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Abstract. Specifying queries on models is a prerequisite nmdel
transformations in the MDA because queries selexintodel elements that are
the source of transformations. Current respons@Me&'s MOF 2.0 QVT RFP
mostly propose to use (and/or extend) OCL 2.0 asipation language for
queries. In this paper, we demonstrate that usirtual notations (like OCL)
quickly leads to complex query statements eversiimiple queries. In order to
overcome this handicap, we present a graphicatioothased on the UML that
facilitates comprehension of query statements ak age estimation of the
(ultimately) selected model elements. We advochs gueries should be
specified in terms of user model entities and usedel properties (rather than
meta-model entities and meta-model propertiestHfersake of feasibility and
comprehensibility to the user.

1 Introduction

Model-Driven Architecture (MDA) [13] aims to assiite development process of
software intensive systems by providing a standedli framework for the
specification of software artifacts and integratiirectives. Its key idea is to install
traceable relationships between software artifaftdifferent domains or different
development phases. In that way, the MDA aims tprave software quality since
software developers can directly relate the fin@lgpam code to design decisions
and/or requirement specifications of the early phasf software development. It
allows them to validate and test the final code &mmpliance to particular
requirements, thus making maintenance much simplether, the MDA promotes
reuse of existing system solutions in new applicatiomains by means of conceptual
mappings and artifact integration.

The principal software artifact of considerationtire MDA are machine-readable
models. The underlying technique of the MDA is modeansformation.
Transformations are accomplished according tortgrtg and mapping relationships
established between the software artifacts (ietwéen their models).

Striving for a standardized language to define sowddel transformations, the
OMG released the "MOF 2.0 Query / Views / Transfation (QVT)" Request For
Proposal (RFP) in April 2002 [14]. It has been of¢he mandatory requirements to



come up with a query language to select and fdtements from models, which then
can be used as sources for transformations. lIronsgpto the RFP, several proposals
for general-purpose model transformation langudgeg& been submitted (e.g., [1],
[4], [7] and [17]). Most of them propose to usedgm extend) the Object Constraint
Language (OCL) 2.0 [15] as query language (e.d.[2[7] [1]). Having said so, only
one proposition [17] provides a graphical represtion for its (OCL-based) query
language.

We think, though, that a graphical notation to #yeand visualize model queries
is inevitable for the MDA to drive for success. Whenk that software developers
require a graphical representation of their sedectjueries, which they can use to
communicate their ideas to colleagues, or to dootindgesign decisions for
maintainers and administrators. A graphical viazion would facilitate their
comprehension on where a transformation actuallgifies their models. We think
that using a textual notation (like OCL), insteadyuld quickly turn out to lead to
very complex expressions even when defining aivelgt small number of selection
criteria.

In this paper we present a graphical notation exi§p selection queries on models
specified in the Unified Modeling Language (UML)6]1 aiming to overcome the
lack of most of the RFP responses when working idML model context. We
introduce several abstraction means in order toesgpvarious selection criteria, and
specify how such selection criteria are evaluate®BL expressions. Query models
built from such abstraction means are called "J®@int Designation Diagrams"
("JPDD" in short). JPDDs originate in our work orspkct-Oriented Software
Development (AOSD) [5] in general, and on the vVigadion of aspect-oriented
concepts in particular. JPDDs are concerned wighstilection of points in software
artifacts that are target to modifications. JPDR&eed the UML with well-defined
selection semantics. They make use of, and partealtend, UML's conventional
modeling means.

The remainder of this paper is structured as fatow the first section we
emphasize the need of a graphical notation to §pselection queries with the help
of an example. After that, we briefly sketch thechmround that JPDDs originate
from, and point to the parallels of query spectfimain AOSD and MDA. Then, we
describe the abstract syntax of our notation. kti@e 5, we present our graphical
means and the OCL expressions by which they areiaea. We conclude the paper
with relation to other work and a summary.

2 Motivation

In order to make the motivation of this work moriear, we take a look at a

hypothetical, yet easy-to-understand example (adbfsom [17]): Imagine, for some

arbitrary model transformation, we need a modelryjtieat selects all classes with
name "cn" that either have an attribute named "an*; in case not — that have an
association to some other class with name "cnlthvhi turn has an attribute named
"an". Fig. 1, right part, demonstrates how suchrguweould be expressed using the
textual and graphical notation as proposed in [EQ. 1, left part, shows the same
query, once expressed as an OCL statement, ancegpoessed as a JPDD.



