putter” methods.

In the following we explain further capabilities of
JPDDs to express views on the deployment environment
of aspects and briefly sketch how they map to OCL
expressions. For doing so, we chose to use examples from
common aspect-oriented programming techniques to
demonstrate the practical relevance of the designation
means in JPDDs.

3.2. Pointcuts in AspectJ

Figure 3 models the following AspectJ pointcut
(adopted from [21]):

pointcut aspectj_pc():
cflowbelow(call(* ColoringClient.*(..))

&& this(SomeCaller))
&& call(FigureElement Figure.make*(..))

It designates all messages that invoke a method
beginning with “make” on class “Figure” (returning an
instance of class “FigureElement”) from within the control
flow of any method called on class “ColoringClient” from
class “SomeCaller” (returning any or none return value).
The message being crosscut is rendered as template
parameter “CrosscutMsg”.

Table 1 gives a general description on how message
matching is accomplished – the depicted (meta-)operation
“matchesMessage” is invoked on each message in the
UML model. At first, the messages’ names are matched. If
the message in the JPDD is tagged with a

“joinPointPattern” (which are enclosed by sharp brackets
“<...>”; see Figure 3), the “joinPointPattern”’s value (e.g.,
“FigureElement Figure.make*(..)”) is passed for matching
rather than the message’s name (e.g., “CrosscutMsg”).
Then, the message’s sender and receiver are matched.
This includes matching of their relationships (association
roles, generalizations, etc.). After that, the associations
used for transmitting the messages are compared.

Note that sender and receiver comparison is
accomplished by matching the sender’s and receiver’s role
in the JPDD to the sender’s and receiver’s base classifiers
in the target model. This is because behavioral
crosscutting takes place in every target model whose
participants provide the set of features specified in the
JPDD – may they be explicitly required by means of the
role specification in the collaboration, or implicitly
present by means of the base classifier specification in the
class hierarchy. The same counts for the associations used
for transmitting the messages.

In case the JPDD defines predecessors and/or an
activator to the crosscut message (like “InvokingMessage”
in Figure 3), the message in the target model must provide
corresponding messages among its predecessors. The

SomeCaller ColoringClient

InvokingMsg
<* *(..)>

aspectj_pc
CrosscutMsg

CrosscutMsg
<FigureElement
make*(..)>

* Figure

[...]

Figure 3. An AspectJ pointcut as JPDD

Table 1. Matching messages in UML models
Context Message::
matchesMessage(m : Message) : Boolean
post: result = -- evaluate name pattern (‘<...>’)
if m.taggedValue->includes(tv | tv.type.name = 'joinPointPattern')
then

self.matchesNamePattern(m.taggedValue->select(tv |
tv.type.name = 'joinPointPattern').dataValue->at(1))

else
self.matchesNamePattern(m.name)

endif
-- evaluate sender/receiver/...

and self.sender.base->includes(C |
C.matchesRelationships(m.sender) and
C.matchesClassifier(m.sender))

and self.receiver.base->includes(C |
C.matchesRelationships(m.receiver) and
C.matchesClassifier(m.receiver))

and self.communicationConnection.base
.matchesAssociation(m.communicationConnection)

-- evaluate predecessors/activator
and m.allPredecessors->union(m.activator)->reject(m2 |

m2.stereotype->includes(st | st.name=’indirect’))->forAll(m2 |
self.allPredecessors->includes(M | M.matchesMessage(m2)))

-- evaluate action
and self.action.matchesAction(m.action)

precise position is not important. For message matching,
messages of stereotype “indirect” (denoted by double-
striked-through lines; see Figure 3) are neglected. Their
only purpose in JPDDs is to indicate auxiliary control
flow the predecessors may provoke.

Finally, the message’s actions are matched.

3.3. Traversal Strategies in Adaptive
Programming

Figure 4 models the following traversal strategy in
Adaptive Programming (adopted from [22], [23]):

from Conglomerat
bypassing -> *,subsidiaries,*
via Officer *to* Salary

The traversal strategy starts at object Conglomerat and
traverses a characterized path to object Salary. It states
that on its way through the class hierarchy the traversal
must pass object Officer. At the same, it requires that
traversal must not pass an association end named
“subsidiaries”.

