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Abstract. Specifying queries on models is a prerequisite to model
transformations in the MDA because queries select the model elements that are
the source of transformations. Current responses to OMG's MOF 2.0 QVT RFP
mostly propose to use (and/or extend) OCL 2.0 as specification language for
queries. In this paper, we demonstrate that using textual notations (like OCL)
quickly leads to complex query statements even for simple queries. In order to
overcome this handicap, we present a graphical notation based on the UML that
facilitates comprehension of query statements as well as estimation of the
(ultimately) selected model elements. We advocate that queries should be
specified in terms of user model entities and user model properties (rather than
meta-model entities and meta-model properties) for the sake of feasibility and
comprehensibility to the user.

1 Introduction

Model-Driven Architecture (MDA) [13] aims to assist the development process of
software intensive systems by providing a standardized framework for the
specification of software artifacts and integration directives. Its key idea is to install
traceable relationships between software artifacts of different domains or different
development phases. In that way, the MDA aims to improve software quality since
software developers can directly relate the final program code to design decisions
and/or requirement specifications of the early phases of software development. It
allows them to validate and test the final code for compliance to particular
requirements, thus making maintenance much simpler. Further, the MDA promotes
reuse of existing system solutions in new application domains by means of conceptual
mappings and artifact integration.

The principal software artifact of consideration in the MDA are machine-readable
models. The underlying technique of the MDA is model transformation.
Transformations are accomplished according to the tracing and mapping relationships
established between the software artifacts (i.e., between their models).

Striving for a standardized language to define such model transformations, the
OMG released the "MOF 2.0 Query / Views / Transformation (QVT)" Request For
Proposal (RFP) in April 2002 [14]. It has been one of the mandatory requirements to



come up with a query language to select and filter elements from models, which then
can be used as sources for transformations. In response to the RFP, several proposals
for general-purpose model transformation languages have been submitted (e.g., [1],
[4], [7] and [17]). Most of them propose to use (and/or extend) the Object Constraint
Language (OCL) 2.0 [15] as query language (e.g., [7] [17] [1]). Having said so, only
one proposition [17] provides a graphical representation for its (OCL-based) query
language.

We think, though, that a graphical notation to specify and visualize model queries
is inevitable for the MDA to drive for success. We think that software developers
require a graphical representation of their selection queries, which they can use to
communicate their ideas to colleagues, or to document design decisions for
maintainers and administrators. A graphical visualization would facilitate their
comprehension on where a transformation actually modifies their models. We think
that using a textual notation (like OCL), instead, would quickly turn out to lead to
very complex expressions even when defining a relatively small number of selection
criteria.

In this paper we present a graphical notation to specify selection queries on models
specified in the Unified Modeling Language (UML) [16], aiming to overcome the
lack of most of the RFP responses when working in a UML model context. We
introduce several abstraction means in order to express various selection criteria, and
specify how such selection criteria are evaluated by OCL expressions. Query models
built from such abstraction means are called "Join Point Designation Diagrams"
("JPDD" in short). JPDDs originate in our work on Aspect-Oriented Software
Development (AOSD) [5] in general, and on the visualization of aspect-oriented
concepts in particular. JPDDs are concerned with the selection of points in software
artifacts that are target to modifications. JPDDs extend the UML with well-defined
selection semantics. They make use of, and partially extend, UML's conventional
modeling means.

The remainder of this paper is structured as follows: In the first section we
emphasize the need of a graphical notation to specify selection queries with the help
of an example. After that, we briefly sketch the background that JPDDs originate
from, and point to the parallels of query specification in AOSD and MDA. Then, we
describe the abstract syntax of our notation. In section 5, we present our graphical
means and the OCL expressions by which they are evaluated. We conclude the paper
with relation to other work and a summary.

2 Motivation

In order to make the motivation of this work more clear, we take a look at a
hypothetical, yet easy-to-understand example (adopted from [17]): Imagine, for some
arbitrary model transformation, we need a model query that selects all classes with
name "cn" that either have an attribute named "an", or – in case not – that have an
association to some other class with name "cn1" which in turn has an attribute named
"an". Fig. 1, right part, demonstrates how such query would be expressed using the
textual and graphical notation as proposed in [17]. Fig. 1, left part, shows the same
query, once expressed as an OCL statement, and once expressed as a JPDD.