As you can learn from the example, even a simpldahquery quickly results in a
complex query expression — when using a textuatioot. Compared to the OCL
code (see Fig. 1, top left part), the textual notapresented in [17] (see Fig. 1, top
right part) proves to be more concise. However, mamension of the query and
estimation what model elements finally will be s#dgl is still difficult. The graphical
notation shown in Fig. 1, bottom right part, helpkeep track of what is going on in
the selection query. However, since the query ecified in terms of meta-model
entities and meta-model properties, unnecessarydstihcting noise is added to the
diagram: A simple association between classes fid'"al" is represented by three
distinct entities.

Fig. 1, bottom left part, shows what the query ®dke using a JPDD. JPDDs
represent model queries in terms of user modetientand user model properties.
Using user model entities and user model propeftiegjuery specification (rather
than meta-model entities and meta-model properise) the advantage of feasibility
and comprehensibility: Software developers workhwilymbols they are familiar
with. They do not need to bother with meta-modeéisther, query models turn out to
be concise and comprehensible: They specify a mainipattern to which all
ultimately selected model elements must comply.

someUmIModel.contents (UML.Class, c) [name ="cn", feature =
->select(c: Class | -- c1: Class | -- att: Attribute | { (UML.Attribute) [name="an"] } ]
(c.name="cn" and c.feature->select(f | or
f.ocllskKindOf(Attribute))->includes(att|  (UML.Class, c) [name = "cn", feature =
att.name="an") ) {not (UML.Attribute) [name="an"] } ] and
or (c.name="cn"and not c.feature->select(f| (UML.Class, cl) [name = "cnl", feature =
f.ocllsKindOf(Attribute))->includes(att | { (UML.Attribute) [name="an"] } ] and
att.name="an") and (UML.Assaciation) [connection =
cl.name="cn" and c1.feature->select(f | { (UML.AssociationEnd) [participant = c],
f.ocllsKindOf(Attribute))->includes(att | (UML.AssociationEnd) [participant = ¢1] } ]

att.name="an") and
c.oppositeAssociationEnds->includes(ae |
ae.participant =c1)
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Fig. 1. Selection query expressed in OClop( left part), using the textual and graphical
notation presented in [17]i¢ht part), and with help of a JPDb¢ttom |eft part)



3 Background

JPDDs originate in our work on AOSD. AOSD dealshwihe encapsulation of
crosscutting concerns into separate modular units, calledpects. A crosscutting
concern is a concern that cannot be cleanly decsetpto the primary decomposition
of a program, thus leading to crosscutting code thascattered throughout every
module of the dominant decomposition. This is wietame known as tfigranny of
the Dominant Decomposition [20]. An aspect encapsulates the crosscutting cbde
crosscutting concern. Besides specifying the craag code that should be injected
into the primary decomposition, an aspect alsoifipedhe conditions under which
the injection shall to take place.

In order to do so, aspect-oriented programmingrtiegkes rely on the concepts of
join points andweaving. Join points designateci (in program code) onstants (in
program execution) at which injection takes platieaving defines the exactanner
in which injection takes place. Since crosscuttisgally takes place at more than one
join point (in fact, this is the major case that 3D is focused on), aspect-oriented
programming techniques provide various ways to ifpeelections of join points.
For example, join point selection is possible basedexical similarity of join point
properties [11] [12] (e.g., of their name or typeckdrations), based on the structural
arrangement join points reside in [6] (such asgmes of particular parameters in an
operation's parameter list, or existence of a rabligy path to a particular class), or
based on the dynamic context join points occur 18] [(e.g., in the scope of a
particular object, or in the control flow of a gatlar method).

We see strong parallels between AOSD and MDA wegpect to the selection of
locations in software artifacts that are focus afdification. We estimate (e.g., from
the examples given in [17]) that selection in MDidcadepends on lexical similarities
of model element properties — in particular, ofitheames. Further, structural
arrangements, such as the existence of certainrésatr relationships, are deemed to
play a major role in model element selection, all. \8#¢ructural constraints may also
involve general statements on navigable paths,indirect associations or indirect
generalizations between classifiers.

In the following, we describe the general syntax®DDs as it has been depicted
in Fig. 1 (bottom left part). After that, we explaihe graphical elements that may be
used to specify model element selections baseaxioal similarities and structural
arrangements with JPDDs. We further detail theinasatic implications using OCL
expressions.