In a UML model, the classifiers being traversed are
identified with help of the (meta-)operation shown in
Table 2. The operation analyzes if a classifiers possesses
(a set of) associations matching to the ones specified in
the JPDD. The operation distinguishes between standard
associations and associations of stereotype “indirect”

(denoted by double-striked-through lines; see Figure 4). In
the former case, comparison is successful if the classifier
provides a matching association with matching association
ends. In the latter case, there must exist a navigable path
from the current classifier to a classifier matching the
associate in the JPDD. The association ends at which
navigation starts and ends must match the association ends
of the association specified in the JPDD.

For example, the bottom left association in Figure 4
denotes a navigation path starting with an association end
whose participant is of type Conglomerate. And it ends
with an association end whose name must not be
“subsidiaries” – no matter of the type of its participant.
From the participant, however, there must be a navigable
path that ends with an association end whose participant is
of type Salary (bottom right association in Figure 4).

3.4. Composition Rules on Declaratively
Complete Hyperslices in Hyper/J

Composition rules in Hyper/J specify how the elements
of one hyperslice are to be composed with the elements of
another hyperslice. For that purpose, composition rules
designate the join points in each hyperslice. Likewise,
JPDDs are capable to designate model elements from
UML models. While doing so, JPDDs may also reflect on
the “declarative completeness” constraint in Hyper/J: In
Hyper/J, each hyperslice needs to be “declaratively
complete” (cf. [36]). That means that each hyperslice
declares the structural properties it expects to be provided
by another hyperslice. We can use JPDDs to model such
structural requirements.

For example, let’s imagine a payroll hyperslice that
implements “position()” and “pay()” operations on four
classes “Employees”, “Research”, “Tracked”, and
“Regular” (see Figure 5). For their execution, the
hyperslice requires the presence of a “name()” (declared
as abstract in Figure 5), whose implementation must be
provided by some other hyperslice – e.g., a personnel
hyperslice (the example is adopted from [29]).

Conglomerate

Officer

Salary

[...] [...]

*

[...][...]

{and}

subsidiaries

{not}

traversal_startegy
Conglomerate
Salary

Figure 4. Traversal strategies as JPDD

Table 2. Matching associations in UML models
Context Classifier::
possessesMatchingAssociation(a : Association, c : Classifier) :
Boolean
post: result = -- evaluate indirect neighbours
if a.stereotype->includes(st | st.name='indirect') then

self.associations->includes(A | A.matchesAssociation(a) and
a.allConnections->select(ae | ae.participant = c)->forAll(ae |
 A.allConnections->select(AE | AE.participant = self)

->includes(AE | AE.matchesAssociationEnd(ae) and
 a.allConnections->select(ae | ae.participant <> c)

->forAll(ae2 | self.allIndirectNeighbors(A)
->includes(AE2 | AE2.matchesAssociationEnd(ae2))))))

else -- evaluate direct neighbours
self.associations->includes(A | A.matchesAssociation(a) and
a.allConnections->forAll(ae | A.allConnections

->includes(AE | AE.matchesAssociationEnd(ae))))
endif

Employee

name()
position()
pay()

 Operations
 Attributes

Research

position()
pay()

 Operations
 Attributes

Tracked

position()
pay()

 Operations
 Attributes

Regular

position()
pay()

 Operations
 Attributes

Figure 5. A payroll hyperslice (cf. [29])

Figure 6 depicts a sample JPDD which designates the
join points in the personnel hyperslice and specifies
structural requirements being imposed on those join
points. Table 3 and Table 4 describe the (meta-)operations
for locating join points in UML models according to the
specifications made in the JPDD.

Figure 6 depicts a JPDD that selects four classes from
the personnel hyperslice as join points (“Employee”,
“Research”, “Tracked”, and “Regular”). These classes are
meant to be augmented by the payroll hyperslice during
composition. Besides designating the hyperslices’ join
points, though, the JPDD in Figure 6 specifies a couple of
structural requirements that those join points must fulfill.
At first, it requires class “Employee” to provide an
operation “name()”. Further, it requires class “Research”
and “Tracked” to be subclasses of class “Employee”,
while class “Regular” in turn must be a subclass of class
“Tracked”. Composition may only take place if these
constraints are satisfied.

Table 3 describes how join points are selected from
UML models. Join point selection is accomplished by
name matching. If the classifier specifications in the JPDD

are tagged with a “joinPointPattern” (which are enclosed
by sharp brackets “<...>”; see Figure 6), the
“joinPointPattern”’s value (i.e., “Employee”, “Research”,
“Tracked”, or “Regular”) is passed for matching rather
than the classifiers’ names (e.g., “CrosscutTypeA”, etc.).
Apart from their names, the classifier’s meta-properties
must match (“isRoot”, “isLeaf”, “isAbstract”). At last, the
classifiers’ features, i.e., attributes and methods, are
compared. A classifier must possess all attributes and all
methods being defined as structural requirement in the
JPDD (like operation “name()” in Figure 6, for example)
in order to be selected as join point.

