
Position Paper on Aspect-Oriented Modeling:
Issues on Representing Crosscutting Features

Dominik Stein, Stefan Hanenberg, and Rainer Unland
Institute for Computer Science

University of Essen, Germany

{dstein | shanenbe | unlandR}@cs.uni-essen.de

ABSTRACT
This paper deals with the design of crosscutting features in
general and in the UML in particular. We postulate a couple
of issues that we think an aspect-oriented designer is faced
with when designing crosscutting features. These issues in-
clude the independent specification of the crosscutting details
and of where to crosscut, the designation of crosscut or refer-
enced elements, the characterization of the composition strat-
egy, and the abstract representation of crosscutting features in
the overall design model. Then, we contemplate ways to obey
these issues using the UML. In that contemplation, we con-
centrate on the design of the details of crosscutting features,
i.e., the separate specification of the elements that crosscut a
given decomposition and of the join points at which that
crosscutting takes place, as well as the distinct designation of
elements belonging to the crosscut decomposition that are
used (e.g., referenced) by the crosscutting elements.

1. INTRODUCTION
A major issue in aspect-orientation in general and in aspect-
oriented modeling with UML [17] in particular is the identifi-
cation of "aspects" as a concept. Currently, an "aspect" is
essentially perceived as a mechanism to diminish crosscutting.
Different objectives pursued by different aspect-oriented
techniques make it hard to refine a common "aspect concept"
from the various "aspect mechanisms". AOP [14] with As-
pectJ [2] focus on the supplementation of given base code
with particular (non-)functionality, for example; MDSOC [21]
with Hyper/J [13] aim at the composition of multiple inde-
pendently developed concern models; and Adaptive Pro-
gramming [16] with DemeterJ or DJ [1] seeks to implement
collaborative behavior among classes in an arbitrary class
hierarchy.

Looking for appropriate UML representations, we decided in
our AODM [18] [19] to represent AspectJ's aspect construct
by stereotyped UML classes because we felt that AspectJ's
aspects structurally resemble UML classes. Clarke chose in
her SODM [5] to represent hyperslices in Hyper/J (or rather,
subjects in SOP [11]) by means of UML packages because
UML packages may hold entire concern models (i.e., class
hierarchies). For Adaptive Programming, one might propose
to use UML collaborations to represent crosscutting entities,
which seems particularly befitting when it comes to represent
adaptive methods.

We think that the reasons presented for one or the other pro-
posal are quite convincing in one or the other case – i.e., in the
context of a particular aspect-oriented technique. We feel,
however, that no "right" solution may be found as long as the

aspect-oriented community has not defined a common and
precise notion of what an "aspect" (as a concept) constitutes.

We believe that the community of aspect-oriented modelers
using UML can help to develop that commonly accepted
"aspect" notion since we are working with widely accepted
and commonly used concepts, which are well-defined by the
UML specification. Comparing these to the characteristics of
aspects appears to be a promising way to unveil the spirit of
aspects.

To get there, we disregard any questions concerning the ap-
propriate representation of aspects for a moment and take a
closer look on the design of crosscutting features. That way,
we are trying to obtain important findings on the constitu-
tional properties of aspects. After all, an aspect is merely the
encapsulation of crosscutting. The real work is done by its
crosscutting features. In this paper, we are not looking for the
most matching representation for crosscutting features on
some abstract (meta-)level, though. Instead, we consider
suitable ways to graphically represent the details of crosscut-
ting features. Therefore, we postulate a couple of issues that
we think an aspect-oriented designer is faced with when de-
signing crosscutting features in section 2. We consider these
design issues to be specific to aspect-orientation (abbr., "ao-
specific" issues) and therefore, require aspect-oriented mod-
eling notations to provide solutions for these issues. In section
3, we contemplate ways to achieve these issues using the
UML. To do so, we consider the UML concepts we used in
our AODM and explain why we deem these concepts appro-
priate – or not appropriate – to design crosscutting features in
the UML. Section 4 concludes and presents a short discussion
on remaining issues in the overall design of aspect-oriented
software.