4 Abstract Syntax

JPDDs can be fully integrated into the UML, makuge of UML's modeling means
and its meta-model. Fig. 2, top left part, depitts abstract syntax of a JPDD: A
JPDD consists of at least one selection critersmme of which delineate selection
parameters. A JPDD represents a selection criteitgeif, and thus may be contained
in another JPDD (e.g., for reuse of criteria speaiions).

Fig. 2, bottom right part, depicts the abstracttayrof JPDDs in terms of UML's
meta-model: A JPDD represents a namespace which aoatain several model
elements, each representing a selection critefibe. namespace is provided with a



SelectionCriterium

1% — 7 SelectionParameter
JPDD M odelElement templateParameter

==-1 TemplateParameter

| Classifier ||Col|aboration|| Package |

Fig. 2. Abstract syntax of JPDD$op part) mapped to UML's meta-modéddttom part)

set of template parameters that hold the set ofeineléments being returned by the
guery. Being provided with template parametersPBD renders aemplate in the
UML. A JPDD may be reified by different types ofmaspaces — whatever suits the
particular needs of the query specification bestJ2DD may be specified as a
classifier template, a collaboration template, maakage template, for example. Fig.
1 in section 2 outlines a collaboration template.

Before going into the semantic details of JPDDHa hext section, we want to
emphasize that the general meaning of JPDDs iseratmverse" to that of
conventional UML templates: While conventional UNBmplates are generally used
to instantiate multiple model elements from one owm mould (or "generation
pattern"), JPDDs are used to identify all modelnelats that share one common
shape (a "selection pattern"). Correspondingly,plate parameters of JPDDs are
meant to return actual arguments rather than betgd to actual arguments (we
describe in the next section, how such argumemtsedrieved and affiliated with the
individual template parameter). To emphasize tlffer@nce in meaning visually, we
place template parameter boxes to the bottom dghter of JPDDs (rather than to
their conventional position at the top right coroéthe template).

5 Notation and Semantics

In this section we present the core modeling meamsdeveloped for specifying
selection queries using JPDDs. We explain theiplgcal notation, and define their
semantic implications using OCL meta-operationsteNthat not all meta-operations
are shown due to space limitations.

5.1 Initiating Selection

Selection is accomplished by special meta-operstitiat are defined on UML's
meta-model classes (e.g., on classifiers, attrfjudperations, associations, messages,



etc.). It sets out with the elements being desighais template parameters, proceeds
with their composite elements and their relatiopshio other elements, starts over
with those related elements, and cascades thathsayghout the entire JPDD. Fig. 3
sketches how pattern evaluation of is accomplishechse of a template parameter
for classifiers ("cPattern"):

The selection is initiated by a special operatiefirgtd on the template parameters
of the JPDD (see OCL expression no. 1 in Fig. 3):pef@tion
"matchingModelElements" returns all model elemethtst comply to the selection
criteria specified in the JPDD. The operation take®iamespace (e.g., a model,
package, collaboration, classifier, etc.) as patam&hose model elements are to be
matched against the selection criteria specified tie JPDD. Matching is
accomplished by invoking the appropriate meta-dp®reon each model element in
that namespace.

When matching a classifier pattern ("cPattern”)y fexample, operations
"matchesClassifier" and "matchesRelationships'imreked on each classifier in the
namespace (see no. 2 and 3 in Fig. 3). These apeavaluate if a given classifier
in the provided namespace possesses all attribofeeyations, associations, and
parents, etc., that have been specified in the JPBDch evaluations are
accomplished by special operations (see no. 4gn )i which in turn make use of
other operations, and so on (see no. 5 and 6 inFigote that not all operation
invocations are shown). It is important to notaririg. 3 how relationship matching
involves matching the participating classifiers.aflway, evaluation cascades from
classifier to classifier, assessing if all selettioiteria in the JPDD are fulfilled.