Further, classifiers must possess all relationships, i.e.,
associations, generalizations, and specializations, that are
defined in the JPDD (like the inheritance relationships in
Figure 6, for example) in order to be selected as join
point. Matching of relationships is accomplished by a
second (meta-)operation for associations, generalizations,
and specializations separately (see Table 4).

4. Related and Future Work

A couple of other approaches deal with modeling
pointcuts using OCL, UML, and even MDA:

[31] makes use of OCL code [27] to bind elements
form an application models to “hot spots” in aspect-
oriented frameworks. In doing so, they select model
elements that are to be enhanced like we do. Unlike us,
however, they define the enhancements in the same OCL
statement which hinders reuse of the query specification.
Specifying enhancements is not duty of JPDDs.

A more sophisticated approach is described in [15]
which presents a domain-specific extension to the OCL
for the specification of crosscutting constraints. In
particular, it introduces reflective operators to advance
selection of model elements. Again, though, selection
queries and modification assignments are instantly
coupled together, and so, reuse of queries is not possible.

[34] [16] chooses to use UML Action Semantics [28]
to define model transformations and OCL [37] to express
selection criterions for those transformations. As queries
are hard-coded into transformations, they cannot be
reused in a different context.

CrosscutTypeA
<Employee>

name()
 Operations

 Attributes

payrolls_requirements

CrosscutTypeA
CrosscutTypeB
CrosscutTypeC
CrosscutTypeD

CrosscutTypeB
<Research>

CrosscutTypeC
<Tracked>

CrosscutTypeD
<Regular>

Figure 6. Specifying structural
requirements in JPDDs

Table 3. Matching classifiers in UML models
context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- evaluate name pattern
if C.taggedValue->includes(tv | tv.type.name = 'joinPointPattern')
then

self.matchesNamePattern(C.taggedValue->select(tv |
tv.type.name = 'joinPointPattern').dataValue->at(1))

else
self.matchesNamePattern(C.name)

endif
-- evaluate defined meta-properties

and (self.isRoot = C.isRoot or C.isRoot = '')
and (self.isLeaf = C.isLeaf or C.isLeaf = '')
and (self.isAbstract = C.isAbstract or C.isAbstract = '')

-- evaluate attributes and operations
and (C.feature->select(f | f.oclIsKindOf(Attribute))->forAll(ATT |

self.possessesMatchingAttribute(ATT))
or C.feature->select(f | f.oclIsKindOf(Attribute))->size = 0)

and (C.feature->select(f | f.oclIsKindOf(Operation))->forAll(OP |
self.possessesMatchingOperation(OP))
or C.feature->select(f | f.oclIsKindOf(Operation))->size = 0)

Table 4. Matching relationships in UML models
context Classifier::
matchesRelationships(B : Classifier) : Boolean
post: result = -- evaluate relationships
 (B.parent->forAll(P |

self.possessesMatchingParent(P)) or B.parent->size = 0)
and (B.child->forAll(CH |

self.possessesMatchingChild(CH)) or B.child->size = 0)
and (B.associations->forAll(A |

self.possessesMatchingAssociation(A, self))
or B.associations->size = 0)

[24] discusses how Model-Driven Architecture (MDA)
[25] may support aspect-oriented modeling. It points out
that a pointcut can be expressed as a query on one model.
We share that conception and have defined a graphical
notation to define such queries. We see another
application area of our approach in connection with the
Query View Transformation Language (QVT) [26] which
is currently under review by the OMG: JPDDs can be
used as a graphical query language to select model
elements from UML models that are subject to
transformations.

Besides that we see complementary contribution of our
work to existing aspect-oriented modeling and design
approaches, for example [13], [32], and [19], which lack
graphical means to specify selection queries. Moreover, as
JPDDs map onto OCL expressions, our approach can be
seamlessly integrated into [16] and [15]. From using
parameterized OCL (meta-)operations, we even gain
greater flexibility because we may feed the operations
with different JPDDs at a time.