2. AO-SPECIFIC DESIGN ISSUES
A major issue in designing and modeling is to concentrate at
one problem at a time and abstract from others. A good design
model only displays the information essential for a specific
purpose and abstracts from others. To achieve this in aspect-
oriented design we distinguish between the abstract declara-
tion of crosscutting features and join point collections (Figure
1, B), which are part of the specification of aspect container
elements (Figure 1, C), and the details of their specifications –
that is, the specification of the exact elements that are to be
injected into a given decomposition (Figure 1, A), and the
specification of the set of locations (so-called "hooks", cf. [8])
where that injection has to take place (Figure 1, D). For a
detailed differentiation of the kinds of crosscutting and hooks,
see [10]. We believe that we can design the specifications of
crosscutting features and join point collections independently

from each other as well as from the specification of the aspect
element containing them. Furthermore, we deem their specifi-
cation to be independent from the specification of the crosscut
elements, their container elements, and their implementations
(Figure 1, E and F) – contemplating that this separation of
concern is one of the basic ideas of aspect-orientation [9]. In
this section, we elaborate why we think that these issues can
and should be designed separately in distinct design models,
and where dependencies arise between these separate specifi-
cations. We are deriving a couple of postulates that we think a
modeling notation must meet to provide for the design of
crosscutting features.

2.1 Separation of Details and Hooks
When looking at the specification of crosscutting features in
current aspect-oriented programming techniques, we identify
the specification of the elements that crosscut a given decom-
position (Figure 1, A) and the specification of the set of join
points where that crosscutting takes place (Figure 1, D) to be
two fairly independent issues that can be seen as distinct
design problems. We do this because we contemplate that the
reasoning on the crosscutting details can be accomplished not
knowing where exactly that crosscutting is realized; and vice
versa, we suppose we can reflect on the join points at which
crosscutting should occur while neglecting what exactly is to
be inserted at these points.

For example, when we implement a particular synchronization
strategy we do not want to determine yet which objects it
should be applied to. Oppositely, we could identify the actions
that need to be synchronized first, and leave it to a third party
to implement the synchronization strategy. In a third case, we
have both a set of different synchronization strategies and a
set of join point collections that designate actions to be syn-
chronized. Now, we are able to combine crosscutting details
and hooks of crosscutting in any manner, and thus we are set
to realize any synchronization requirement by simple hooking
the right implementation onto the right set of join points. In
conclusion, the separate treatment of crosscutting details and
points of crosscutting is a very important issue to achieve
incremental programming (cf. [22]) – and after all that's what
we're heading for in aspect-oriented programming. Reflecting
on these observations, we demand:

A modeling language must allow

(1) the specification of the structural and behavioral
elements that crosscut a given decomposition and

(2) the specification of the set of join points ("hooks")
where that crosscutting takes place.

A modeling language must allow those specifications to

(3) be modeled separately by distinct design means so that
they can

(4) be reused and combined in different contexts.

Even though we may reason on the specification of crosscut-
ting details and the specifications of the hooks of crosscutting
separately there certainly exist strong correlations between
these two issues. In particular, dependencies arise from the
charge of the latter to designate elements in the environment
of the crosscut decomposition that are used by the former. In
the following, we take a closer look on that designation issue.

2.2 Designation of Involved Elements
In general, crosscutting features do not interact with the cross-
cut decomposition solely by the elements they crosscut.
Rather, they also interact with elements in the static or dy-
namic context of those crosscut elements. In a synchronization
strategy, for example, we may want to coordinate a couple of
actions depending on some attribute's value or some object's
state (presupposing the attribute or object belongs to the
crosscut decomposition). To do so, we need a reference to the
attribute or object. Since all we have, though, is the reference
to the join point, the reference to the referred element must be
specified in relation to that join point.

In conclusion, aspect-oriented designers deal with three dif-
ferent kinds of elements: (1) Elements that are specific to the
crosscutting concern and that are to be added to the crosscut
decomposition; (2) elements that are specific to the crosscut
concern and that are referenced by the crosscutting concern;
and (3) elements that are "specific" to both concerns and that
need to be joined in some way (these are the actual "crosscut
elements"). Designers need to be able to designate all three
kinds of elements in both the specification of the crosscutting
details and in the specifications of the crosscutting hooks (new
to aspect-orientated design is the designation of crosscut and
referenced elements). This allows designers to reason on the
their dependencies, e.g., if a particular join points specifica-
tion designates all elements from a (eventually crosscut)
decomposition that are needed by a particular crosscutting
feature (i.e., its specification). Note that both the specification
of the crosscutting details and the specifications of the cross-
cutting hooks need to specify how referenced and crosscut
entities relate to each other – the former to fully describe the
environment in which the crosscutting details are executed
(recall that models are supposed to display all information for
a specific purpose; note how this design principle compares to
the "declarative completeness" requirement in Hyper/J), the
latter to unambiguously identify them in the crosscut decom-
position. Reflecting on these observations, we demand:

A modeling language must provide graphical means to

(5) designate elements – and their relationships to each
other – belonging to the crosscut decomposition that are
crosscut or referenced by the crosscutting concern

(6) in both the specification of the crosscutting details
and in the specification of the crosscutting hooks.

Note that both crosscut and referenced elements must be
present in the crosscut decomposition for the crosscutting
details to execute. Since it is part of the join points specifica-
tion to identify these elements in the crosscut decomposition,
join points specifications in fact describe all characteristics a
given decomposition must possess for a crosscutting feature to

Crosscutting_
 Feature
Join_Point_
 Collection

specifications of
join points

specifications of
crosscutting

Referenced_
 Element
Crosscut_
 Element

Pointcut

details A details D

Advice & Introductions
(Implementations thereof)

implementation

abstractions B

C container container E
Aspect Base

Composition Rule
(in Hypermodule)

Java Package
(Implementations therein)

Hyperslice A Hyperslice B

Traversal StrategyVisitor Methods Adaptive Method Class Graph

F

Figure 1. Aspect-Oriented Design Issues (non-UML diagram)

take effect. In doing so, join points specifications outline a
particular perception of the crosscut decompositions (which
possibly describes a dynamic snapshot of that decomposi-
tions). Note how that extra level of indirection in the design of
crosscutting (resulting from making the perception of the
crosscut entities explicit rather than relating crosscut entities
and crosscutting features directly) helps designers to deter-
mine the exact deployment environment of their aspects and
thus promotes aspect reuse.

Apart from the dependencies concerning the appropriate
designation of crosscut and referenced elements, the specifi-
cation of crosscutting details and the specification of cross-
cutting hooks further interdepend by the exact way the cross-
cutting details in the former are to be composed to the cross-
cut elements designated in the latter. In the next section, we
consider what a modeling language must be capable of to
delineate the way of composition.

2.3 Characterization of Composition
In aspect-orientation, "crosscutting" can mean addition,
merging, or overriding of elements. Elements specified only
by the crosscutting concern need to be added to the crosscut
decomposition. Elements specified by both the crosscut and
crosscutting concern need either to be merged, or the elements
specified by the crosscutting concern override their counter-
parts specified by the crosscut concern. Hence, the type of
crosscutting characterizes how the elements specified in the
details (Figure 1, A) relate to the elements designated in the
hooks (Figure 1, D). We believe that the type of crosscutting
is confined by the semantic of the crosscutting details, and
thus restrains the reading of the crosscutting details. There-
fore, the type of crosscutting should be designed with the
crosscutting details rather than with the join points specifica-
tion.

For example, a synchronization strategy that simply defers the
execution of actions is at best merged to (i.e., before the)
crosscut actions. A synchronization strategy on the contrary,
that possibly discards the execution of actions at all (depend-
ing on the behavior performed by other actions) needs to
override the original actions. Hence, we need to determine in
our design models describing the crosscutting details what
type of crosscutting we are specifying. For the specification of
join points (e.g., the actions to be synchronized), though, it
should be of no importance what type of crosscutting is speci-
fied by the crosscutting details (e.g., if synchronization is
accomplished by merging or overriding). Recall in this matter
our explanations in section 2.1. So, reflecting on these obser-
vations we postulate:

A modeling language must provide means to

(7) attribute the specification of the crosscutting details
with the type of crosscutting, which characterizes how the
elements specified with the crosscutting details are to be
composed to the crosscut elements designated by the join
points specification.