In the subsequent sections, we exemplify selecttd-mperations in closer detail.

let cPattern = self.templateParameter in
@ context TemplateParameter::
matchingModelElements(someNamespace : Namespace) : Set(ModelElement)

post: ¢ result =
@ someNamespace.allContents->select(allClassifiers | oclisKindOf(Classifier) and ...
if if
matchesClassifier(cPattern) @ matchesRelationships(cPattern)
if if

possessesMatchingAttribute | if if possessesMatchingParent
(O cPattern.attPatterns) (O cPattern.parentPatterns)
@ ¢if
if possessesMatchingOperation  possessesMatchingAssociation tchesClassifi
(O cPattern.opPatterns) (O cPattern.assocPatterns) matchestassifier
. ) (parentPattern) and
matchesAttribute if [...] if matchesRelationships
arentPattern
(attPattern) matchesParameters matchesAssociationEnd ® ) @
(opPattern.parlistPattern) (O assocPattern.assocEndPatterns)
if if
matchesParameter @ matchesClassifier

(O parlistPattern.parPatterns) ~ (assocEndPattern.participantPattern) and
matchesRelationships
(assocEndPattern.participantPattern)

Fig. 3. Cascading evaluation of JPDDs (note that not a@lwation steps are shown)



5.2 Classifier Selection

Looking at the selection semantics for classifiave, may learn about the general
selection mechanism for all model elements: Pradbjp model elements are selected
based on the values of their meta-attributes. Isecaf classifiers, these are the
properties "isAbstract", "isLeaf", and "isRoot" és€able 1, block II).

Besides that, model elements are selected basetieim meta-relationships to
composite model elements. In case of classifiersetample, special regards must be
given to the features they must posses in ordee teelected (see Table 1, block IlI).

At last, note that name matching of model eleméneccomplished with help of
name patterns. Name patterns may contain wildcardd) as "** and "?", in order to
select groups of model elements (of same type)dbaselexical similarities. All
element names in a JPDD represent name pattermefaylt. In case an element
needs to be referenced within the JPDD (e.g., ifeiéds to be defined as a JPDD
template parameter), the element may be givenemtifeéert. In diagrams, identifiers
are indicated by a prepending question mark, whiename pattern is enclosed into
angle brackets (see "?C<Con*>" in Table 1 for exampr "?c<cn>", "?cl<cnl>",
and "?att<an>" in Fig. 1 of section 2).

Having explained these general selection princjphes concentrate on discussing
the particularities of other modeling means infgiwing.

Table 1. OCL meta-operation for matching classifieleft(part), and its invocation using a
sample patterrright part)

context Classifier: A sample class pattern
matchesClassifier(C : Classifier) : Boolean (?C):
post: result = -- |. evaluate name pattern
if [...] -- given an identifier (see footnote 1) _ name pa"e’“\
self. matchesNamePattern(C.taggedValue->[...]) identifiery L
else -- default VAWZEXCO"“
self. matchesNamePattern(C.name) Patt2 - Integer [2!..100]
endif {— Operations
-- II. evaluate defined meta-properties pret
and (self.isRoot = C.isRoot or C.isRoot =") run(vall : Integer, .,
and (self.isLeaf = C.isLeaf or C.isLeaf =") ,” x::LRsetf.lng)
and (self.isAbstract = C.isAbstract or C.isAbstract =")
-- llI. evaluate attributes and operations expected features
and (C.feature->select(f | f.ocllsKindOf(Attribute))->forAll(ATT |
self.possessesMatchingAttribute(ATT)) ...and its evaluation:
or C.feature->select(f | f.ocllsKindOf(Attribute))->size = 0)
and (C.feature->select(f | f.ocllsKindOf(Operation))->forAll(OP | [..]->select(ME | [..]
self.possessesMatchingOperation(OP)) and ME.matches
or C.feature->select(f | f.oclisKindOf(Operation))->size = 0) Classifier(?C) [...])

5.3 Operation Selection

Special regards in operation selection must bengteethe usage of wildcard ".." in

the operation's signature pattern. Wildcard ".I5wva$ operation selection based on
their structural arrangement — that is, based astence of particular parameters,
while neglecting from others.

11n that case, the name pattern is stored (techy)iéa a special tagged value.



Table 2 gives a detailed description on how suchcsiral arrangements are
evaluated by means of an OCL expression: Meta-tipardmatchesParameters"
compares the overall number (see Table 2, bloehd) order (see Table 2, block I1)
of parameters in the actual operation's paramistetol the one being passed from the
JPDD. To do so, the meta-operation makes use ofespiessions "ownPars",
"purePars"”, and "matchingPars". "ownPars" compraegparameters of the actual
operation ("self"). "purePars" equates the paranmistebeing passed from the JPDD,
neglecting all wildcarded parameters "..". "matgftars” is a subset of "ownPars",
and contains only those parameters that have ahingtcounterpart in "purePars".
Apart from the overall order of parameters, thetiphiorder of parameters at the
parameter list's beginning (see Table 2, blockdt}l its end (see Table 2, block V)
is evaluated. Order evaluation stops (i.e., is gbMaue) when the first wildcarded
parameter ".." is reached in the parameter lissgéisdrom the JPDD (see collect

statement at end of block Il and V).