Future work will involve investigations on how to
specify selection queries in the context of aspect-oriented
modeling with state charts [8] or activity diagrams [11].
Further, JPDDs are to be integrated into a UML profile
for aspect-oriented modeling (cf. [7]) in order to advance
its application in the aspect-oriented software
development process.

5. Conclusion – Going Beyond

In this paper we have exemplified the need for distinct
modeling means for the specifications of pointcuts, i.e.,
the specification of places and conditions at/under which
crosscutting takes place. We presented a graphical
notation that suits this purpose, and we have exemplified
its use and semantics when designing a synchronization
requirement in an aspect-oriented manner as well as with
help of examples from different aspect-oriented
implementation techniques.

Yet, note that the capabilities of our modeling notation
go beyond the designation means of current aspect-
oriented implementation techniques and allow advanced
aspect-oriented modeling. The stereotype “indirect”, for
example, is not limited to association relationships

(denoted by double-striked-through lines; see Figure 4)
but to generalization and specialization relationships as
well (denoted by double-striked-through lines with hollow
arrow heads; see Figure 7 right side). Using this symbol in
JPDDs signifies that a given classifier must provide an
ancestor or a descendant, respectively, that matches the
specification of the JPDD.

Besides that the notation provides for the specification
of operations using wildcards “*” and “..” in their
parameter list (see Figure 7 left side for an example).
Further, we allow the specification of multiplicity ranges
for attributes (see Figure 7 left side). Classifiers
representing join points must provide a matching attribute
whose multiplicity resides in the range specified by the
JPDD (e.g., “[2..100]”). An exclamation mark denotes a
fixed lower or upper bound (e.g., “2!”). Please refer to [6]
for the corresponding OCL code.

Provided with these novel modeling means, software
designers are capable to design pointcuts in wholly new
ways. Being implementation language independent, the
modeling notation allows design of pointcuts in the very
early stages of software development, e.g., when
designing connection points in aspect-oriented software
architectures. Further, aspect-oriented software developers
may fully concentrate on design first, and finally can map
their design to whatever aspect-oriented programming
language seems best suited.

6. References

[1] 1st Workshop on Aspect-Oriented Modeling, at AOSD'02
(Enschede, The Netherlands, Apr. 2002),
http://lgl.epfl.ch/workshops/aosd-uml/index.html
[2] 2nd Workshop on Aspect-Oriented Modeling, at UML’02
(Dresden, Germany, Sep. 2002),
http://lglwww.epfl.ch/workshops/uml2002/
[3] 3rd Workshop on Aspect-Oriented Modeling, at AOSD'03
(Boston, MA, Mar. 2003),
http://lglwww.epfl.ch/workshops/aosd2003/
[4] 4th Workshop on Aspect-Oriented Modeling, at UML’03
(San Francisco, CA, Oct. 2003),
http://www.csam.iit.edu/~oaldawud/AOM/
[5] Adaptive Programming,
http://www.ccs.neu.edu/research/demeter/
[6] Addendum to Stein, D., Hanenberg, S., Unland, R., Aspect-
Oriented Modeling in the Light of MDA, submitted to the
Special Issue of Science of Computer Programming (Elsevier)
on Model Driven Architecture: Foundations and Applications,
http://dawis.informatik.uni-essen.de/site/staff/stein/
[7] Aldawud, O., Bader, A., Elrad, T., UML Profile for Aspect-
Oriented Software Development, 3rd AOM Workshop at
AOSD'03 (Boston, MA, Mar. 2003)
[8] Aldawud, O., Bader, A., Elrad, T., Weaving with
Statecharts, 1st AOM Workshop at AOSD'02 (Enschede, The
Netherlands, Apr. 2002)
[9] AspectJ, http://www.aspectj.org

C<Con*>

att1 : Integer [2!..100]

set*(val : *)
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

[...]