As you can learn from the example, even a simple model query quickly results in a
complex query expression – when using a textual notation. Compared to the OCL
code (see Fig. 1, top left part), the textual notation presented in [17] (see Fig. 1, top
right part) proves to be more concise. However, comprehension of the query and
estimation what model elements finally will be selected is still difficult. The graphical
notation shown in Fig. 1, bottom right part, helps to keep track of what is going on in
the selection query. However, since the query is specified in terms of meta-model
entities and meta-model properties, unnecessary and distracting noise is added to the
diagram: A simple association between classes "c" and "c1" is represented by three
distinct entities.

Fig. 1, bottom left part, shows what the query looks like using a JPDD. JPDDs
represent model queries in terms of user model entities and user model properties.
Using user model entities and user model properties for query specification (rather
than meta-model entities and meta-model properties) is to the advantage of feasibility
and comprehensibility: Software developers work with symbols they are familiar
with. They do not need to bother with meta-models. Further, query models turn out to
be concise and comprehensible: They specify a minimal pattern to which all
ultimately selected model elements must comply.

someUmlModel.contents
->select(c: Class | -- c1: Class | -- att: Attribute |

(c.name="cn" and  c.feature->select(f |
f.oclIsKindOf(Attribute))->includes(att |

att.name="an") )
or (c.name="cn" and not  c.feature->select(f |

f.oclIsKindOf(Attribute))->includes(att |
att.name="an") and

 c1.name="cn" and c1.feature->select(f |
f.oclIsKindOf(Attribute))->includes(att |

att.name="an") and
c.oppositeAssociationEnds->includes(ae |

ae.participant = c1 )

(UML.Class, c) [name = "cn", feature =
{ (UML.Attribute) [name="an"] } ]

or
(UML.Class, c) [name = "cn", feature =

{ not (UML.Attribute) [name="an"] } ] and
(UML.Class, c1) [name = "cn1", feature =

{ (UML.Attribute) [name="an"] } ] and
(UML.Association) [connection =

{ (UML.AssociationEnd) [participant = c],
(UML.AssociationEnd) [participant = c1] } ]

{or}

mda_query

 ?c
 ?c1
 ?att

?c<cn>

?att<an>
 Operations

 Attributes

?c1<cn1>

?att<an>
 Operations

 Attributes

?c<cn>

{not} ?att<an>
 Operations

 Attributes

c: Class
name="cn"

att: Attribute
name="an"

{or}

AssociationEnd

AssociationEnd

Association

c: Class
name="cn"

c1: Class
name="cn1"

att: Attribute
name="an"

Attribute
name="an"

Fig. 1. Selection query expressed in OCL (top left part), using the textual and graphical
notation presented in [17] (right part), and with help of a JPDD (bottom left part)



3 Background

JPDDs originate in our work on AOSD. AOSD deals with the encapsulation of
crosscutting concerns into separate modular units, called aspects. A crosscutting
concern is a concern that cannot be cleanly decomposed to the primary decomposition
of a program, thus leading to crosscutting code that is scattered throughout every
module of the dominant decomposition. This is what became known as the Tyranny of
the Dominant Decomposition [20]. An aspect encapsulates the crosscutting code of a
crosscutting concern. Besides specifying the crosscutting code that should be injected
into the primary decomposition, an aspect also specifies the conditions under which
the injection shall to take place.

In order to do so, aspect-oriented programming techniques rely on the concepts of
join points and weaving. Join points designate loci (in program code) or instants (in
program execution) at which injection takes place. Weaving defines the exact manner
in which injection takes place. Since crosscutting usually takes place at more than one
join point (in fact, this is the major case that AOSD is focused on), aspect-oriented
programming techniques provide various ways to specify selections of join points.
For example, join point selection is possible based on lexical similarity of join point
properties [11] [12] (e.g., of their name or type declarations), based on the structural
arrangement join points reside in [6] (such as presence of particular parameters in an
operation's parameter list, or existence of a navigable path to a particular class), or
based on the dynamic context join points occur in [12] (e.g., in the scope of a
particular object, or in the control flow of a particular method).

We see strong parallels between AOSD and MDA with respect to the selection of
locations in software artifacts that are focus of modification. We estimate (e.g., from
the examples given in [17]) that selection in MDA also depends on lexical similarities
of model element properties – in particular, of their names. Further, structural
arrangements, such as the existence of certain features or relationships, are deemed to
play a major role in model element selection, as well. Structural constraints may also
involve general statements on navigable paths, i.e., indirect associations or indirect
generalizations between classifiers.