Note that we abstract from reconciliation problems due to
conflicting specifications of (crosscutting and crosscut) ele-
ments that are to be merged. We believe we can do that, since
we regard the crosscutting of a particular crosscutting feature
to a particular set of join points, which is rigidly defined by a
join points specification. If the crosscutting details are to be

assigned to a new (unknown) decomposition, designers are
pointed right away to the elements that need to be reconciled
(or adapted) by simply comparing the join points specification
with the elements (meant to be crosscut and referenced) in the
respective decomposition.

So far, we are regarding the details of the specifications of
crosscutting (i.e., the specification of the elements that cross-
cut, of the set of locations where they crosscut, and of how
they crosscut). However, when it comes to reason about the
dependencies between these specifications in the overall
design model, we call for succinct design notations that ab-
stract from the specification details so our perception is not
blurred. In the following, we examine how such abstractions
should look like.

2.4 Abstractions
Just as any programming language, aspect-oriented program-
ming languages make use of identifiers like attribute names or
operation signatures to reference a particular crosscutting
property of some aspect entity. These identifiers generally
give an overall idea of what the identified crosscutting prop-
erty is for and what is does. At best, programmers can guess
from these identifiers whether the particular identifier refers to
a specification of crosscutting details (Figure 1, A) or a join
points specification (Figure 1, D); they can observe which
elements are used (i.e., crosscut or referenced) within that
specification; further, they can recognize how the crosscutting
details are to be composed to the crosscut decomposition. That
way, programmers grasp at a glance all information that is
needed to appropriately deploy the identified property.

A design notation should provide likewise concise notations to
identify crosscutting features and join point collections. These
notations ought to get as close as possible to their corre-
sponding programming language constructs to ease their
handling and improve their comprehensibility. At the same
time, they are required to display all information (mentioned
above) that is essential to contemplate on the role of the cross-
cutting feature or join point collection in the overall design
model. That way, the design notation enables designers to
assess the dependencies between crosscutting features, join
point collections, and crosscut and referenced elements on an
appropriate level of abstraction. Reflecting on these consid-
erations, we demand:

A modeling language must provide appropriate abstractions

(8) for the specification of the structural and behavioral
elements that crosscut a given decomposition and

(9) for the specification of the set of join points
("hooks") where that crosscutting takes place.

By these abstractions, a modeling language must enable de-
signers to apprehend

(10) what the specification is for and what is does (or al-
locates)

(11) what elements are used or exposed (i.e., crosscut
and referenced) by the specification details;

(12) how the crosscutting details are to be composed to
the hooks.

After we have postulated these twelve issues regarding the
aspect-oriented design of crosscutting features, we now have a

look how we can achieve these postulates in the UML. Due to
limitations of space we concentrate on the discussion of the
most appropriate depiction of the details of a crosscutting
feature rather than on the most befitting representation of their
abstractions. Note, though, that we consider current aspect-
oriented programming languages to provide sufficient ideas to
develop suitable abstractions for crosscutting features and,
thus, the task is to find matching meta-level representations
rather than appropriate visualizations.

3. AO-DESIGN WITH THE UML
In this section, we contemplate on the possibilities provided
by the UML to specify the details of crosscutting features. We
neglect any considerations on how to represent these cross-
cutting features on a more abstract level (e.g., the "aspect
level", the "use case level", etc.) or at meta-level. Instead, we
examine how to exploit existing UML concepts to graphically
depict the specification of the elements that (eventually)
crosscut a given decomposition and the specification of the
join points at which that decomposition is crosscut by distinct
design means. Further, we evaluate how to designate the
crosscut and referenced elements the specifications refer to
within those design means. Our examinations consider the
concepts we are using in our AODM. We discuss why we
think that the details of crosscutting features should be defined
in that way.

3.1 Details of Crosscutting
Designers need to be provided with graphical means to design
structural or behavioral details of crosscutting (Figure 1, A)
independently from the decomposition being crosscut (Figure
1, E and F) as well as from the specification of the join points
(Figure 1, D). We believe that for the design of elements
involved in structural and behavioral crosscutting (Figure 1,
A) current modeling techniques in the UML are ample enough
to model a wide range of crosscutting concerns. We consider
possible shortcomings (e.g., in behavioral modeling; cf. [15])
to be not specific to aspect-oriented modeling and conse-
quently we consider them to be beyond the scope of this pa-
per. The question to solve, though, is to find a suitable con-
tainer element that may hold the crosscutting details and
provides a namespace for its elements. Design in the UML
should always take place within a distinguished namespace to
avoid name-clashes (e.g., during automated design validation).
UML classifiers, UML packages, and UML collaborations are
examples for (i.e., subtypes of) UML namespaces.