Table 2. OCL meta-operation for matching parameter likh part), and its invocation using a
sample patterrright part)

context Operation def: A sample signature
let ownPars = self.parameter->asSequence() pattern (un) providing
let purePars(par : Sequence(Parameter)) : Sequence(Parameter) a sample parameter list

= par->reject(p | p.name ="..")
let matchingPars(par : Sequence(Parameter)) : Sequence(Parameter)
= ownPars->select(p |

({vall : Integer, .., vali:
Real, .., valn : String}):

purePars(par)->exists(parp | p.matchesParameter(parp)) ) 2C<Com>
context Operation:: - Auribues
matchesParameters(par : Sequence(Parameter)) : Boolean ;Z:(V'al)
post: result = -- I. compare parameter number Rget+() : *
(matchingPars(par)->size() = purePars(par)->size()) run(vall : Integer, ..
-- Il. compare parameter order z::'n%

and matchingPars(par)->forAll(index : Integer |
matchingPars(par)->at(index)
.matchesParameter( purePars(par)->at(index) ))
-- lll. compare first parameters . .
and ownPars->forAll(i : Integer | ownPars->at(i) -..and its evaluation:
.matchesParameter(par->at(i))
or par->collect(j : Integer | j <=
and par->at(j).name ="..")->size() <> 0)
-- IV. compare last parameters
and ownPars->forAll(i : Integer | ownPars->at(ownPars->size() - i)
.matchesParameter(par->at(par->size() - i))
or par->collect(j : Integer | j <=
and par->at(par->size() - j).name ="..")->size() <> 0)

T
signature patterns
name pattern

[...]->select(op | [...] and
op.matchesParameters
(run.parameter
->asSequence()) [...])

5.4 Relationship Selection

When selecting relationships, special regards meggiven to indirect relationships.
Indirect relationships are a sophisticated mearstwtrain structural arrangements:
Indirect relationships may be used in JPDDs tociai#i that a classifier does not need
to be directly connected to a particular parentldctor associated classifier. This
means in case of associations, that the particldessifier must be reachable via the
designated association, but does not need to brea deighbor.



In diagrams, indirect relationships are renderea lolpuble-crossed lieln Table
3 (top part), for example, there must be a naviggisith from class "C" to class "B"
for the selection criterion to be fulfilled. Thedmof that path must match with the
association ends of the indirect association (dfmerdallindirectNeighbors" returns
the set of all (opposite) association ends beiaghable via the passed association).

In case of generalizations, the particular parerthid needs to reside somewhere
in the inheritance tree, but does not need to dizemt parent or child. For example,
class "C" in Table 3 (bottom part) must be amorgyahcestors of class "B", and class
"B" must be among the descendants of class "C"tHerselection criterion to be
satisfied (operation "allParents" returns the $etldnherited super-classifiers).

Table 3. OCL meta-operation for matching relationshifwt (part), and sample patterns dght
part). Invocation examples are omitted due to spacidiimns

context Classifier::

possessesMatchingAssociation(a : Association, ¢ : Classifier) : Boolean LCJ
post: result =
if [...] --indirect association -- |. evaluate indirect neig  hbors -]

self.associations->includes(A | A.matchesAssociation(a) and
a.allConnections->select(ae | ae.participant = c)->forAll(ae |
A.allConnections->select(AE | AE.participant = self)
->includes(AE | AE.matchesAssociationEnd(ae) and
a.allConnections->select(ae | ae.participant <> c)
->forAll(ae2 | self.allindirectNeighbors(A)
->includes(AE2 | AE2.matchesAssociationEnd(ae2))))))
else -- direct association -- Il. evaluate direct nei  ghbors

B

indirect association

association name

&

A

endi'f"

context Classifier:
possessesMatchingParent(g : Generalization) : Boolean

ozala

post: result =

if [...] --indirect association -- I. evaluate indirect pare  nts
self.generalization->includes(G | G.matchesGeneralization(g) and
G.parent->union(G.parent.allParents)->includes(C | indirect generalization

C.matchesClassifier(g.parent) and
C.matchesRelationships(g.parent)))
else -- direct association -- Il. evaluate direct parents