In the following, we describe the general syntax of JPDDs as it has been depicted
in Fig. 1 (bottom left part). After that, we explain the graphical elements that may be
used to specify model element selections based on lexical similarities and structural
arrangements with JPDDs. We further detail their semantic implications using OCL
expressions.

4 Abstract Syntax

JPDDs can be fully integrated into the UML, making use of UML's modeling means
and its meta-model. Fig. 2, top left part, depicts the abstract syntax of a JPDD: A
JPDD consists of at least one selection criterion, some of which delineate selection
parameters. A JPDD represents a selection criterion, itself, and thus may be contained
in another JPDD (e.g., for reuse of criteria specifications).

Fig. 2, bottom right part, depicts the abstract syntax of JPDDs in terms of UML's
meta-model: A JPDD represents a namespace which may contain several model
elements, each representing a selection criterion. The namespace is provided with a



set of template parameters that hold the set of model elements being returned by the
query. Being provided with template parameters, a JPDD renders a template in the
UML. A JPDD may be reified by different types of namespaces – whatever suits the
particular needs of the query specification best. A JPDD may be specified as a
classifier template, a collaboration template, or a package template, for example. Fig.
1 in section 2 outlines a collaboration template.

Before going into the semantic details of JPDD in the next section, we want to
emphasize that the general meaning of JPDDs is rather "inverse" to that of
conventional UML templates: While conventional UML templates are generally used
to instantiate multiple model elements from one common mould (or "generation
pattern"), JPDDs are used to identify all model elements that share one common
shape (a "selection pattern"). Correspondingly, template parameters of JPDDs are
meant to return actual arguments rather than being bound to actual arguments (we
describe in the next section, how such arguments are retrieved and affiliated with the
individual template parameter). To emphasize this difference in meaning visually, we
place template parameter boxes to the bottom right corner of JPDDs (rather than to
their conventional position at the top right corner of the template).

5 Notation and Semantics

In this section we present the core modeling means we developed for specifying
selection queries using JPDDs. We explain their graphical notation, and define their
semantic implications using OCL meta-operations. Note that not all meta-operations
are shown due to space limitations.

5.1 Initiating Selection

Selection is accomplished by special meta-operations that are defined on UML's
meta-model classes (e.g., on classifiers, attributes, operations, associations, messages,

Namespace

Classifier Collaboration

ModelElement

namespace

ownedElement

template

templateParameter

Package

TemplateParameter

JPDD

SelectionCriterium

1..*
1..*

SelectionParameter

Fig. 2. Abstract syntax of JPDDs (top part) mapped to UML's meta-model (bottom part)



etc.). It sets out with the elements being designated as template parameters, proceeds
with their composite elements and their relationships to other elements, starts over
with those related elements, and cascades that way throughout the entire JPDD. Fig. 3
sketches how pattern evaluation of is accomplished in case of a template parameter
for classifiers ("cPattern"):

The selection is initiated by a special operation defined on the template parameters
of the JPDD (see OCL expression no. 1 in Fig. 3): Operation
"matchingModelElements" returns all model elements that comply to the selection
criteria specified in the JPDD. The operation takes a namespace (e.g., a model,
package, collaboration, classifier, etc.) as parameter, whose model elements are to be
matched against the selection criteria specified in the JPDD. Matching is
accomplished by invoking the appropriate meta-operation on each model element in
that namespace.

When matching a classifier pattern ("cPattern"), for example, operations
"matchesClassifier" and "matchesRelationships" are invoked on each classifier in the
namespace (see no. 2 and 3 in Fig. 3). These operations evaluate if a given classifier
in the provided namespace possesses all attributes, operations, associations, and
parents, etc., that have been specified in the JPDD. Such evaluations are
accomplished by special operations (see no. 4 in Fig. 3), which in turn make use of
other operations, and so on (see no. 5 and 6 in Fig. 3; note that not all operation
invocations are shown). It is important to note from Fig. 3 how relationship matching
involves matching the participating classifiers. That way, evaluation cascades from
classifier to classifier, assessing if all selection criteria in the JPDD are fulfilled.

