
Parametric Introductions
Stefan Hanenberg and Rainer Unland

Institute for Computer Science
University of Essen, 45117 Essen, Germany

{shanenbe, unlandR}@cs.uni-essen.de

ABSTRACT
Aspect-oriented software development allows the programmer to
identify and treat separately concerns that, subsequently, can be
woven to different target applications. For this, aspect-oriented
languages like AspectJ and Hyper/J provide mechanisms for de-
fining and composing such crosscutting concerns. An introduction
is a mechanism for defining certain static crosscutting concerns,
i.e., concerns that affect the type of the application they are
woven to. This paper discusses the implementations of introduc-
tions in AspectJ and Hyper/J and reveals their limitations by pre-
senting typical examples of static crosscutting code that cannot be
handled adequately by them. To solve these deficiencies we will
present the concept of parametric introduction, which are intro-
ductions that rely on parameters that are evaluated during weave-
time.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features

Keywords
Aspect-Oriented Programming, Weaving, Crosscutting, Design
Patterns

1. MOTIVATION
Aspect-oriented software development [16] deals with the modu-
larization of concerns that cannot be encapsulated by traditional
composition techniques. Without modularization such concerns
would be spread over numerous modules. Hence, such concerns
are called crosscutting concerns and the code belonging to them
crosscutting code. There are two kinds of crosscutting code: static
and dynamic. Static crosscutting code is given if a static analysis
of the program definitively reveals whether such code is supposed
to occur. With dynamic crosscutting code such an occurrence de-
pends on runtime-specific elements.
Aspect-oriented programming languages like AspectJ [1] or Hy-
per/J [15], which extend object-oriented programming languages,
provide new composition techniques in addition to the existing
ones. A core tool of aspect-oriented languages is the weaver: it

takes “self-contained” concerns and weaves them into applica-
tions. This allows programmers to treat such (crosscutting) code
in separate modules and to only afterwards accomplish the cross-
cutting effect. Both AspectJ and Hyper/J support static weaving,
which means that weaving cannot be performed at run-time. A
static weaver analyses the base system to determine where to in-
sert the crosscutting code. Static crosscutting code can directly be
inserted into the system, while for dynamic crosscutting the
weaver lays down additional conditions that determine during
runtime if the woven code is to be executed.
AspectJ and Hyper/J support the concept of introduction to define
new members for existing types outside the original class or inter-
face definition. Since both are based on a strongly typed language
the question whether a class has a certain member has to be an-
swered at compile time. Hence, woven member definitions im-
plement a certain kind of static crosscutting code.
AspectJ and Hyper/J claim to solve the problem of crosscutting
concerns. Thus, they claim to solve the problem that static cross-
cutting code coming from a single concern has to be implemented
in different modules. However, we will present general examples
of crosscutting code that cannot be modularized using these im-
plementations of introductions. Hence, a more advanced imple-
mentation is needed.
This paper is structured as follows: In section 2 introductions are
defined together with their implementation in AspectJ and Hy-
per/J. Section 3 presents some typical examples of static crosscut-
ting code that cannot be modularized by AspectJ or Hyper/J. In
section 4 we propose parametric introduction as a new language
concept and present its implementation in our general-purpose as-
pect language Sally. Moreover, we show that these kinds of intro-
ductions solve the deficiencies revealed by the previous examples.
In section 5 we compare parametric introductions to other rele-
vant concepts. Finally, section 6 concludes the paper.

2. ASPECT-ORIENTED INTRODUCTIONS
The term introduction was originally introduced in AspectJ. It
implements a mechanism for adding fields, methods and inter-
faces to classes [1]. This is similar to open classes as described in
[3] and [4]. Introductions were motivated by the observation that
different concerns have a direct impact on the type structure of
object-oriented applications. As a consequence modularization is
compromised since some elements in the type structure, like cer-
tain fields and methods, come from different concerns. Aspect-
oriented techniques permit to remove these elements from the
type definition and provide a mechanism to introduce them at
weave time. An introduction is a strictly type increasing operation
on types, since it adds new features to types, but does not permit
to remove anything.

Figure 1 illustrates an aspect-oriented introduction. A special in-
troduction module defines new members that are to be introduced
into a target class A. The weaver takes the introduction module
and the target class and weaves them together. Thus, all elements
of the introduction module become members of the target class A.

A key question of an introduction mechanism is how to handle the
self-reference this in the introduction module. This handling
has a direct impact on the type correctness of the code that is sup-
posed to be introduced. If this is bound at weave-time, that
means when the introduced members become part of a target
class, it is hardly possible to determine the correctness of abstract
introduction. Abstract introductions are introductions that can be
reused in different contexts. That means the target classes are un-
known when the introduction is defined1. If inside an abstract in-
troduction this is bound at weave-time and the introduced code
sends some messages to this it is not possible to determine if
the (unknown) target type provides an appropriate method.
In some approaches this is at first not bound to any type, how-
ever, is bound during the weaving process. Other approaches bind
this already before weave-time. The binding of this at weave-
time permits a flexible combination of introductions since an in-
troduced method may use further introduced members. In case
this is already bound before weave time the corresponding type
can be used for type checking of the introduced code.

2.1 Introductions in AspectJ
In AspectJ introductions are declared in the class-like construct
aspect. It syntactically consists of the member definition and the
name of the target type. To add new interfaces to a target type,
AspectJ provides the keywords declare parents.
class A { ... }
interface NewInterface {...}
aspect MemberIntroduction {
 public String A.newString;
 public void A.doSomething(){...}
}
aspect InterfaceIntroduction {
 declare parents: A implements NewInterface;
}
aspect TypePatternIntroduction {
 public void (A+).doSomething2() {...}
}

Figure 2. Introductions in AspectJ

1 In aspect-oriented programming such abstract introductions are

often used to define aspect libraries that are provided by a third
party and adapted by the application programmer.