In the AODM, the details of structural and behavioral cross-
cutting on a given decomposition are specified by means of
UML collaborations. UML collaborations represent a mighty
design concept because designers may specify both structural
and behavioral aspects of a design model using the full range
of UML's modeling facilities (cf. [3]). Therefore, no limits are
set in collaborations for designing crosscutting elements.
Besides these syntactical contributions, collaborations also
contribute to the semantics of aspects. That is, because both
collaborations and aspects describe a particular view on a
system model with respect to a particular usage or concern.
However, while aspects render (crosscutting) characteristics
that are to be newly introduced into the system model, col-
laborations represent projections (or restrictions) on charac-
teristics that already exist in a system model (cf. [17], p. 2-
122). Due to this problem, we currently have to weave models

(i.e., supplement the crosscut decomposition with the features
specified in an aspect collaboration) before we may check the
model for integrity, conformity, and well-formedness. How-
ever, we believe that weaving constitutes a core concept of
aspect-orientation (like inheritance in object-orientation, for
example). Therefore, a weaving relationship should be defined
on the meta-level characterizing the weaving process and
possible restrictions. We then advocate for a more tolerant
interpretation of collaborations in the UML in the sense that
collaborations may also specify new model elements, which
are then implicitly added to designated base model elements
by means of weaving relationships. Further, we propose to
relinquish the conception that collaborations are generally
supposed to describe some kind of usage or interaction. In-
stead, they should be seen as general descriptions of arbitrary
aspects of some software system – may they be behavioral or
purely structural.

We believe that UML collaborations are more appropriate to
serve as namespace for crosscutting entities – compared to, for
example, UML packages – because we feel that collaborations
already have a somewhat crosscutting nature. That is, UML
collaborations are intended to describe model elements in
parts; they concede that model elements may have further
properties defined somewhere else (a model element can
participate in multiple collaborations at a time). That character
particularly pertains to the design of structural properties.
Packages, on the contrary, are meant as a general grouping
mechanism where fully specified model elements are sepa-
rated into disjunctive groups (a model element cannot belong
to more than one package at a time). The model elements
contained in a package can be imported, accessed or used
"friendly" by elements from other packages, but they always
stay distinct model elements – any joining or merging is not
intended. On the other hand, we can borrow and reuse a lot
from the existing UML specification on collaborations to
develop means for aspect-oriented modeling. For instance, the
UML specification already specifies an association between a
classifier "role" in a collaboration and some "base" classifiers
in the crosscut decomposition (cf. [17], p. 2-118). Further-
more, the specification provides us with collaboration runtime
semantics (collaboration instance sets) and explicitly foresees
collaborations templates – or parameterized collaborations (as
we use them to designate crosscut elements; see next section).

3.2 Crosscut and Referenced Elements
A new ao-specific issue that needs to be solved by an aspect-
oriented modeling language relates to the appropriate repre-
sentation of elements belonging to the crosscut decomposition
that are used (crosscut or referenced) within the crosscutting
concern and, furthermore, how those elements are distin-
guished from the elements belonging to the crosscutting con-
cern. Designers must be able to clearly distinguish these kinds
of model elements in both the specification of the crosscutting
details (Figure 1, A) and the specification of the crosscutting
hooks (Figure 1, D). In the following, we derive suitable
means to designate referenced and crosscut elements in the
crosscutting details by investigating general UML practices.
In the next section, we adopt the outcomes of this section for
the designation of referenced and crosscut elements in join
points specifications.