In the subsequent sections, we exemplify selected meta-operations in closer detail.

let cPattern = self.templateParameter in
context  TemplateParameter::
matchingModelElements(someNamespace : Namespace) : Set(ModelElement)

someNamespace.allContents->select(allClassifiers | oclIsKindOf(Classifier) and  ...

possessesMatchingAttribute
(∀ cPattern.attPatterns)

possessesMatchingOperation
(∀ cPattern.opPatterns)

if

if

possessesMatchingAssociation
(∀ cPattern.assocPatterns)

if possessesMatchingParent
(∀ cPattern.parentPatterns)

if

matchesAssociationEnd
(∀ assocPattern.assocEndPatterns)

if

matchesClassifier
(parentPattern) and
matchesRelationships
(parentPattern)

result =

if

matchesClassifier
(assocEndPattern.participantPattern) and
matchesRelationships
(assocEndPattern.participantPattern)

post :

matchesParameters
(opPattern.parlistPattern)

if [...]

matchesClassifier(cPattern) matchesRelationships(cPattern)

if if

matchesParameter
(∀ parlistPattern.parPatterns)

if

1

2

3

4

5

6

5
matchesAttribute
(attPattern)

if
if

Fig. 3. Cascading evaluation of JPDDs (note that not all evaluation steps are shown)



5.2 Classifier Selection

Looking at the selection semantics for classifiers, we may learn about the general
selection mechanism for all model elements: Principally, model elements are selected
based on the values of their meta-attributes. In case of classifiers, these are the
properties "isAbstract", "isLeaf", and "isRoot" (see Table 1, block II).

Besides that, model elements are selected based on their meta-relationships to
composite model elements. In case of classifiers, for example, special regards must be
given to the features they must posses in order to be selected (see Table 1, block III).

At last, note that name matching of model elements is accomplished with help of
name patterns. Name patterns may contain wildcards, such as "*" and "?", in order to
select groups of model elements (of same type) based on lexical similarities. All
element names in a JPDD represent name patterns by default. In case an element
needs to be referenced within the JPDD (e.g., if it needs to be defined as a JPDD
template parameter), the element may be given an identifier1. In diagrams, identifiers
are indicated by a prepending question mark, while the name pattern is enclosed into
angle brackets (see "?C<Con*>" in Table 1 for example, or "?c<cn>", "?c1<cn1>",
and "?att<an>" in Fig. 1 of section 2).

Having explained these general selection principles, we concentrate on discussing
the particularities of other modeling means in the following.

Table 1. OCL meta-operation for matching classifiers (left part), and its invocation using a
sample pattern (right part)

context Classifier::
matchesClassifier(C : Classifier) : Boolean
post: result = -- I. evaluate name pattern
if [...] -- given an identifier (see footnote 1)

self.matchesNamePattern(C.taggedValue->[...])
else -- default

self.matchesNamePattern(C.name)
endif

-- II. evaluate defined meta-properties
and (self.isRoot = C.isRoot or  C.isRoot = '')
and (self.isLeaf = C.isLeaf or  C.isLeaf = '')
and (self.isAbstract = C.isAbstract or  C.isAbstract = '')

-- III. evaluate attributes and operations
and (C.feature->select(f | f.oclIsKindOf(Attribute))->forAll(ATT |

self.possessesMatchingAttribute(ATT))
or  C.feature->select(f | f.oclIsKindOf(Attribute))->size = 0)

and (C.feature->select(f | f.oclIsKindOf(Operation))->forAll(OP |
self.possessesMatchingOperation(OP))

or C.feature->select(f | f.oclIsKindOf(Operation))->size = 0)

A sample class pattern
(?C):

 ?C<Con*>

att2 : Integer [2!..100]

set*(val : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

name pattern

expected features

identifier

...and its evaluation:

[...]->select(ME | [...]
and ME.matches
Classifier(?C) [...])

5.3 Operation Selection

Special regards in operation selection must be given to the usage of wildcard ".." in
the operation's signature pattern. Wildcard ".." allows operation selection based on
their structural arrangement – that is, based on existence of particular parameters,
while neglecting from others.
                                                          
1 In that case, the name pattern is stored (technically) in a special tagged value.



Table 2 gives a detailed description on how such structural arrangements are
evaluated by means of an OCL expression: Meta-operation "matchesParameters"
compares the overall number (see Table 2, block I) and order (see Table 2, block II)
of parameters in the actual operation's parameter list to the one being passed from the
JPDD. To do so, the meta-operation makes use of sub-expressions "ownPars",
"purePars", and "matchingPars". "ownPars" comprises all parameters of the actual
operation ("self"). "purePars" equates the parameter list being passed from the JPDD,
neglecting all wildcarded parameters "..". "matchingPars" is a subset of "ownPars",
and contains only those parameters that have a matching counterpart in "purePars".
Apart from the overall order of parameters, the partial order of parameters at the
parameter list's beginning (see Table 2, block III) and its end (see Table 2, block IV)
is evaluated. Order evaluation stops (i.e., is always true) when the first wildcarded
parameter ".." is reached in the parameter list passed from the JPDD (see collect
statement at end of block III and IV).