Figure 2 contains an aspect MemberIntroduction that adds a
field newString and a method doSomething to class A. The
aspect InterfaceIntroduction adds the interface to class
A. The target type can be specified using so-called type patterns
that permit to apply an introduction to several types at the same
time. For this AspectJ provides some operators for specifying sets
of target types. For example, a type pattern (A+) lays down that
every subclass of A is meant to be the target class for the introduc-
tion. The aspect TypePatternIntroduction specifies a
new method doSomething2 for every subclass of A.

An often used idiom in AspectJ is the container connection (cf.
[9]): the application of introductions to an interface that is later in-
troduced to a class. In such a case AspectJ applies the introduc-
tion to all classes implementing the interface. Figure 3 illustrates
such an introduction. An aspect IntroductionLoader intro-
duces a new field newString to an interface Container. A
different aspect introduces this interface to a target class. The re-
sult after weaving is that TargetClass contains the introduced
field newString and the introduced interface Container.

The main purpose of container introductions is to apply a collec-
tion of introductions to several different target classes not know at
introduction definition time. The container is then introduced to
all target classes without the need to perform any destructive
changes in the introduction definition. On the one hand this re-
duces the effort of performing introductions, since it only needs
one declare parents statement. On the other hand introduc-
tions can be applied without knowing in detail all elements which
are part of the container.
In the normal application of introductions AspectJ binds this at
weave-time. Thus, at introduction definition time this does not
refer to any type. This approach works without problems as long
as all target classes of an introduction exist, i.e., all possible
classes matching the type pattern are known when the introduc-
tion is defined. For example, in figure 2 this is true for the aspect
MemberIntroduction since the only class that matches the
type patter is a class named A. During weaving, the weaver binds
this to the target class A and checks, if all occurrences of this
match A. If this is not true, the weaver throws an exception. How-
ever, if not every possible classes exist the introduced code may
contain type errors. For example, a type pattern (A*) refers to all
classes whose name begins with an A. In such a case AspectJ can-
not determine if the use of this inside the introduced code is
type correct.
In container introductions this is bound to the container type
and not to the target class (which is somehow misleading, since
the introduction is performed on the target class and not on an
interface).

Figure 1. Aspect-Oriented Introductions

public String newString();
public void getString() {

return this.newString();
}

Introduction Module

public String newString();
public void getString() {
return this.newString();

}

...

...

A

A

weaving

Hence, AspectJ realizes the binding of this in two ways: either
at weaving time (in the usual introduction application) or at intro-
duction definition time (container connections).

2.2 Introductions in Hyper/J
In contrast to AspectJ Hyper/J is a tool that provides different
composition mechanisms for Java classes but does not extend the
underlying programming language. The composition mechanisms
originate from the theoretical background of subject-oriented
programming (cf. [14]). However, there is a common agreement
to regard Hyper/J as an aspect-oriented technique (cf. e.g. [22]).
The terminology used in Hyper/J differs substantially from the
one used in AspectJ. In the following we discuss those mecha-
nisms of Hyper/J that are almost equivalent to introductions in
AspectJ.
In Hyper/J introductions are realized by defining classes that con-
tain the members to be introduced and a so-called hypermodule
that defines how to weave the participating classes2. The hyper-
module specification is a structured file that is used as an input
parameter by the weaver. To describe how to weave classes Hy-
per/J provides different integration relationships like merging or
overriding (cf. [21]).
class A {...}
class MemberIntroduction {
 public String newString;
 public void doSomething() {...}
}
// hypermodule specification
relationships:
 ...
 compose class MemberIntroduction with
 additionally class A;
...

Figure 4: Introductions in Hyper/J

Figure 4 shows schematically how an introduction in Hyper/J
looks like and, furthermore, lists an extract from the correspond-
ing hypermodule specification file: the class MemberIntro-
duction contains the members to be introduced and is defined
in an ordinary class. The corresponding hypermodule lays down
that the class MemberIntroduction is to be composed with
class A. In fact the weaver introduces the class MemberIntro-
duction as a new super-class of A so that class A has all meth-
ods defined in the introduced super-class. The use of the composi-
tion rule compose permits the introduction of members of one

2 Due to space limitations we skip some details here. For a more

comprehensive description see [15].

class into several different target classes. However, it does not
really "introduce" the members, since members of the introduced
class do not physically become members of the target class. To do
so, Hyper/J provides an equate relationship. It permits two
classes to be woven together to form one single class. However,
the disadvantage of this relationship is that it cannot be used to in-
troduce members into more than one target class.
Since Hyper/J weaves Java classes, this is bound to the corre-
sponding class in all members that are to be introduced. Intro-
duced members are regular Java members and can, therefore, al-
ready be accessed from other classes before weaving. If equate
is used Hyper/J forwards all calls to the introduced members to
the woven class, that means all calls to the class to be introduced
are transformed into calls to the woven class. Due to this forward-
ing mechanism, Hyper/J does not permit to introduce members to
more than one class. If it were possible, it would be ambiguous to
what woven class a call has to be forwarded.