L]

endif

ik

5.5 Multiplicity Restrictions

Special attention in association end selection nhespaid to the association end's
multiplicity specificatiofi: Multiplicity of association ends may declare exapper
and/or lower limits; or it may designate the upped/or lower bounds which the
multiplicity of an association end must not exceedinderrun (respectively). Being
able to declare exact limits and/or minimal and imak bounds provides for further
flexibility in specification of structural arrangemts. Graphically, exact multiplicity

2 Technically, indirect relationships are defined aaspecial stereotype of associations or
generalizations, respectively.
3 The same counts for the multiplicity specificatimiattributes.



bounds are indicated by exclamation méark¥he lower multiplicity limit of
association end "aRole" in Table 4, for exampleyates a strict limit. Accordingly,
association ends are only selected, if their lomeitiplicity limit equates "2". The
upper multiplicity limit of "aRole", on the contrgrdenotes a maximum. Association
ends are selected as long as their upper multiplioit does not exceed "100".

Table4. OCL meta-operation for matching association efefsgart), and its invocation using
a sample pattermight part)

context AssociationEnd:: A sample association
isSuccessfulMatch(ae : AssociationEnd) : Boolean end patterngRole):
post: result =1...]
-- evaluate multiplicity exact mr:s"l'ril’éfga
and ((if [...] -- exact limit c
self.multiplicity.range.lower = ae.multiplicity.range.lower
else -- minimum bound A
self.multiplicity.range.lower >= ae.multiplicity.range.lower aRole| 28,10
endif B
and if [...] -- exact limit multiplicity
self.multiplicity.range.upper = ae.multiplicity.range.upper range restrictio
else -- maximum bound
self.multiplicity.range.upper <= ae.multiplicity.range.upper ...and its evaluation:
endif)
or ae.multiplicity = ") [...]->select(AE | [...]
and AE.isSuccessful
Match(aRole) [...])

5.6 Message Selection

Selection is not restrained to structural aspetcts WML model as they are specified
in UML class diagrams, for example. Selection cidtemay as well involve

behavioral requirements as they are specified inLUMeraction and collaboration
diagrams. Table 5 shows the notational means teifgpselection criteria on

messages, and how such criteria are evaluated ®Caroperation.

Messages are selected based on the action thekeintio case of operation call
actions, signature patterns may be used to restietoperation called. Further,
messages are selected based on the base classifieesr sender and receiver roles.
It is important to note that selection is basedtl® base rather than on the roles
themselves. This is accomplished deeming that sefecshould execute on the full
specification of classifiers rather than on restdc projections thereof. The same
counts for the associations used for transmittirggrhessages.

Lastly, messages may be selected based on thekfiow they occur in, and/or
based on the control flow they invoke. Such corflaw is delineated by predecessor
and successor messages: Message "someOp" in Talole &ample, must occur in
the control flow of message "opl", and must invokessage "op2". Messages of
special stereotype "indirect" can be used to indi@bitrary control flow that may
occur between two successive messages. In diagnagdirgct messages are depicted
as double-crossed arrows (see Table 5 for illistrat

4 Technically, fix upper and lower limits are spesif as special stereotypes of multiplicity
ranges.



Table 5. OCL meta-operation for matching messade#t part), and its invocation using a
sample patternright top part). Graphical representation of messages stereotgpéihdirect”
(right bottom part)

context Message:: A sample message

isSuccessfulMatch(m : Message) : Boolean pattern §omeOp*):

post: result = -- |. evaluate name pattern

if [] . given an identifier (see footnote 1) signature pattern
self. matchesNamePattern(m.taggedValue->[...]) c [& ]

else -- default

self. matchesNamePattern(m.name) ﬁ MLD%
endif

-- II. evaluate sender/receiver]...
and self.sender.base->includes(C |
C.matchesRelationships(m.sender) and
C.matchesClassifier(m.sender)) . .
and self.receiver.base->includes(C | ...and its evaluation:
C.matchesRelationships(m.receiver) and
C.matchesClassifier(m.receiver)) I\[llllsgjg(lzeecstémll (-] and
and self.communicationConnection.base Métch(someo YD)
.matchesAssaociation(m.communicationConnection) PIL-.
-- lll. evaluate predecessors/activator
and m.allPredecessors->union(m.activator)->reject(m2 |

preceding control flow [
succeeding control flow

m2.stereotype->includes(st | st.name="indirect'))->forAll(m2 |
self.allPredecessors->includes(M | M.matchesMessage(m2)))
-- IV. evaluate successors :
and m.allSuccessors->reject(m2 | D—//—»
m2.stereotype->includes(st | st.name="indirect"))->forAll(m2 | ; [---]’\

self.allSuccessors->includes(M | M.matchesMessage(m2))) arbitrary control flow
-- V. evaluate action

and self.action.matchesAction(m.action)