Table 2. OCL meta-operation for matching parameter lists (left part), and its invocation using a
sample pattern (right part)

context  Operation def:
let ownPars = self.parameter->asSequence()
let purePars(par : Sequence(Parameter)) : Sequence(Parameter)

= par->reject(p | p.name = '..')
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter)

= ownPars->select(p |
purePars(par)->exists(parp | p.matchesParameter(parp)) )

context  Operation::
matchesParameters(par : Sequence(Parameter)) : Boolean
post:  result = -- I. compare parameter number

  (matchingPars(par)->size() = purePars(par)->size())
-- II. compare parameter order

and  matchingPars(par)->forAll(index : Integer |
  matchingPars(par)->at(index)

.matchesParameter( purePars(par)->at(index) ))
-- III. compare first parameters

and  ownPars->forAll(i : Integer | ownPars->at(i)
.matchesParameter(par->at(i))

or  par->collect(j : Integer | j <= i
and  par->at(j).name = '..')->size() <> 0)

-- IV. compare last parameters
and  ownPars->forAll(i : Integer | ownPars->at(ownPars->size() - i)

.matchesParameter(par->at(par->size() - i))
or par->collect(j : Integer | j <= i

and  par->at(par->size() - j).name = '..')->size() <> 0)

A sample signature
pattern (run) providing
a sample parameter list
({val1 : Integer, .., vali :
Real, .., valn : String}):

 ?C<Con*>

set*(val : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes

signature patterns

name pattern

...and its evaluation:

[...]->select(op | [...] and
op.matchesParameters
(run.parameter
->asSequence()) [...])

5.4 Relationship Selection

When selecting relationships, special regards must be given to indirect relationships.
Indirect relationships are a sophisticated means to constrain structural arrangements:
Indirect relationships may be used in JPDDs to indicate that a classifier does not need
to be directly connected to a particular parent, child, or associated classifier. This
means in case of associations, that the particular classifier must be reachable via the
designated association, but does not need to be a direct neighbor.



In diagrams, indirect relationships are rendered by a double-crossed line2. In Table
3 (top part), for example, there must be a navigable path from class "C" to class "B"
for the selection criterion to be fulfilled. The ends of that path must match with the
association ends of the indirect association (operation "allIndirectNeighbors" returns
the set of all (opposite) association ends being reachable via the passed association).

In case of generalizations, the particular parent or child needs to reside somewhere
in the inheritance tree, but does not need to be a direct parent or child. For example,
class "C" in Table 3 (bottom part) must be among the ancestors of class "B", and class
"B" must be among the descendants of class "C", for the selection criterion to be
satisfied (operation "allParents" returns the set of all inherited super-classifiers).

Table 3. OCL meta-operation for matching relationships (left part), and sample patterns (right
part). Invocation examples are omitted due to space limitations

context  Classifier::
possessesMatchingAssociation(a : Association, c : Classifier) : Boolean
post:  result =
if  [...] -- indirect association -- I. evaluate indirect neig hbors

self.associations->includes(A | A.matchesAssociation(a) and
a.allConnections->select(ae | ae.participant = c)->forAll(ae |
   A.allConnections->select(AE | AE.participant = self)

->includes(AE | AE.matchesAssociationEnd(ae) and
      a.allConnections->select(ae | ae.participant <> c)

->forAll(ae2 | self.allIndirectNeighbors(A)
->includes(AE2 | AE2.matchesAssociationEnd(ae2))))))

else -- direct association -- II. evaluate direct nei ghbors
[...]

endif

C

B

[...]

indirect association

C

B

A

association name

context  Classifier::
possessesMatchingParent(g : Generalization) : Boolean
post:  result =
if  [...] -- indirect association -- I. evaluate indirect pare nts

self.generalization->includes(G | G.matchesGeneralization(g) and
G.parent->union(G.parent.allParents)->includes(C |

C.matchesClassifier(g.parent) and
C.matchesRelationships(g.parent)))

else  -- direct association -- II. evaluate direct parents
[...]

endif

[...]