3. WHERE CURRENT IMPLEMENTA-
TIONS FAIL
This section presents some typical examples of static crosscutting
code that cannot completely be modularized by using introduction
in AspectJ and/or Hyper/J. We chose some often used implemen-
tations of well-known GoF-design patterns [5] for two reasons.
First, in aspect-oriented programming some of those implementa-
tions are usually regarded as aspects that are meant to be modular-
ized and reused in different situations [13]. Second, the used im-
plementations of GoF design patterns are commonly known.
Hence, it is not necessary to motivate the implementation or to
explain in what context they usually occur.

3.1 Singleton implementations
A straightforward implementation of the singleton design pattern
[5] in Java is to add some members to the class that is supposed to
become a singleton: a (private) static field of the same type as its
class, a private constructor and a public static method that returns
the singleton instance3. That means, every class that is supposed
to become a singleton contains all these members. If the singleton
pattern is applied to more than one class these members represent
static crosscutting code. The code comes from the same concern
("make a class a singleton") that changes the class structure of a
system, but differs slightly from class to class.

3 We avoid discussing topics like garbage collection in the im-

plementation of the singleton pattern. For a more comprehen-
sive discussion we refer e.g. to [7], pp. 127-133.

Figure 3: Container introduction in AspectJ

<<interface>>
Container

<<aspect>>
IntroductionLoader

String Container.newString

TargetClass

<<aspect>>
ContainerConnector

TargetClass implements Container

+newString

introduced
Container

weaving

<<interface>>
Container

TargetClass+Container

For example, in figure 5 two classes implement a singleton. Both
have the singleton specific members whose types differ.
In AspectJ the singleton can be implemented by introducing all
singleton specific members to an interface Singleton that
represents the container in a container connection (see figure 6).
This container is afterwards connected to a target class via an in-
troduction. AspectJ does not permit to define the object creation
within SingletonLoader, because there is no possibility to
refer to the class, to which Singleton will be introduced4. In-
stead, this has to be defined in the connector. Hence, AspectJ does
not permit to define the singleton aspect in one single module, be-
cause instance creation is still scattered over different connecting
aspects. Furthermore, the return type used in getInstance
does not correspond to the type of the target classes (ASingle-
ton, BSingleton). As a consequence typing information gets
lost during weaving and every object requesting the singleton in-
stance has to perform a type cast.
class ASingleton {
 private ASingleton () {}
 private static ASingleton
 instance = new ASingleton ();
 public static ASingleton getInstance() {
 return instance;
 }
 ...
}
class BSingleton {
 private static BSingleton
 instance = new BSingleton ();
 private BSingleton() {}
 public static BSingleton getInstance() {
 return instance;
 }
 ...
}

Figure 5. Singleton implementations in Java

4 It should be mentioned that it is possible to implement the crea-

tion by using so-called advice and introspection. However, this
implementation has disadvantages like additional type casts
whose discussion is outside the scope of this paper.

Figure 7 illustrates an implementation of the singleton in Hyper/J
by using the equate relationship. The result is that the type of
the class variable and the return type of getInstance corre-
spond to the target class since class Singleton and ASingle-
ton and, therefore, all occurrences of Singleton in the woven
code are replaced by ASingleton. Thus, the loss of type infor-
mation that occurred in AspectJ does not happen in Hyper/J.
However, if an equate relationship is chosen, it is not possible
to combine the singleton class with multiple different target
classes because of the forwarding mechanism. A work-around in
such case is to make as many copies of the singleton class as sin-
gletons appear in the application and then perform an equate rela-
tionship. But this means to give up the separation of concerns
principle, since the singleton-aspect would be spread over numer-
ous different classes that contain all the same implementation. If a
singleton class containing all singleton specific members were in-
tegrated using the compose relationship, the singleton would be-
come a super-class of both target classes. Hence, both target
classes would share the same static members.
interface VisitorElement {
 public void accept(Visitor v);
}
class A implements VisitorElement {
 public void accept(Visitor v) {
 v.visit(this);
 }
 ...
}
class B implements VisitorElement {...}
class C implements VisitorElement {...}
interface Visitor {
 void visit(A node);
 void visit(B node);
 void visit(C node);
}
class ConcreteVisitor implements Visitor {
 void visit(A node) {.....}
 void visit(B node) {.....}
 void visit(C node) {.....}
}

Figure 8: Visitor implementation in Java

Figure 6: Singleton Implementation in AspectJ

ASingleton

Singleton
private static Singleton instance = new Singleton();
public static Singleton getInstance() {
 return instance;
}

..
equate class
 ASingleton, A
..

HyperModule

Figure 7: Singleton implementation in Hyper/J (only one target)

<<interface>>
Singleton

ASingleton

BSingleton

+ constructor
+ getInstance()

<<aspect>>
SingletonConnector

SingletonA implements Singleton
private static SingletonA
 SingletonA.instance =
 new SingletonA();
SingletonB ….

<<aspect>>
SingletonLoader

private (Singleton+).new() {}
public static Singleton
(Singleton+).getInstance() {
 return instance;
}

+ Singleton
+ instance

+ Singleton
+ instance

introduced
container

It should be noted here that another possibility in Hyper/J is to de-
fine new classes ASingleton and BSingleton in different
packages than the target classes and apply a merge relationship.
Although this approach is technically possible, it does not modu-
larize the crosscutting code in any way.