Looking for appropriated ways to distinguish crosscut and
referenced elements as well as elements specific to the cross-
cutting concern (abbr., "cc-specific" elements) within the
crosscutting details, we consider it useful in our AODM to
differentiate between structural and behavioral crosscutting. In
[20], we point out that in structural crosscutting the element
being hooked onto and the element being affected coincide,
while in behavioral crosscutting they do not. For example,
structural crosscutting hooks onto a classifier and affects its
signature by adding new attributes or operations. Behavioral
crosscutting, however, hooks onto a message (e.g., an opera-
tion call) and affects the action sequence that is to be activated
by that message. Our AODM reflects on this observation and
hooks behavioral crosscutting onto UML links (being a struc-
tural element that is repeatedly passed during the execution of
behavior), and defines the crosscutting details in standard
UML collaborations (cf. [18] [19]). We believe that this dis-
union helps us to identify the most appropriate representation
of referenced elements because (in case the behavior is
merged to the original behavior, and does not override it) we
can abstract from the crosscut element.

That is, within a design model describing crosscutting behav-
ior (to be merged), we only deal with model elements specific
to the crosscutting concern and those referenced from the
crosscut decomposition. Considering that in our AODM the
details of behavioral crosscutting are specified using a stan-
dard UML collaboration, we can compare that specification to
the way ordinary behavior (e.g., of standard UML operations)
is specified. When specifying the behavior of a standard op-
eration in the UML, though, we designate referenced elements
by means of UML's «parameter», «local», «global», «associa-
tion», or «self» stereotypes to indicate why a given entity is
visible to the particular behavior. Adopting this UML practice,
we advocate to use these stereotypes to designate referenced
or cc-specific model elements in a crosscutting design model,
too – possibly complemented by new stereotypes like «ad-
vice» or «indirectneighbor» to suit needs of particular aspect-
oriented programming techniques. Having found feasible
means to designate referenced model elements within the
specifications of crosscutting details, we now investigate how
we can designate crosscut elements regarding the specifica-
tion of structural crosscutting.

Unlike to behavioral crosscutting, structural crosscutting
hooks onto and affects the same model elements (i.e., classifi-
ers in the AODM). Therefore, we have to deal with crosscut,
referenced and cc-specific model elements in the same design
model. To distinguish the former one from the latter two, we
chose to use UML's template mechanism and designate the
crosscut elements as template parameters – similar to Compo-
sition Patterns [7]. That way, we exploit the "instantiation
semantics" of UML templates as we may define new proper-
ties (like features and relationships) that are to be appended to
the crosscut element by binding the elements to be crosscut to
the template parameters. Note that "binding" in the UML does
not result in visual introduction of elements (cf. [17], p. 2-73).
In this concern, binding in the UML conforms to our under-
standing of weaving, which should be specified syntactically
and semantically on the meta-level in a like manner (cf. sec-
tion 3.1). Nevertheless, we call for a more liberal usage of
binding (or rather weaving) since currently an entity may be
bound to (i.e., crosscut by) one template at most (cf. [17], p. 2-

55). Furthermore, a bound (i.e., crosscut) entity is currently
not allowed to add any information of its own (cf. [17], p. 2-
26). These rules conflict with weaving semantic of most as-
pect-oriented programming techniques, though.

3.3 Hooks of Crosscutting
A new demand to aspect-oriented modeling is the precise
specifications of the join points where crosscutting takes place
in the crosscut decomposition (Figure 1, D), and principal
effort should be taken to find an appropriate answer. Apart
from specifying the set of locations in the given decomposi-
tion at which crosscutting takes place, designers should also
be able to designate those elements of that given decomposi-
tion that are of relevance to crosscutting concerns and could
be used (i.e., referenced) in their models (see section 3.2).
These elements should be modeled in their relationship to the
(set of) locations of crosscutting.

The notational means to represent sets of locations are
strongly related to the concepts that have been chosen to serve
as location (hook) for structural and behavioral crosscutting.
In our AODM, we identify UML classifiers to be hook for
structural crosscutting and UML links to be hook for behav-
ioral crosscutting. As graphical means to designate hooks in
base design models, we introduce a new "crosscut" relation-
ship that connects the hooks (i.e., a classifier or link) with the
crosscutting details. In [20], we argue though that using a
relationship to designate hooks quickly blur design models as
soon as all crosscut relationships need to be shown (in par-
ticular when using type patterns or wildcards in pointcuts or
introductions in AspectJ or in match or bracket rules in Hy-
per/J). Considering the design issues postulated above (see
section 1), relationships impose even more problems. For
example, relationships directly relate elements in the cross-
cutting concern to elements in the crosscut concern. There-
fore, they cannot be considered really independent from the
crosscutting details, and they hardly can be reused in another
crosscutting. Furthermore, relationships cannot be aggregated
to new relationships (as pointcuts in AspectJ may be com-
bined to aggregate new pointcuts). Relationships further fail
when it comes to specify requirements to the environment of a
crosscut entity (e.g., in the specification of a traversal strategy
in Adaptive Programming, or in behavioral crosscutting in
AspectJ when crosscutting to a message is suppose to take
place only if the message is sent by a particular type of ob-
ject.).