C

B

indirect generalization

C

B

5.5 Multiplicity Restrictions

Special attention in association end selection must be paid to the association end's
multiplicity specification3: Multiplicity of association ends may declare exact upper
and/or lower limits; or it may designate the upper and/or lower bounds which the
multiplicity of an association end must not exceed or underrun (respectively). Being
able to declare exact limits and/or minimal and maximal bounds provides for further
flexibility in specification of structural arrangements. Graphically, exact multiplicity
                                                          
2 Technically, indirect relationships are defined as a special stereotype of associations or

generalizations, respectively.
3 The same counts for the multiplicity specification of attributes.



bounds are indicated by exclamation marks4. The lower multiplicity limit of
association end "aRole" in Table 4, for example, denotes a strict limit. Accordingly,
association ends are only selected, if their lower multiplicity limit equates "2". The
upper multiplicity limit of "aRole", on the contrary, denotes a maximum. Association
ends are selected as long as their upper multiplicity limit does not exceed "100".

Table 4. OCL meta-operation for matching association ends (left part), and its invocation using
a sample pattern (right part)

context  AssociationEnd::
isSuccessfulMatch(ae : AssociationEnd) : Boolean
post: result = [...]

-- evaluate multiplicity
and  ((if  [...] -- exact limit

self.multiplicity.range.lower   = ae.multiplicity.range.lower
else -- minimum bound
 self.multiplicity.range.lower >= ae.multiplicity.range.lower
endif

and  if  [...] -- exact limit
self.multiplicity.range.upper   = ae.multiplicity.range.upper

else -- maximum bound
self.multiplicity.range.upper <= ae.multiplicity.range.upper

endif )
or  ae.multiplicity = '')

A sample association
end pattern (aRole):

exact multiplicity
restriction

C

B

A

2!..100

multiplicity
range restriction

aRole

...and its evaluation:

 [...]->select(AE | [...]
and AE.isSuccessful
Match(aRole) [...])

5.6 Message Selection

Selection is not restrained to structural aspects of a UML model as they are specified
in UML class diagrams, for example. Selection criteria may as well involve
behavioral requirements as they are specified in UML interaction and collaboration
diagrams. Table 5 shows the notational means to specify selection criteria on
messages, and how such criteria are evaluated by an OCL operation.

Messages are selected based on the action they invoke. In case of operation call
actions, signature patterns may be used to restrict the operation called. Further,
messages are selected based on the base classifiers of their sender and receiver roles.
It is important to note that selection is based on the base rather than on the roles
themselves. This is accomplished deeming that selections should execute on the full
specification of classifiers rather than on restricted projections thereof. The same
counts for the associations used for transmitting the messages.

Lastly, messages may be selected based on the control flow they occur in, and/or
based on the control flow they invoke. Such control flow is delineated by predecessor
and successor messages: Message "someOp" in Table 5, for example, must occur in
the control flow of message "op1", and must invoke message "op2". Messages of
special stereotype "indirect" can be used to indicate arbitrary control flow that may
occur between two successive messages. In diagrams, indirect messages are depicted
as double-crossed arrows (see Table 5 for illustration).
                                                          
4 Technically, fix upper and lower limits are specified as special stereotypes of multiplicity

ranges.



Table 5. OCL meta-operation for matching messages (left part), and its invocation using a
sample pattern (right top part). Graphical representation of messages stereotyped as "indirect"
(right bottom part)

context  Message::
isSuccessfulMatch(m : Message) : Boolean
post:  result = -- I. evaluate name pattern
if [...] -- given an identifier (see footnote 1)

self.matchesNamePattern(m.taggedValue->[...])
else -- default

self.matchesNamePattern(m.name)
endif

-- II. evaluate sender/receiver/...
and  self.sender.base->includes(C |

C.matchesRelationships(m.sender) and
C.matchesClassifier(m.sender))

and  self.receiver.base->includes(C |
C.matchesRelationships(m.receiver) and
C.matchesClassifier(m.receiver))

and  self.communicationConnection.base
.matchesAssociation(m.communicationConnection)

A sample message
pattern (someOp*):

someOp*(..)
op1()

C B

preceding control flow

signature pattern

succeeding control flow

op2()

...and its evaluation:

 [...]->select(M | [...] and
M.isSuccessful
Match(someOp*) [...])