3.2 Visitor implementations
A visitor [5] encapsulates polymorphic behavior outside of the
class hierarchy and is used to implement operations on complex
structures. Let us assume that an object structure of classes A, B,
C and D is given. A visitor implements an interface Visit-
edElement consisting only of the declaration of the double dis-
patch method accept(Visitor). The interface Visitor de-
clares a method visit for each element to be visited. The opera-
tion that is to be performed on the object structure is specified in
each implementation of the visitor interface.
In the implementation there are different kinds of crosscutting
code. First, classes whose objects are to be visited contain the
double dispatch method. Hence, this method represents static
crosscutting code. Furthermore, the interface Visitor contains
the method visit for all classes implementing VisitorEle-
ment.
interface VisitedElement {}
interface Visitor {
 visit(A node);
 visit(B node);
 visit(C node);
}
class ConcreteVisitor implements Visitor{
 ...
}
aspect VisitedElementLoader {
 public void VisitedElement+.accept(Visitor v)
 {v.visit(this);}
}
aspect VisitedElementConnector {
 declare parents: A implements VisitedElement;
 declare parents: B implements VisitedElement;
 declare parents: C implements VisitedElement;
}

Figure 9: Visitor implementation in AspectJ

AspectJ permits to modularize the double dispatch method by in-
troducing it to the interface VisitorElement. That means,
every class implementing this interface will automatically possess
such a method. On the other hand, AspectJ does not permit to
handle the different visit methods in the visitor interface. So
the interface has to be adapted by hand. As a consequence a new
method has to be defined in VisitorElement for every class
that is added to the object structure.
Hyper/J does not permit to modularize the visitor implementation
in any way. The compose relationship cannot be used since the
double dispatch method requires the dispatch method to be physi-
cally present in the target class and not only inherited. An
equate relationship needs to create a new class containing the
dispatch method for every visited class. Hence, this does not
modularize the crosscutting code.

3.3 Decorator implementations
A decorator [5] is used to extend the functionality of single ob-
jects during run-time. The typical implementation of a decorator

in Java for a given class A is shown in figure 10. An interface is
extracted from A and an abstract decorator implements that inter-
face. The abstract decorator has an instance variable of the im-
plemented interface to which all incoming messages are for-
warded to. Concrete decorators extend the abstract decorator and
override the methods they need to adapt.
If more than one class is decorated in an application (which is the
usual case) all occurring decorators in Java look like this. Hence,
the static crosscutting code consists of the following elements: the
extracted interface of the decorated class and a class that imple-
ments the interface and forwards all messages. The concrete deco-
rators are application specific and, therefore, usually differ from
application to application. Hence, concrete decorators are not part
of the static crosscutting code.
The problem with decorator implementations is that, although
they contain a lot of static crosscutting code, they do not contain
any fixed implementation. The interface Component consists of
the public methods of the decorated class. Moreover, the type of
the component within the abstract decorator depends on the class
to be decorated. Although it is known that an abstract decorator is
supposed to only forward all incoming messages to the compo-
nent the corresponding signatures are not known since any arbi-
trary class can be decorated.
class A implements Component {
 public void doSomething() {...}
}
interface Component {
 void doSomething();
}
class AbstractDecorator implements Component {
 public Component component;
 public void doSomething() {
 component.doSomething();
 }
}
class ConcrDecorator extends AbstractDecorator
{

}

Figure 10: Decorator implementation in Java

In AspectJ it is not possible to define a decorator aspect inde-
pendent of the classes to which it is applied to. A mechanism is
needed that adds the public methods of a class to an interface and
adds default implementations to a class that implements this inter-
face. Since AspectJ does not permit to bind method names nor
types at weave time, the introduction implementation is not suffi-
cient to perform such a task5.
The argumentation why Hyper/J does not permit to modularize a
decorator implementation is likewise. Hyper/J cannot extract an
interface out of a class and introduce a default implementation of
methods with unknown signatures.

5 It should be noted here that the mechanism for dynamic cross-

cutting offered by AspectJ permits to decorate classes in a dif-
ferent way by using the reflection API for dynamic crosscutting.
However, this approach is highly complex and more a work-
around than an acceptable solution.

3.4 Summary so far
The previous examples illustrated typical occurrences of static
crosscutting code in object-oriented programs. The examples have
in common that the static crosscutting code varies every time it
occurs (cf. [11] for a further discussion). In the singleton example
the return types vary, in the visitor example the parameter types
of the visit methods vary and the number of introductions depends
on the number of visited classes. In the decorator example method
signatures vary. However, we argued why occurrences of such
variations are still part of static crosscutting code and, thus, are to
be modularized using aspect-oriented techniques.
We showed that neither the introduction implementation in As-
pectJ nor the implementation in Hyper/J are sufficient to separate
the static crosscutting code in single modules. Instead, both im-
plementations force the developer to spread code pieces over dif-
ferent modules. Thus, neither AspectJ nor Hyper/J follow the
principle of separation of concerns. Nevertheless, there are nu-
merous situations where both implementations satisfy the needs at
hand. Hence, an extension of the current implementation mecha-
nisms is needed that permits to perform introductions in the
known way and furthermore solves the mentioned problems.

public static ?class
 instance = new ?class();

Introduction Module

public static A
 instance = new A();
...

...

A

A

weaving:
?class :=

TargetClass

Figure 11: Parametric introductions

4. PARAMETRIC INTRODUCTIONS
Parametric introductions receive parameters during weave-time.
The main motivation for this idea is the observation that some-
times static crosscutting code varies when woven to different
types (cf. [11]). The code that is to be introduced contains vari-
ables that are bound by the weaver. Figure 11 illustrates an exam-
ple of a parametric introduction that is motivated by the singleton
implementation from 3.1. The introduction specifies a field in-
stance to be introduced to a target class. The type of the field is
used as a variable within the introduction. Furthermore, the vari-
able is initialized with a new object whose class is not deter-
mined. The only parameter used within that introduction has the
identifier ?class. This introduction specifies that, whenever the
field is introduced to a class, the type of the field and the type of
the class to which the new operator is applied to are the same. In
figure 11 the weaver assigns the target class to the parameter
?class.