In [20], we therefore suggest to use "join point designation
diagrams", which represent collaboration templates that out-
line a particular perception of the crosscut decomposition (see
Figure 2 for an example). In doing so, join point designation
diagrams designate crosscut elements as template parameters
(in the AODM that means either for classifiers or for message;
in Figure 2, we designate the classifier CrosscutType as
well as the message CrosscutOp to be crosscut elements).
Furthermore, they nominate all elements from the crosscut
element's environment that can be referenced within the cross-
cutting (cf. section 3.2). These elements are allocated in their
relation to the crosscut element (for example, Figure 2 desig-
nates SomeAssociatedType whose operation op1 may
be invoked by the crosscutting details; further, it requires the
CrosscutType to provide an attribute att1 and two
operations op1 and op2 so that they may be referenced

within the crosscutting concern). To emphasize entities that
are exposed to the crosscutting feature, we could deploy
UML's special «parameter» stereotype for association ends.
Hence, join point designation diagrams picture all model
elements that a given decomposition must provide for a cross-
cutting to take place. This may even go beyond the designa-
tion of referenced and crosscut elements (in Figure 2, for
example, we define the CrosscutType to be a (not neces-
sarily direct) child of SomeSuperType; further, we require
the crosscut message CrosscutOp to be sent from no other
objects than objects of SomeAssociatedType, etc.). This
helps designers to determine the exact deployment environ-
ment of their aspect and promotes aspect reuse.

4. SUMMARY & REMAINING ISSUES
In this paper, we postulated a couple of design issues specific
to aspect-orientation and elaborated how we can use the UML
to achieve these issues. Our explorations focused on the de-
sign of the details of crosscutting features, i.e., the specifica-
tion of the elements that (eventually) crosscut a given decom-
position, the specification of the join points at which that
decomposition is crosscut, and the designation of elements
from the crosscut decomposition that are used (i.e., crosscut or
referenced) by the crosscutting feature. We explained what
UML concepts we exploit in our AODM to achieve these
issues. In conclusion, we think that the UML provides suffi-
cient abstractions to specify crosscutting details (Figure 1, A)
and to designate crosscut and referenced elements therein.
These UML abstractions, however, may require some adjust-
ment in their semantics and relaxation of their well-
formedness rules to suit new necessities specific to aspect-
oriented design. A whole new issue is the specification of the
hooks of crosscutting (Figure 1, D) and it is a challenge to
find new ways to appropriately represent that specification in
a UML design model. Our future research is going to empha-
size the development of thorough means for the detailed
specification of sets of join points as well as their abstract
representation on higher level of designs.

Beyond that, there remain a couple of further issues that we
have not discussed in this paper. For example, we disregarded
the appropriate representation of crosscutting features on any
more abstract level (e.g., "aspect level" or "use case level") or
on the meta-level in the UML. That is, we concentrated on the
low-level design as the last step before implementation and
skipped any design issues of higher levels (cf. [12]). Further,
we neglected the appropriate representation of aspects as a

whole in the UML. We did not deal with the indication of
crosscut elements in the crosscut decomposition (see [20] for
a proposition). These issues need to be resolved to obtain an
overall aspect-oriented development process spanning from
the problem analysis to the implementation of code (cf. [6])
that yields flexibility, comprehensibility, traceability, reus-
ability, and so forth (cf. [4]).