-- III. evaluate predecessors/activator
and  m.allPredecessors->union(m.activator)->reject(m2 |

m2.stereotype->includes(st | st.name='indirect'))->forAll(m2 |
self.allPredecessors->includes(M | M.matchesMessage(m2)))

-- IV. evaluate successors
and  m.allSuccessors->reject(m2 |

m2.stereotype->includes(st | st.name='indirect'))->forAll(m2 |
self.allSuccessors->includes(M | M.matchesMessage(m2)))

-- V. evaluate action
and  self.action.matchesAction(m.action)

C

[...]

arbitrary control flow

5.7 Boolean Restrictions

By default, all selection criteria specified in a JPDD are implicitly combined using a
boolean "and". That is, all such selection criteria must be fulfilled by a given model
element in order to be selected by the query. In some cases, though, we may need to
specify alternative, exclusive, or mutual exclusive selection criteria. Table 6
exemplifies how we may use boolean constraints, i.e., "{or}", "{xor}", and "{not}", to
render such combinations of selection criteria. Operation "matchesAttribute", for
example, specifies that either at least, or exactly, one (respectively) of all model
elements interrelated by a boolean constraint must comply to the selection criteria
(operation "allConstrainedElements" returns the set of all model elements being
interconnected by the passed boolean constraint). Operation "matchesAttributeNot"
inverts the result of matching in case the model element is constrained with "{not}".
See Table 6 on next page for illustrations.

6 Example

With help of the notational means presented in the previous section, we now can
define even complex selection queries without getting lost in its specification:



Fig. 4 depicts a sample JPDD that selects all classifiers (identified with "?C") (1)
matching the name pattern "Con*"; (2) that do not have an attribute matching "att1"
of type "String"; (3) that do have an array attribute matching "att2" of type "Integer"
whose lower bound equates "2", and whose upper bound does not exceed "100"; (4)
that either have an operation matching "set*", or an operation matching "put*" (but
not both) that both take one parameter of arbitrary type; (5) that have an operation
matching "get*" that returns an value of arbitrary type; (6) that have an operation
matching "run" that takes (at least) three parameters: (6a) the first parameter in the
operation's parameter list must be of type "Integer", (6b) the last parameter must be of
type "String"; (6c) besides that, the operation must take a third parameter of type

Table 6. OCL meta-operations for evaluating boolean combinations on attributes (left part), and
its invocation using a sample pattern (right part)

context  Attribute::
matchesAttribute(att : Attribute) : Boolean
post: result =
if  att.constraint->includes(c | c.body = 'or') then

att.allConstrainedElements('or')->exists(att1 |
self.matchesAttributeNot(att1)

)
else
if  att.constraint->includes(c | c.body = 'xor') then

att.allConstrainedElements('xor')->collect(att1 |
self.matchesAttributeNot(att1)

).size = 1
else

self.matchesAttributeNot(att)

endif endif
context  Attribute::
matchesAttributeNot(att : Attribute) : Boolean
post:  result =
if  att.constraint->includes(c | c.body = 'not') then

not self.isSuccessfulMatch(att) -- evaluate non-existence of att's
else

self.isSuccessfulMatch(att) -- evaluate existence of attributes
endif

A sample attribute
pattern (set*),
interrelated to another
attribute pattern by
means of boolean {xor}:

 ?C<Con*>

{not} att1 : String

set* (val : * )
put*(par : * )

 Operations

 Attributes

boolean restriction

{xor}

boolean restriction

...and its evaluation:

 [...]->select(ATT| [...]
and ATT.matches
Attribute(set*) [...])

sample_model_query

 ?C
 ?Application
 ?someOp

1!
Database

?C<Con*>

{not} att1 : String
att2 : Integer [2!..100]

set* (val : * )
put*(par : * )
get*() : *
run(val1 : Integer, ..,

 vali : Real, ..,
 valn : String)

 Operations

 Attributes
?Application<*>

att1 : String

?someOp<do*(..)>

 Operations

 Attributes

{xor}

Collection Array

[...] [...] {not}

[...]

run(..)

?Application<*> ?C<Con*>

[...]?someOp()
<do*(..)>

Fig. 4. A sample JPDD



"Real" (no matter at which position in the operation's parameter list). Selected
classifiers must be (7) subtypes of "Collection"; (8) but not subtypes of "Array"; and
(9) they have to have an association to exactly one classifier matching "Database".

Besides that, selected classifiers must possess an indirect association (i.e., a
navigable path) to a classifier (identified with "?Application") (1) matching "*"; (2)
that has an attribute matching "att1" of type "String"; (3) and that has an operation
matching "do*" (and identified with "?someOp"), which takes any number of
parameters, (3a) and which invokes method "run" on the former classifier (identified
with "C") – (3b) no matter when (see double-crossed back loop in right part of Fig. 4)
– (3c) using arbitrary values as parameters.