Parametric introductions require a mechanism to assign values to
its parameters in order to enable the weaver to determine the ac-
tual woven code. Moreover, sometimes it is useful to be able to
specify introductions without specifying the target classes. This
permits to define libraries of introductions that can be adapted to
target classes during application development without the need to

perform destructive modifications in the introduction module.
Furthermore, in section 3.2 we showed that it may be necessary to
apply an introduction to target classes more than once with differ-
ent parameter value pairs.
Parametric introductions are implemented in the aspect language
Sally, which will be introduced briefly in the next sections. First,
we explain the non-parametric introduction and then the paramet-
ric version.

4.1 Introductions in Sally
Sally is a general-purpose aspect language that is highly inspired
by AspectJ. Similar to AspectJ Sally provides a pointcut language
that is used to identify points in the code where weaving is meant
to occur. Another analogy to AspectJ is that each pointcut defini-
tion may contain several parameters. While in AspectJ pointcuts
are used for dynamic crosscutting code only, in Sally they are
also used for static crosscutting code: every introduction refers to
a pointcut definition. The parameters passed to an introduction are
determined by the corresponding pointcut definition. In contrast
to AspectJ Sally does not differentiate between classes and as-
pects. The aspect-specific features can be added to any class.
Thus, Sally supports (like AspectJ) inheritance relationships be-
tween aspects what implies that pointcuts may be overridden. It is
generally accepted that overriding pointcuts is the fundamental
mechanism for reusing aspects (cf. [10] for a further discussion).
Like AspectJ Sally binds this at weave time.
class A {...}
interface NewInterface {...}
class MemberIntroduction {
 pointcut targetClass(?class) =
 equals(?class,A);
 introduction introduceMembers<?class>
 targetClass(?class)
 implements NewInterface {
 public String newString;
 public void doSomething() {...}
 }
}

Figure 12: Introductions in Sally
In Sally introductions are members of classes and as such consist
of a header and a body. The body defines the members that are to
be introduced and looks like a normal class body. The header
consists of the keyword introduction followed by an identi-
fier, a number of parameters, the referring pointcut, and a number
of super-classes and interfaces that are to be introduced. The first
parameter of the introduction represents the target class6.
In figure 12 the class MemberIntroduction contains an in-
troduction with the name introduceMembers that has a single
parameter ?class, a corresponding pointcut targetClass
and an interface NewInterface that is introduced to the target
class. In the example the introduction body consists of the in-
stance variable newString and the method doSomething.

The introduction refers to the pointcut targetClass that binds
the parameter ?class to the class A. Similar to the approaches in
[25] and [8] Sally uses a logical programming language to reason

6 The identifier of an introduction is used to reason about the

woven code. Since this topic is beyond the scope of this paper it
will not be discussed in more detail here.

about the object-oriented code and to express crosscuttings. The
term equals(?class,A) comes from this underlying logical
language. The result of this definition is that class A implements
after weaving the interface NewInterface, has the introduced
variable newString, and the introduced method doSome-
thing.

4.2 Concrete parametric introductions
Sally permits to use the parameters passed to the introduction
within the introduction body. This means, for example, that types
can be passed to an introduction where they can be used as pa-
rameters. Figure 13 shows a singleton implementation in Sally.
Class SingletonIntroducer contains an introduction add-
SingletonMembers. The introductions has a parameter
?class that defines the class the introduction is applied to and
refers to the pointcut singleton that defines such classes. The
introduction body contains the known methods from the singleton
implementation. The type of the instance variable and the return
type of the introduced method are determined by the introduction
parameter. The pointcut singleton binds the variable ?class
to the class ASingleton and BSingleton. Hence, the intro-
duction is applied to both classes.

4.3 Abstract parametric introductions
The applicability of introductions can be increased substantially if
it could be left open at introduction definition time to what classes
the introductions are to be applied to. This permits to define li-
braries of introductions independently of their application. The
main benefit is that the introduction can be applied in a different
module than its definition. Thus, its application avoids the execu-
tion of destructive modifications in the introduction module. This
permits a higher level of reusability of aspects. In AspectJ such an
abstract introduction is achieved by the container introduction. In
Hyper/J such a separation of introduction definition and applica-
tion is much more natural, since the members to be introduced are
normal Java members, while the introduction application is de-
fined within a hypermodule.
Like AspectJ Sally permits to define abstract pointcuts that can be
overridden in a subclass. That means that the abstract pointcut in
a super-class does not refer to any point in the program, while the
overridden pointcut does. Introductions can be abstract by leaving
the pointcut the introduction refers to abstract; i.e., the introduc-
tion is not connected to any target class. To connect it a subclass
has to be defined that overrides the abstract pointcut and binds the
parameters to values. Thus, the introduction is realized by the
overriding class, although it is defined in a super-class.

Figure 14 illustrates the usage of an abstract introduction. Class
SingletonIntroducer is specified as in figure 13 except
that the pointcut is declared abstract. Hence this class does not
perform any introduction for a given application. Class Single-
tonConnector overrides pointcut and binds the parameter
?class to ASingleton and BSingleton and, by that, im-
plements the introduction. The benefit of this kind of introduction
is that the module that defines the introduction (SingletonIn-
troducer) does not need to be modified if the introduction is
applied to different classes. In order to apply the introduction to
other classes than the ones mentioned here either Singleton-
Connector has to be modified or another subclass of Single-
tonIntroducer has to be created.