5. REFERENCES
[1] Adaptive Programming,

http://www.ccs.neu.edu/research/demeter/
[2] AspectJ, http://www.aspectj.org
[3] Booch, G., Jacobson, I., Rumbaugh, J., The Unified Modeling

Language User Guide, Addison Wesley, Reading, MA, 1999
[4] Chitchyan, R., Sommerville, I., Rashid, A., An Analysis of

Design Approaches for Crosscutting Concerns, AOD Workshop
at AOSD'02 (Enschede, The Netherlands, Apr. 2002)

[5] Clarke, S., Composition of Object-Oriented Software Design
Models, PhD Thesis, Dublin City University, Dublin, Ireland,
Jan. 2001

[6] Clarke, S., Harrison, W., Ossher, H., Tarr, P. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design,
and Code. in Proc. of OOPSLA '99 (Denver, CO, Nov. 1999),
SIGPLAN Notices 34(10), 325-339

[7] Clarke, S., Walker, R.J. Composition Patterns: An Approach to
Designing Reusable Aspects. in Proc. of ICSE '01 (Toronto,
Canada, May 2001), ACM, 5-14

[8] Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.,
Discussing Aspects of Aspect-Oriented Programming, in: ACM
Communications, Vol. 44(10), Oct. 2001, pp. 33-38

[9] Elrad, T., Filman, R.E., Bader, A., Aspect-Oriented Program-
ming, ACM Communications, Vol. 44(10), Oct. 2001, pp. 29-32

[10] Hanenberg, St., Unland, R., A Proposal for Classifying Tangled
Code, 2nd AOSD-GI Workshop (Bonn, Germany, Feb. 2002)

[11] Harrison, W., Ossher, H., Subject-Oriented Programming (A
Critique of Pure Objects), in Proc. of OOPSLA '93 (Washington
DC, Oct. 1993), SIGPLAN Notices 28(10), pp. 411-428

[12] Harrison, W., Tarr, P., Ossher, H., A Position on Considerations
in UML Design of Aspects, AOSD-UML Workshop at AOSD'02
(Enschede, The Netherlands, Apr. 2002)

[13] Hyper/J, http://www.alphaworks.ibm.com/tech/hyperj

[14] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, Ch., Lopes,
Ch., Loingtier, J.-M., Irwin, J., Aspect-Oriented Programming,
in: Proc. of ECOOP '97 (Jyväskylä, Finland, Jun. 1997), LNCS
1241, pp. 220-242

[15] Kleppe, A., Warmer, J., Unification of static and dynamic
semantics of UML, Technical Report, Klasse Objecten, July
2001, http://www.klasse.nl/english/uml/ unification-report.pdf

[16] Lieberherr, K., Adaptive Object-Oriented Software: The Deme-
ter Method with Propagation Patterns, PWS Publishing Com-
pany, Boston, 1996

[17] Object Management Group (OMG), Unified Modeling Lan-
guage Specification, Version 1.4, Sep. 2001

[18] Stein, D., Hanenberg, St., Unland, R., A UML-based Aspect-
Oriented Design Notation For AspectJ, in: Proc. of AOSD '02
(Enschede, The Netherlands, Apr. 2002), ACM, pp. 106-112

[19] Stein, D., Hanenberg, St., Unland, R., Designing Aspect-
Oriented Crosscutting in UML, AOSD-UML Workshop at
AOSD'02 (Enschede, The Netherlands, Apr. 2002)

[20] Stein, D., Hanenberg, St., Unland, R., On Representing Join
Points in the UML, 2nd AOSD-UML Workshop at UML'02
(Dresden, Germany, Sept./Okt. 2002)

[21] Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In:
Proc. of ICSE'99 (Los Angeles, CA, USA, May 1999), ACM,
107-119

[22] Wegner, P., Zdonik, S., Inheritance as Incremental Modification
Mechanism or What Like is and Isn't Like, in: Proc. of
ECOOP'88 (Oslo, Norway, Aug. 1988), pp. 55-77

SomeSuper
Type

superOp()

«call» «join point»
CrosscutOp()

Collab_DesignatingSetOfJoinPoints

CrosscutType

att1

op2()
op3()

 Operations

 Attributes

2..*

 Operations

 Attributes

SomeAssociated
Type

CrosscutType

SomeAssociated
Type

op1()
 Operations

 Attributes

«call» «join point»
superOp()

SomeAssociated
Type

CrosscutType

«call» op1()

{ or}

CrosscutType { base = "SomePackage.Con*"}
CrosscutOp { base = "CrosscutType.op*(..)"}

[...]

Figure 2. Join Point Designation Diagram (cf. [20])