Having found actual model elements that comply to these selection criteria, the
JPDD returns the resulting model elements via its template parameters "?C",
"?Application", and "?someOp".

7 Related Work

Most submissions to OMG's QVT RFP propose to use OCL as a query language. In
this section, we reflect on existing approaches for the visualization of OCL
expressions with respect to their ability to represent model element selections.

Constraint Diagrams [8], for example, represent a graphical notation to specify
invariants on objects and their associations (i.e., links) depending on the state they are
in. In consequence to its strict focus on runtime constraints, the notation does not
provide for the specification of model element queries, though. In particular, no
means are provided to designate model elements that serve as sources for
transformations. Further, the notation is not concerned with the specification of
structural selection constraints, such as existence of particular features.

Visual OCL [3] [9] is a graphical notation to express OCL constraints. It provides
graphical symbols for all OCL keywords, in particular for the "select" statement as we
need it for model element selection in MDA. For example, Fig. 5 portrays how the
OCL selection specified in section 2 (Fig. 1) would be represented using Visual OCL.
Note that similar to [17], Visual OCL does not provide for the specification of model
element queries in terms of user model entities. In consequence, users are confronted

: ModelElement

context Model

c: Class
name=x

: Attribute
name=z

or

: AssociationEnd

: AssociationEnd

: Association

c: Class
name=x

: Class
name=y

: Attribute
name=z

: Attribute
name=z

 select

x = "cn"
y = "cn1"
z = "an"

 c

self: Model

contents

: ModelElement

isIn

isIn

Fig. 5. OCL select statement from Fig. 1 (section 2) represented in Visual OCL [3] [9]



with the full load of OCL complexity – in particular when specification of structural
abstractions such as indirect associations or generalization relationships is necessary
(see section 5.4).

The idea of specifying queries in terms of user model entities we borrowed from
the approach of Query-By-Example (QBE) [21], which is a common query technique
in the database domain: We specify sample model entities, having sample properties,
and determine how selected model elements must relate to such samples. We make
use of "operator" symbols (such as wildcards, exclamation marks, and double-crossed
lines and arrows) to differentiate whether selected model elements must match the
samples exactly, or with a permissible degree of deviation (e.g., multiplicity
boundaries may be specified to denote minimum and maximum values rather than
perfect matches).

As already mentioned above, AOSD is another application area for JPDDs. Here,
JPDD are used to visualize selections of join points, i.e., they render those points in
program code, or program execution, that are to be enhanced by an aspect. In [18], we
demonstrate by example how JPDDs may be used to model join point selections in
most popular aspect-oriented programming languages. To be more precise, we
describe how JPDDs may be used to represent pointcuts in AspectJ [2], traversal
strategies in Adaptive Programming [10], or concern mappings in Hyper/J [19], etc.

8 Conclusion

In this paper, we presented a graphical notation to specify model queries on UML
models. We identified model queries to be prerequisites to model transformations as
they are specified in the Model-Driven Architecture (MDA). We demonstrated that
even simple query specifications tend to become excessive and complex when using a
textual notation. Aiming to overcome this quandary, we introduced Join Point
Designation Diagrams (JPDD) to specify and represent model queries graphically. We
explained their abstract syntax, and the graphical means they may contain to specify
the queries' selection criteria. We exemplified OCL meta-operations for the
evaluation of such selection criteria on actual user model elements. We demonstrated
the use of JPDDs using a quite complex model query, proving that even then the
query specification remains comprehensible.

The particular focus of this work has been on providing graphical means for the
specification of model element queries based on lexical similarity (e.g., based on
name and signature patterns) and structural arrangements (e.g., based on indirect
relationships). We extrapolated the need of such selection means from the area of
Aspect-Oriented Software Development (AOSD), where JPDDs were originally
developed for. We think that providing our graphical means with OCL semantics can
assist developers in both AOSD and MDA when specifying and modeling selections.
It is important to note that JPDDs are not capable – and not intended – to represent
OCL expressions in the general case. Their clear focus is on selection techniques in
AOSD. Currently, we are working on further improvements for the specification of
structural constraints on operation parameter lists.

With respect to the MDA domain, we think that it is advantageous to specify
model queries in terms of user models, rather than meta-models, in order to facilitate
their specification and comprehension to the user. In this paper, we have presented a



query language for the UML. We advocate for the development of further query
languages in other modeling and domain-specific languages. That way,
transformations may be specified in terms of user model entities, simply by relating
one user-model-based query to another user-model-based query, for the sake of
feasibility and comprehensibility to the user.
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