SingletonIntroducer

pointcut singleton(?class);
...

SingletonConnector
pointcut singleton(?class) =
equals(?class, ASingleton) ||

 equals(?class, BSingleton);
+ instance

+ getInstance()

...

BSingleton

...

ASingleton

Figure 14: Abstract parametric introductions in Sally

4.4 Parametric multi-introduction
In the visitor example we motivated the necessity to apply an in-
troduction more than once to a target class: the method visit
needs to be introduced to the interface Visitor, however, each
time with different parameter types. In Sally introductions are
executed as long as different values for the introduction parame-
ters exist.
Figure 15 shows the corresponding implementation of the visitor
example in Sally. The class VisitorIntroducer contains the
introduction addDispatcher that introduces the double dis-
patch method and the interface VisitedElement to each class
to be visited. Since the referring pointcut visitedClass is ab-
stract, the classes need to be defined in a subclass that overrides
this pointcut.
The introduction addVisit expects two parameters (?i and
?c) from its pointcut target. The parameter ?i is used to de-

SingletonIntroducer

pointcut singleton(?class) =
equals(?class, ASingleton) ||

 equals(?class, BSingleton);
introduction addSingletonMembers<?class>
 singleton(?class) {
private static ?class instance = new ?class();
public static ?class getInstance() {
return instance;}

 }
}

...

ASingleton

...

BSingleton

+ instance
+ getInstance()

Figure 13: Singleton implementation in Sally (concrete parametric introduction)

termine the target interface, ?c is used within the method declara-
tion as parameter. Thus, addVisit makes use of a parametric
introduction and introduces a method visit for each visited
class to the visitor interface with the corresponding type name.
The pointcut target binds the parameters ?i to the interface
Visitor and ?c to each class defined in visitedClass.
Since visitedClass is declared abstract target does not
bind any variables as long as visitedClass is not defined.

Class VisitorConnector extends VisitorIntroducer
and overrides the abstract pointcut visitedClass and binds
the parameter ?class to the classes A, B, and C. Hence, from
the point of view of the connector both pointcuts are concrete and
bind variables. The variable bindings of visitedClass are:
(?c=A), (?c=B) and (?c=C). The bindings of pointcut target
are: (?i=Visitor, ?c=A), (?i=Visitor, ?c=B) and (?i=
Visitor, ?c=C).

Hence, the introduction addDispatcher is applied to the target
classes A, B, and C, Thus, the method accept is added to each of
these classes. The introduction addVisit uses the first parame-
ter as the target class. All three tuples of target belong to the
same target class (the interface Visitor), but differ in the value
of their second parameter (?c). Hence, the introduction is applied
three times to Visitor, always with different parameters. Be-
cause ?c is used as a parameter within the introduction, Visi-
torConnector adds three additional visit methods to the
visitor interface. They differ in their parameter types.

4.5 Unnamed introduction
In section 3.3 we motivated why methods need to be introduced
to interfaces whose signatures are not known at introduction defi-
nition time. The problem in this context was twofold: first, at in-
troduction definition time it is unknown how many methods are to
be introduced and, second, the signatures of the methods to be in-
troduced are unknown. The first problem can be handled by the
previously presented multi-introductions. The latter is solved by
introducing unnamed methods. That are method introductions
whose signatures are determined at weave-time.
Figure 16 shows schematically a decorator implementation in
Sally. For reasons of simplicity we only concentrate on the intro-
duction of unnamed methods to the component interface and ig-
nore the rest of the implementation. DecoratorIntroduc-
tion contains 2 abstract pointcuts for declaring the class to be
decorated and the component interface. The concrete pointcut
cMethods determines all methods included in the decorated
class. The introduction cMethodIntro uses the passed parame-
ters to create the method signature that will be introduced to the
component interface. Special attention has to be paid to the han-
dling of the parameters of the method: only two introduction pa-
rameters are used here (?pTypes and ?args). A pointcut may
bind a list of values to an introduction parameter instead of bind-
ing atomic values only. If a list is bound to an introduction pa-
rameter, Sally generates a corresponding list from the parameters.
In this concrete example, Sally tests if lists bound to ?pTypes
and ?args have the same length and introduces a list of parame-

DecoratorIntroducer

pointcut decoratedClass(?c);
pointcut componentIF(?i);
....
pointcut cMethods (?i,?m,?r,?pTypes,?args) =
 componentIF(?i) && decoratedClass(?c) &&
 method(?c,?r,?m,?pTypes) &&
 args(?pTypes,?args);
introduction cMethodIntro<?i,?m,?r,?pTypes,?args>
 cMethods(?i,?m,?r,?pTypes,?args){
 ?r ?m (?pTypes ?args);
}
...
...

...

A
<<interface>>
AInterface

+ all methods of A

DecoratorConnector

 pointcut decoratedClass(?c) =
 equals(?c,A);
 pointcut componentIF(?i) =
 equals(?i,AInterface);
....

Figure 16: Extract of the Decorator implementation in Sally (unnamed introduction)

VisitorIntroducer

pointcut visitedClass(?c);
pointcut target(?i,?c) =
 visitedClass(?c) &&
 equals(?i,Visitor);
public introduction addDispatcher<?c>
 visitedClass(?c)

 implements VisitedElement {
 public void accept(Visitor v) {
 v.visit(this);
 }
}
public introduction addVisit<?i,?c>
 target(?i,?c)

public void visit(?c node);
 }
}

+ VisitedElement
+ visit(..) ...