A

B

Figure 7. Going beyond in
aspect-oriented modeling

[10] AspectJ Team, The AspectJ Programming Guide,
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-
home/doc/progguide/index.html, Jan. 2004
[11] Barros, J.P., Gomes, L., Towards the Support for
Crosscutting Concerns in Activity Diagrams: A Graphical
Approach, 4th AOM Workshop at UML’03, (San Francisco, CA,
Oct. 2003)
[12] Booch, G., Jacobson, I., Rumbaugh, J., The Unified
Modeling Language User Guide, Addison Wesley, Reading,
MA, 1999
[13] Clarke, S., Walker, R.J. Composition Patterns: An
Approach to Designing Reusable Aspects. in Proc. of ICSE '01
(Toronto, Canada, May 2001), ACM, 5-14
[14] Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher,
H., Discussing Aspects of Aspect-Oriented Programming, in:
ACM Communications, Vol. 44(10), Oct. 2001, pp. 33-38
[15] Gray, J., Bapty, T., Neema, S., Schmidt, D.C., Gokhale, A.,
Natarajan, B., An Approach for Supporting Aspect-Oriented
Domain Modeling, in: Proc. of GPCE '03 (Erfurt, Germany,
Sep. 2003), Springer, pp. 151-170
[16] Ho, W.M., Jézéquel, J.-M., Pennaneac’h, F., Plouzeau, N.,
A Toolkit for Weaving Aspect Oriented UML Designs, in: Proc.
of AOSD '02 (Enschede, The Netherlands, Apr. 2002), ACM,
pp. 99-105
[17] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj
[18] Jacobson, I., Booch, G., Rumbaugh, J., The Unified
Software Development Process, Addison Wesley, Reading, MA,
1999
[19] Kandé, M.M., PhD Thesis, EPFL, Lausanne, Swiss, 2003
[20] Katara, M., Katz, Sh., Architectural Views of Aspects, in:
Proc. of AOSD’03 (Boston, MA, Mar. 2003), ACM, pp. 1-10
[21] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold, W.G., Getting Started with AspectJ, ACM
Communications, Vol. 44(10), Oct. 2001, pp. 59-65
[22] Lieberherr, K., Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns, PWS Publishing
Company, Boston, 1996
[23] Lieberherr, K., Orleans, D., Ovlinger, J., Aspect-Oriented
Programming with Adaptive Methods, ACM Communications,
Vol. 44(10), Oct. 2001, pp. 39-41

[24] Mellor, St., On A Framework for Aspect-Oriented
Modeling, 4th AOM Workshop at UML’03, (San Francisco, CA,
Oct. 2003)
[25] Object Management Group (OMG), MDA Guide Version
1.0, May 2003
[26] Object Management Group (OMG), Request for Proposal:
MOF 2.0 Query / Views / Transformations RFP, Apr. 2002
[27] OMG, Response to the UML 2.0 OCL RFP, Revised
Submission, Version 1.6, January 2003
[28] OMG, Unified Modeling Language Specification. Version
1.5, Mar. 2003
[29] Ossher, H., Tarr, P., Using Multi-Dimensional Separation
of Concerns to (Re)Shape evolving Software, in: ACM
Communications, Vol. 44(10), Oct. 2001, pp. 43-50
[30] Rashid, A., Moreira, A., Araújo, J., Modularisation and
Composition of Aspectual Requirements, in: Proc. of AOSD’03
(Boston, MA, Mar. 2003), ACM, pp. 11-20
[31] Rausch, A., Rumpe, B., Hoogendoorn, L., Aspect-Oriented
Framework Modeling, 4th AOM Workshop at UML’03, (San
Francisco, CA, Oct. 2003)
[32] Stein, D., Hanenberg, St., Unland, R., A UML-based
Aspect-Oriented Design Notation For AspectJ, in: Proc. of
AOSD '02 (Enschede, The Netherlands, Apr. 2002), ACM, pp.
106-112
[33] Stein, D., Hanenberg, St., Unland, R., Issues on
Representing Crosscutting Features, 3rd AOM Workshop at
AOSD'03 (Boston, MA, Mar. 2003)
[34] Sunyé, G., Pennaneac’h, F., Ho, W.-M., Le Guennec, A.,
Jézéquel, J.-M., Using UML Action Semantics for Executable
Modeling and Beyond, in: Proc. of CAiSE’01 (Interlaken,
Switzerland, Jun. 2001), Springer, pp.433-447
[35] Sutton, St., Rouvellou, I., Modeling of Software Concerns
in Cosmos, in: Proc. of AOSD '02 (Enschede, The Netherlands,
Apr. 2002), ACM, pp. 127-133
[36] Tarr, P., Ossher, H., Hyper/J User and Installation Manual,
IBM Corp., 2000
[37] Warmer, J., Kleppe, A., The Object Constraint Language:
Precise Modelling with UML, Addison-Wesley, 1998
[38] Wegner, P., Zdonik, S., Inheritance as Incremental
Modification Mechanism or What Like is and Isn't Like, in:
Proc. of ECOOP'88 (Oslo, Norway, Aug. 1988), pp. 55-77