5.7 Boolean Restrictions

By default, all selection criteria specified inROD are implicitly combined using a
boolean "and". That is, all such selection criteniast be fulfilled by a given model
element in order to be selected by the query. mesoases, though, we may need to
specify alternative, exclusive, or mutual exclusigelection criteria. Table 6
exemplifies how we may use boolean constraints,"{er}", "{xor}", and "{not}", to
render such combinations of selection criteria. r@pen "matchesAttribute”, for
example, specifies that either at least, or exaahe (respectively) of all model
elements interrelated by a boolean constraint masiply to the selection criteria
(operation "allConstrainedElements” returns the afetall model elements being
interconnected by the passed boolean constraimgraion "matchesAttributeNot"
inverts the result of matching in case the modemeint is constrained with "{not}".
See Table 6 on next page for illustrations.

6 Example

With help of the notational means presented inplevious section, we now can
define even complex selection queries without ggttdst in its specification:



Table 6. OCL meta-operations for evaluating boolean contimna on attributes|¢ft part), and
its invocation using a sample patterigfit part)

context Attribute:: A sample attribute
matchesAttribute(att : Attribute) : Boolean pattern §et*),
post: result = interrelated to another

if att.constraint->includes(c | c.body = 'or’) then
att.allConstrainedElements(‘or')->exists(attl |
self.matchesAttributeNot(attl)

attribute pattern by
means of booleafxor}:

) boolean restriction

else /

if att.constraint->includes(c | c.body = 'xor') then {Altnbul’i(s:<con*>

att.allConstrainedElements('xor')->collect(attl | not} attl : String

self.matchesAttributeNot(att1) ot v+ 1 )

).size=1 put+(par : *)_,:*{x?r}

else boolean restr,ictic
self.matchesAttributeNot(att)

endif endif ...and its evaluation:

context Attribute:: [...]->select(ATT| [...]

matchesAttributeNot(att : Attribute) : Boolean and ATT.matches

post: result = Attribute(set*) [...])

if att.constraint->includes(c | c.body = 'not') then

not self.isSuccessfulMatch(att) -- evaluate non-existence of att's
else

self.isSuccessfulMatch(att) -- evaluate existence of attributes
endif

Fig. 4 depicts a sample JPDD that selects all ifilass (identified with "?C") (1)
matching the name pattern "Con*"; (2) that mtit have an attribute matching "att1"
of type "String"; (3) that do have an array atttdmatching "att2" of type "Integer"”
whose lower bound equates "2", and whose uppercbdoes not exceed "100"; (4)
that either have an operation matching "set*", mroperation matching "put*' (but
not both) that both take one parameter of arbittgpe; (5) that have an operation
matching "get*' that returns an value of arbitraype; (6) that have an operation
matching "run" that takes (at least) three pararae{®a) the first parameter in the
operation's parameter list must be of type "Inteég@b) the last parameter must be of
type "String"; (6c) besides that, the operation trtake a third parameter of type
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Fig. 4. A sample JPDD



"Real" (no matter at which position in the operafoparameter list). Selected
classifiers must be (7) subtypes of "Collectior8) kutnot subtypes of "Array"; and
(9) they have to have an association to exactlyotemsifier matching "Database".

Besides that, selected classifiers must possessdirect association (i.e., a
navigable path) to a classifier (identified withApplication™) (1) matching "*"; (2)
that has an attribute matching "att1" of type 'l8f¥i (3) and that has an operation
matching "do*" (and identified with "?someOp"), whi takes any number of
parameters, (3a) and which invokes method "runthenformer classifier (identified
with "C") — (3b) no matter when (see double-crodsack loop in right part of Fig. 4)
— (3c¢) using arbitrary values as parameters.

Having found actual model elements that complyhesé selection criteria, the
JPDD returns the resulting model elements via @splate parameters "?C",
"?Application”, and "?someOp".

7 Redated Work

Most submissions to OMG's QVT RFP propose to usé @Ca query language. In
this section, we reflect on existing approaches tloe visualization of OCL
expressions with respect to their ability to represnodel element selections.