A

<<interface>>
Visitor

...

B

...

C

VisitorConnector
pointcut visitedClass(?class) =
 equals(?class,A) ||
 equals(?class,B) ||
 equals(?class,C);

+ visit(..)

Figure 15: Visitor implementation in Sally (multi-introduction)

ter type and value pairs. The decorator connector overrides
decoratedClass and componentIF, hence, the introduc-
tion cMethodIntro can be executed. The pointcut cMethods
binds the variables in the following way: ?i= AInterface,
?m=doSomething, ?r=void, ?pTypes=[] and ?args=[].
Since ?pTypes and ?args is bound to empty lists, the method
doSomething is introduced to the interface AInterface
without any parameters.

5. RELATED WORK
In this paper we compared parametric introduction directly with
the corresponding mechanisms in AspectJ and Hyper/J. However,
other concepts and mechanisms were introduced that are usually
not referred to in the context of aspect-oriented programming but
are quite similar to aspect-oriented introductions.

5.1 Generic Types
Parametric introductions as implemented in Sally on top of the
programming language Java are mainly used to pass types to in-
troductions. Thus, they look quite similar to generic types [2] or
parametric types [19] in Java that also permit types to be passed
as parameters. The most obvious difference between both ap-
proaches is that an introduction has a direct impact on the target
class, i.e., it directly extends the existing target class by additional
members while generic types are new types that need to be instan-
tiated and do not influence the existing type structure. Thus, ge-
neric types are preplanned while an introduction is an unantici-
pated type evolution.

5.2 Generic Functions
If a method is introduced to several classes it can be invoked on
instances of all of them. So, the body of the method is the same
and only the type of its receivers changes. Hence, introduced
methods are similar to generic functions as provided by Common
Lisp [24]. A generic function is a function whose behavior de-
pends on the types of the arguments supplied to it. It contains a
number of methods to which the calls may be delegated. The dif-
ference between a generic function and a parametric introduction
is that within parametric introductions the code to be introduced
varies due to the weave time parameters. Using generic functions
the programmer has to specify in what way the method body var-
ies in dependence of, e.g., the passed parameters.

5.3 Roles
Roles [23] are temporary views on objects. A role's properties can
be regarded as subjective, extrinsic properties of the object the
role is assigned to. During its lifetime an object is able to adopt
and abandon roles. Thus, an environment of an object can access
not only its intrinsic, but also its extrinsic properties. Because of
this characteristic roles provide a mechanism that can be com-
pared to introductions (see [12] for a comprehensive discussion of
aspects and roles). There are numerous different implementations
of the role concept that make use of the composition mechanisms
of the underlying programming language. For example, [17] pro-
poses an implementation based on object-based inheritance, [6]
uses the Smalltalk-specific handling of incoming messages, [20] a
language mechanism called per-object mixins and [12] dynamic
proxies. The major difference between roles and aspect-oriented
introductions is that a role works on a single object, i.e., a role
does not extend the interface of a class, but the interface of the
object they are assigned to. Nevertheless, [20] provides a mecha-

nism called per-class mixin that permits to add roles to classes.
Thus, the interface of the class is extended. Nevertheless, this
mechanism does not permit to declare any variability within the
role that is “vitalized” when the role is assigned to the target class.
Furthermore, since this concept is provided by an untyped
programming language it hard is to compare it to aspect-oriented
introductions based on typed programming languages.

5.4 Aspect-oriented logic meta programming
[25] proposes aspect-oriented logical meta programming as a
mechanism for modularizing concerns. Aspect-oriented logic
meta programming means to write logical programs that reason
about aspect declarations. Aspect declarations can be accessed
and declared by logical rules. So, the weaver is constructed in a
logical programming language that provides a number of rules for
generating the woven code. The logical programming language
proposed in [25] for weaving is called TyRuBa (in fact, the here
proposed mechanism is implemented using TyRuBa).
In TyRuBa quoted code blocks can be declared that permit to use
pieces of Java code as terms in logical programs. These code
pieces may contain logical variables that are substituted during
weaving. In fact, this mechanism, in conjunction with the weaver,
provides parametric introductions. The difference between both
approaches is that the proposed implementation in Sally is an ex-
tension of the programming language Java while TyRuBa handles
logical programming separately from object-oriented program-
ming. The weaver implementation in TyRuBa is not connected to
the object-oriented programming language but generates object-
oriented code. That means, before weaving, no checks are per-
formed, neither on the involved classes nor on the involved intro-
ductions. So it is not even determined if quoted code blocks con-
tain Java code at all. This makes software development in
TyRuBa error prone. In Sally all classes and introductions are
parsed before weaving and type-checking is performed on the in-
volved classes (of course, with the exception of parameterized in-
troductions).

6. CONCLUSION
In this paper we identified introduction as an important mecha-
nism to modularize static crosscutting code in aspect-oriented
programming languages. We showed common examples of static
crosscutting code in which the introductions of AspectJ and Hy-
per/J fail to modularize those examples.
As a solution, we proposed parametric introductions, i.e., intro-
ductions that receive parameters during weave-time, and indicated
how they are realized in the general-purpose aspect language
Sally. Moreover, we introduced a mechanism for reusing intro-
ductions by using the pointcut language of the aspect language for
static crosscutting code. We demonstrated how parametric intro-
ductions solve the inadequacies of Hyper/J and AspectJ by apply-
ing parametric introductions to the examples where the introduc-
tions of AspectJ and Hyper/J failed.
Mechanisms like AspectJ and Sally, which do not bind this at
introduction definition time, have to offer mechanisms for check-
ing the validity on introductions that are not bound to some target.
Otherwise, aspect-oriented development based on introductions
will be quite error prone. A discussion of what kind of checking is
possible in introductions and the impact of each kind of introduc-
tions on type checking will be examined by us in the next future.

Furthermore, the limits of reusability of introductions have to be
examined to provide an appropriate language support. Such limits
are either name collisions of introduced members that are not han-
dled by any implementation (as far as we known). Also, the
fragile base class problem (cf. [18]), which means that the reus-
ability of an extension not only depends on the extension itself
but also on the base classes, has to be considered.
Parametric introductions are a powerful mechanism that increases
the modularization of static crosscutting code. The proposed us-
age of connecting introductions and pointcut language in conjunc-
tion with an inheritance relationship between classes containing
introductions increase the reusability of introductions.

7. ACKNOWLEDGMENTS
We would like to thank Arno Schmidmeier for several discussions
about this work and the anonymous reviewers for their helpful
comments.

8. REFERENCES
[1] AspectJ Team: The AspectJ Programming Guide,

http://aspectj.org/doc/dist/progguide/.

[2] Bracha, G., Odersky, M., Stoutamire, D., Wadler, P., Making
the future safe for the past: Adding Genericity to the Java
Programming Language, OOPSLA 98, Vancouver, October
1998.

[3] Cannon, H., Flavors: A non-hierarchical approach to object-
oriented programming, Symbolics Inc., 1982

[4] Clifton, C., Leavens, G., Chambers, C., Millstein, T., Multi-
Java, Modular open classes and symmetric multiple dispatch
for Java, In Proc. of OOPSLA 2000, pp. 130–146

[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Pat-
terns: Elements of Reusable Object-Oriented Software, Ad-
dison-Wesley, 1995.

[6] Gottlob, G., Schrefl, M., Röck, B., Extending Object-
Oriented Systems with Roles, ACM Transactions on Infor-
mation Systems, Vol. 14, No. 3, July 1996.

[7] Grand, M: Patterns in Java, Vol. 1, John Wiley & Sons, 1998

[8] Gybels, K: Using a logic language to express cross-cutting
through dynamic joinpoints, Second Workshop on Aspect-
Oriented Software Development of the GI, Bonn, February
21-22, 2002

[9] Hanenberg, S., Costanza, P., Connecting Aspects in AspectJ:
Strategies vs. Patterns, First Workshop on Aspects, Compo-
nents, and Patterns for Infrastructure Software at AOSD, En-
schede, April, 2002

[10] Hanenberg, S., Unland, R., Using and Reusing Aspects in
AspectJ. Workshop on Advanced Separation of Concerns in
Object-Oriented Systems at OOPSLA, 2001

[11] Hanenberg, S., Unland, R., A Proposal For Classifying Tan-
gled Code, Second Workshop on Aspect-Oriented Software
Development of the GI, Bonn, February 21-22, 2002,

[12] Hanenberg, S., Unland, R., Roles and Aspects: Similarities,
Differences, and Synergetic Potential, 8th International Con-
ference on Object-Oriented Information Systems (OOIS)
LNCS 2425, Springer-Verlag, 2002, pp. 507-521.

[13] Hannemann, J., Kiczales, G., Design Pattern Implementa-
tions in Java and AspectJ, Proc. of OOPSLA 2002, pp. 161-
173

[14] Harrison, W., Ossher, H., Subject-Oriented Programming (A
Critique of Pure Objects), Proc. of OOPSLA 1993, pp. 411-
428

[15] IBM alphaworks, Hyper/J Homepage,
http://www.alphaworks.ibm.com/tech/Hyper/J, last access:
February 2001.

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J.-M., Irwing, J., Aspect-Oriented Program-
ming. Proceedings of ECOOP '97, LNCS 1241, Springer-
Verlag, pp. 220-242, 1997

[17] Kniesel, G., Objects Don't Migrate - Perspectives on Objects
with Roles, Technical Report IAI-TR-96-11, University of
Bonn, April 1996.

[18] Mikhajlov, L., Sekerinski, E., A Study of the Fragile Base
Class Problem, ECOOP '98, LNCS 1445, Springer-Verlag,
pp. 355-382.

[19] Myers, A., Bank, J., Liskov, B., Parameterized types for
Java, Symposium on Principles of Programming Languages,
pp. 132–145, ACM, 1997.

[20] Neumann, G., Zdun, U., Enhancing object-based system
composition through per-object mixins. In Proceedings of
Asia-Pacific Software Engineering Conference (APSEC),
Takamatsu, Japan, December 1999.

[21] Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.,
Specifying Subject-Oriented Composition, TAPOS - Theory
and Practice of Object Systems, volume 2, number 3, 1996,
Wiley & Sons, pp. 179-202

[22] Ossher, H., Tarr, P., Using multidimensional separation of
concerns to (re)shape evolving software. Communication of
the ACM, 44(10), 2001, pp. 43-50.

[23] Pernici, B., Objects with Roles, in: F.H. Lochovsky, R.B. Al-
len (Eds.): Proceedings of the Conference on Office Informa-
tion Systems, SIGOIS Bulletin, vol. 11, no. 2/3, ACM Press,
New York, 1990, pp. 205-215.

[24] Steele, G: Common Lisp: the Language, 2nd Edition, Digital
Press. 1990.

[25] De Volder, K., D'Hondt, T., Aspect-Oriented Logic Meta
Programming, Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.
LNCS 1616, Springer-Verlag, 1999, pp. 250-272.