Constraint Diagrams [8], for example, representraphical notation to specify
invariants on objects and their associations (ir&ks) depending on the state they are
in. In consequence to its strict focus on runtin@straints, the notation does not
provide for the specification of model element der though. In particular, no
means are provided to designate model elements shate as sources for
transformations. Further, the notation is not comed with the specification of
structural selection constraints, such as existehparticular features.

Visual OCL [3] [9] is a graphical notation to expseOCL constraints. It provides
graphical symbols for all OCL keywords, in parteufor the "select" statement as we
need it for model element selection in MDA. For mapde, Fig. 5 portrays how the
OCL selection specified in section 2 (Fig. 1) wobhilrepresented using Visual OCL.
Note that similar to [17], Visual OCL does not pids/ for the specification of model
element queries in terms of user model entitiesomsequence, users are confronted

/ context Model \

isln‘ c: Class >—‘ :Attribute‘
name=; | [ name= |

: ModelElement or
content : c Class |- _: Attribute |
iSIN™"name=: | | name= !

self: Model
Asmstinnd
: Association
: AssociationEnd

‘ : Class >—‘ :Attribute‘ | S¢

[ name= | [ name= |

Y= "o
y="cnl'

K z="an'

Fig. 5. OCL select statement from Fig. 1 (section 2) regmied in Visual OCL [3] [9]




with the full load of OCL complexity — in particulavhen specification of structural
abstractions such as indirect associations or génation relationships is necessary
(see section 5.4).

The idea of specifying queries in terms of user ehahtities we borrowed from
the approach of Query-By-Example (QBE) [21], whista common query technique
in the database domain: We specify sample modélemnthaving sample properties,
and determine how selected model elements mugerelasuch samples. We make
use of "operator" symbols (such as wildcards, ematéon marks, and double-crossed
lines and arrows) to differentiate whether seleataatlel elements must match the
samples exactly, or with a permissible degree ofiadien (e.g., multiplicity
boundaries may be specified to denote minimum aadimum values rather than
perfect matches).

As already mentioned above, AOSD is another appticaarea for JPDDs. Here,
JPDD are used to visualize selections of join @ine., they render those points in
program code, or program execution, that are tertienced by an aspect. In [18], we
demonstrate by example how JPDDs may be used t@Inmid point selections in
most popular aspect-oriented programming languages.be more precise, we
describe how JPDDs may be used to reprepeimtcuts in Aspect] [2],traversal
strategies in Adaptive Programming [10], @oncern mappings in Hyper/J [19], etc.

8 Conclusion

In this paper, we presented a graphical notatiosptecify model queries on UML
models. We identified model queries to be preretpsito model transformations as
they are specified in the Model-Driven Architect{iDA). We demonstrated that
even simple query specifications tend to becomessige and complex when using a
textual notation. Aiming to overcome this quandawe introduced Join Point
Designation Diagrams (JPDD) to specify and represedel queries graphically. We
explained their abstract syntax, and the graphiesdns they may contain to specify
the queries' selection criteria. We exemplified O@heta-operations for the
evaluation of such selection criteria on actuak usedel elements. We demonstrated
the use of JPDDs using a quite complex model quaryying that even then the
query specification remains comprehensible.

The particular focus of this work has been on mimg graphical means for the
specification of model element queries based oicadéxsimilarity (e.g., based on
name and signature patterns) and structural arnaeges (e.g., based on indirect
relationships). We extrapolated the need of suébcten means from the area of
Aspect-Oriented Software Development (AOSD), whéRDDs were originally
developed for. We think that providing our graphiceeans with OCL semantics can
assist developers in both AOSD and MDA when spawfiand modeling selections.
It is important to note that JPDDs are not capabbnd not intended — to represent
OCL expressions in the general case. Their cleausfas on selection techniques in
AOSD. Currently, we are working on further improvems for the specification of
structural constraints on operation parameter. lists

With respect to the MDA domain, we think that it aslvantageous to specify
model queries in terms of user models, rather thata-models, in order to facilitate
their specification and comprehension to the usethis paper, we have presented a



query language for the UML. We advocate for theeltgyment of further query
languages in other modeling and domain-specific glages. That way,
transformations may be specified in terms of usedeh entities, simply by relating
one user-model-based query to another user-modeldbguery, for the sake of
feasibility and comprehensibility to the user.
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